
Machine Learning (2018) 107:1283–1302
https://doi.org/10.1007/s10994-018-5732-2

High-dimensional penalty selection via minimum description
length principle

Kohei Miyaguchi1 · Kenji Yamanishi1

Received: 28 January 2018 / Accepted: 14 June 2018 / Published online: 20 July 2018
© The Author(s) 2018

Abstract
We tackle the problem of penalty selection for regularization on the basis of the minimum
description length (MDL) principle. In particular, we consider that the design space of the
penalty function is high-dimensional. In this situation, the luckiness-normalized-maximum-
likelihood (LNML)-minimization approach is favorable, because LNML quantifies the
goodness of regularized models with any forms of penalty functions in view of the MDL
principle, and guides us to a good penalty function through the high-dimensional space.
However, the minimization of LNML entails two major challenges: (1) the computation of
the normalizing factor of LNML and (2) its minimization in high-dimensional spaces. In
this paper, we present a novel regularization selection method (MDL-RS), in which a tight
upper bound of LNML (uLNML) is minimized with local convergence guarantee. Our main
contribution is the derivation of uLNML, which is a uniform-gap upper bound of LNML in
an analytic expression. This solves the above challenges in an approximate manner because
it allows us to accurately approximate LNML and then efficiently minimize it. The experi-
mental results show that MDL-RS improves the generalization performance of regularized
estimates specifically when the model has redundant parameters.

Keywords Minimum description length principle · Luckiness normalized maximum
likelihood · Regularized empirical risk minimization · Penalty selection · Concave–convex
procedure

1 Introduction

Weare concernedwith the problemof learningwith redundantmodels (or hypothesis classes).
This setting is not uncommon in real-world machine learning and data mining problems. It is
because the amount of available data is sometimes limited owing to the cost of data collection
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(e.g., in biomedical data analyses), while researchers can come upwith an unbounded number
of models for explaining the data that may contain a number of irrelevant features. For
example, in sparse regression, onemay consider a number of features that aremuch larger than
that in the data, assuming that useful features are actually scarce (Rish and Grabarnik 2014).
Another example is statistical conditional-dependency estimation, in which the number of
the parameters to estimate is quadratic as compared to the number of random variables, while
the number of nonzero coefficients are often expected to be sub-quadratic.

In the context of such a redundant model, there is a danger of overfitting, a situation
in which the model fits the present data excessively well but does not generalize well. To
address this, we introduce regularization and reduce the complexity of the models by taking
the regularized empirical risk minimization (RERM) approach (Shalev-Shwartz and Ben-
David 2014). In RERM, we minimize the sum of the loss and penalty functions to estimate
parameters. However, the choice of the penalty function should be made cautiously as it
controls the bias-variance trade-off of the estimates, and hence has a considerable effect on
the generalization capability.

In conventional methods for selecting such hyperparameters, a two-step approach is usu-
ally followed. First, a candidate set of penalty functions is configured (possibly randomly).
Then, a penalty selection criterion is computed for each candidate and the best one is cho-
sen. Note that this method can be applied to any penalty selection criteria. Sophisticated
approaches like Bayesian optimization (Mockus et al. 2013) and gradient-based meth-
ods (Larsen et al. 1996) also tend to leave the criterion as a black-box. Although leaving
it as a black-box is advantageous in that it works for a wide range of penalty selection cri-
teria, a drawback is that the full information of each specific criterion cannot be utilized.
Hence, the computational costs can be unnecessarily large if the design space of the penalty
function is high-dimensional.

In this paper, we propose a novel penalty selection method that utilizes information about
the objective criterion efficiently on the basis of the minimum description length (MDL)
principle (Rissanen 1978). We especially focus on the luckiness normalized maximum like-
lihood (LNML) code length (Grünwald 2007) because the LNML code length measures the
complexity of regularizedmodels without making any assumptions on the form of the penalty
functions. Moreover, it places a tight bound on the generalization error (Grünwald andMehta
2017). However, the actual use of LNML on large models is limited so far. This is owing to
the following two issues.

(I1) LNML contains a normalizing constant that is hard to compute especially for large
models. This tends to make the evaluation of the code length intractable.

(I2) Since the normalizing term is defined as a non-closed form of the penalty function,
efficient optimization of LNML is non-trivial.

Next, solutions are described for the above issues. First, we derive an upper bound of
the LNML code length, namely uLNML. The key idea is that, the normalizing constant of
LNML, which is not analytic in general, is characterized by the smoothness of loss functions,
which can often be upper-bounded by an analytic quantity. As such, uLNML exploits the
smoothness information of the loss and penalty functions to approximate LNML with much
smaller computational costs, which solves issue (I1). Moreover, within the framework of the
concave–convex procedure (CCCP) (Yuille and Rangarajan 2003), we propose an efficient
algorithm for finding a local minimima of uLNML, i.e., finding a good penalty function in
terms of LNML. This algorithm only adds an extra analytic step to the iteration of the original
algorithm for the RERM problem, regardless of the dimensionality of the penalty design.
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Thus, issue (I2) is addressed.We put together these twomethods and propose a novel method
of penalty selection namedMDL regularization selection (MDL-RS).

We also validate the proposedmethod from theoretical and empirical perspectives. Specif-
ically, as our method relies on the approximation of uLNML and the CCCP algorithm on
uLNML, the following questions arise.

(Q1) How well does uLNML approximate LNML?
(Q2) Does the CCCP algorithm on uLNML perform well with respect to generalization as

compared to the other methods for penalty selection?

For answering Question (Q1), we show that the gap between uLNML and LNML is
uniformly bounded under smoothness and convexity conditions. As for Question (Q2), from
our experiments on example models involving both synthetic and benchmark datasets, we
found that MDL-RS is at least comparable to the other methods and even outperforms them
when models are highly redundant as we expected. Therefore, the answer is affirmative.

The rest of the paper is organized as follows. In Sect. 2, we introduce a novel penalty selec-
tion criteria, uLNML, with uniform gap guarantees. Section 3 demonstrates some examples
of the calculation of uLNML. Section 4 provides the minimization algorithm of uLNML and
discusses its convergence property. Conventional methods for penalty selection are reviewed
in Sect. 5. Experimental results are shown in Sect. 6. Finally, Sect. 7 concludes the paper and
discusses the future work.

2 Method: analytic upper bound of LNMLs

In this section, we first briefly review the definition of RERM and the notion of penalty
selection. Then, we introduce the LNML code length. Finally, as our main result, we show an
upper bound of LNML (uLNML) with approximation error analyses and several examples.

2.1 Preliminary: regularized empirical risk minimization (RERM)

Let fX : Rp → R(= R ∪ {∞}) be an extended-value loss function of parameter θ ∈ R
p

with respect to data X = (x1, . . . , xn) ∈ X n . We assume fX (θ) is a log-loss (but not limited
to i.i.d. loss), i.e., it is normalized with respect to some base measure ν over X n , where∫
X n exp {− fX (θ)} dν(X) = 1 for all θ in some closed subset Ω0 ⊂ R

p . Here, xi can be a
pair of a datum and label (xi , yi ) in the case of supervised learning. We drop the subscript X
and just write f (θ) = fX (θ) if there is no confusion.

The regularized empirical risk minimization (RERM) with convex domain Ω ⊂ Ω0 is
defined as the following minimization

RERM(λ) : minimize fX (θ) + g(θ, λ) s.t. θ ∈ Ω, (1)

where g : Rp ×A → R denotes the penalty function and λ ∈ A ⊂ R
d is the hyperparameter

that parametrizes the shape of penalty on θ . We assume that at least one minimizer always
exists in Ω , and denote it as θ̂ (X , λ). Here, we focus on a special case of RERM in which
the penalty is linear to λ,

g(θ, λ) =
d∑

j=1

λ j g j (θ), λ j ≥ 0 ( j = 1, . . . , d), (2)
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and A ⊂ R
d+ is a convex set of positive vectors. Finally, let us define D(λ)

def= {X ∈ X n |
θ̂ (X , λ) ∈ Ωo}, where Ωo is the interior of the set Ω . Then, we assume that the following
regularity condition holds:

Assumption 1 (Regular penalty) D(λ) is monotone increasing, i.e.,

λ ≤ λ′ ⇒ D(λ) ⊂ D(λ′),

or equivalently,

λ ≤ λ′, θ̂ (X , λ) ∈ Ωo ⇒ θ̂ (X , λ′) ∈ Ωo.

Regularization is beneficial from two perspectives. It improves the condition number of
the optimization problem, and hence enhances the numerical stability of the estimates. It also
prevents the estimate from overfitting to the training data X , and hence reduces generalization
error.

However, these benefits come with an appropriate penalization. If the penalty is too large,
the estimate will be biased. If the penalty is too small, the regularization no longer takes
effect and the estimate is likely to overfit. Therefore, we are motivated to select a good λ as
a function of data X .

2.2 Luckiness normalizedmaximum likelihood (LNML)

In order to select an appropriate hyperparameter λ, we introduce the luckiness normalized
maximum likelihood (LNML) code length as a criterion for the penalty selection. The LNML
code length associated with RERM(λ) is given by

L(X | λ)
def= min

θ∈Ω
fX (θ) + g(θ, λ) + log Z(λ), (3)

where Z(λ)
def= ∫

maxθ∈Ω exp {− fX (θ) − g(θ, λ)} dν(X) is the normalizing factor of
LNML.

Note that LNML is originaly derived by generalization of the Shtarkov’s minimax coding
strategy (Shtar’kov 1987; Grünwald 2007). The normalizing factor Z(λ) can be seen as a
penalization of the complexity of RERM(λ). It quantifies how much RERM(λ) will overfit
to random data. If the penalty g is small such that the minimum in (1) always takes a low
value for all X ∈ X n , Z(λ) becomes large. Specifically, any constant shift on the RERM
objective, which does not change the RERM estimator θ̂ , does not change LNML since Z(λ)

cancels it out. Moreover, recent advances in the analysis of LNML show that it bounds the
generalization error of θ̂ (X , λ) (Grünwald and Mehta 2017). Thus, our primary goal is to
minimize the LNML code length (3).

2.3 Upper bound of LNML (uLNML)

The direct computation of the normalizing factor Z(λ) is often impossible because it requires
integration of the RERM objective (1) over all possible data. To avoid the computational
difficulty, we introduce an upper bound of Z(λ) that is analytic with respect to λ. Then,
adding the upper bound to the RERM objective, we have an upper bound of the LNML code
length itself.

To derive the bound, let us define the following H -upper smoothness condition.
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Definition 1 (H -upper smoothness) Let H ∈ S
p
++ ⊂ R

p×p be a symmetric positive definite
matrix. A function f : Rp → R is called H -upper smooth, or (H , c, r)-upper smooth to
avoid any ambiguity, if there exists a constant c ≥ 0, vector-valued function ξ : Rp → R

p ,
and monotone increasing function r : R → R+ such that

f (ψ) − f (θ) ≤ c + 〈ξ(θ), ψ − θ〉 + 1

2
‖ψ − θ‖2

H
+ r(‖θ − ψ‖2), ∀ψ ∈ R

p,∀θ ∈ Ω,

where ‖ψ − θ‖2
H

def= (ψ − θ)� H(ψ − θ) and r
(
t2
) = o

(
t2
)
.

A few remarks follow: The H -upper smoothness is a condition that is weaker than that
of standard smoothness. In particular, ρ-smoothness implies ρ Ip-upper smoothness, and all
the bounded functions are upper smooth with their respective triples (H , c, r). Moreover,
the function r only describes the behavior of the function outside of Ω . Thus, if the penalty
g j (θ) is upper smooth, we can take the corresponding r zero without changing the solution
of RERM.

Now, assume that fX and g j ( j = 1, . . . , d) are upper-smooth:

Assumption 2 (Upper-smooth objective) Both of the following equivalent conditions are
satisfied:

(i) fX is (H0, c0, r)-upper smooth for all X ∈ X n and g j is (H j , c j , 0)-upper smooth ( j =
1, . . . , d).

(ii) fX (·) + g(·, λ) is (H(λ), c(λ), r)-upper smooth for all X ∈ X n and all λ ≥ 0, where

H(λ)
def= H0 +∑d

j=1 λ j H j and c(λ)
def= c0 +∑d

j=1 λ j c j .

Then, the following theorem states that the upper bound depends on fX and g only through
their smoothness.

Theorem 1 (Upper bound of Z(λ)) Suppose that Assumption 2 holds. Let R(H ;U ) =
Ez∼Np[0,H−1]

[
1U (z) exp

{−r
(‖z‖2)}]. Then, for all the symmetric neighbors of the ori-

gin U ⊂ R
p satisfying Ω +U ⊂ Ω0, we have

Z(λ) ≤ Z̄(λ)
def= 1

R
(
H0;U

)
ec(λ) det H(λ)

1
2

√
2π

p

∫

Ω+U
e−g(θ,λ)dθ. (4)

Proof Let qλ(X)
def= ∫

Ω+U exp {− fX (θ) − g(θ, λ)} dθ . First, by Hölder’s inequality, we
have

Z(λ) =
∫

X n
max
θ∈Ω

exp {− fX (θ) − g(θ, λ)} dν(X)

≤
∥
∥
∥
∥
maxθ∈Ω exp {− f·(θ) − g(θ, λ)}

qλ(·)
∥
∥
∥
∥∞

‖qλ(·)‖L1(ν)

= sup
X∈X n

max
θ∈Ω

exp {− fX (θ) − g(θ, λ)}
qλ(X)

︸ ︷︷ ︸
A

∫

X n
qλ(X)dν(X)

︸ ︷︷ ︸
B

,

where ‖·‖∞ denotes the uniform norm and ‖·‖L1(ν) denotes the L1-norm with respect to
measure ν. Then, we will bound A and B in the right-hand side, respectively. Since we
assume that fX (θ) is a logarithmic loss if θ ∈ Ω0, the second factor is simply evaluated
using Fubini’s theorem,
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B =
∫∫

(Ω+U )×X n
exp {− fX (θ) − g(θ, λ)} dθdν(X)& =

∫

Ω+U
e−g(θ,λ)dθ.

On the other hand, by H(λ)-upper smoothness of f (θ) + g(θ, λ), we have

A−1 = qλ(X) exp { fX (θ) + g(θ)}
=
∫

Ω+U
exp { fX (θ) + g(θ, λ) − fX (ψ) − g(ψ, λ)} dψ

≥
∫

Ω+U
exp

{

−c(λ) − 〈ξ(θ), ψ − θ〉 − 1

2
‖ψ − θ‖2

H(λ)
− r(‖ψ − θ‖2)

}

dψ

≥ e−c(λ)

∫

U
exp

{

−〈ξ(θ), z〉 − 1

2
‖z‖2

H(λ)
− r(‖z‖2)

}

dz

≥ e−c(λ)

∫

U
exp

{

−1

2
‖z‖2

H(λ)
− r(‖z‖2)

}

dz

= e−c(λ)

√
2π

p

det H(λ)
1
2

R(H(λ);U )

≥ e−c(λ)

√
2π

p

det H(λ)
1
2

R(H0;U ).

This concludes the proof. ��
The upper bound in Theorem 1 can be easily computed by ignoring the constant fac-

tor R(H0,U )−1 given the upper smoothness of fX and g(·, λ). In particular, the integral∫
Ω+U e−g(θ,λ)dθ can be evaluated in a closed form if one chooses a suitable class of penalty
functions with a suitable neighborU (e.g., quadratic penalty functions withU = R

p). There-
fore, we adopt this upper bound as an alternative of the LNML code length, namely uLNML,

L̄(X |λ)
def= min

θ∈Ω
fX (θ) + g(θ, λ) + log Z̄(λ), (5)

where Z̄(λ) is defined in Theorem 1. Note that the symmetric set U should be fixed before-
hand. In practice, we recommend just takingU = R

p because uLNMLwithU = R
p bounds

uLNMLs with U �= R
p and then we have

L̄(X |λ) = min
θ∈Ω

fX (θ) + g(θ, λ) + c(λ) + 1

2
log det H(λ) + log

∫

Rp
e−g(ψ,λ)dψ + const.

However, for the sake of the later analysis, we leave U to be arbitrary.
We present two useful specializations of uLNML with respect to the penalty function

g(θ, λ). One is the Tikhonov regularization, known as 
2-regularization.

Corollary 1 (Bound for Tikhonov regularization) Suppose that Assumption 2 holds with fX .
Suppose that g(θ, λ) = 1

2

∑p
j=1 λ jθ

2
j where λ j > 0 for all 1 ≤ j ≤ p. Then, we have

Z(λ) ≤ ec0

R(H0;Rp)

√
det(H0 + diag λ)

det diag λ
.

Proof The claim follows from setting U = R
p in Theorem 1 and the fact that g(·, λ) is

(diag λ, 0, 0)-upper smooth. ��
The other one is that of lasso (Tibshirani 1996), known as 
1-regularization. It is useful if

one needs sparse estimates θ̂ (X , λ).
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Corollary 2 (Bound for lasso) Suppose that Assumption 2 holds with fX . Suppose that
g(θ, λ) =∑p

j=1 λ j
∣
∣θ j
∣
∣, where λ j > 0 for all 1 ≤ j ≤ p. Then, we have

Z(λ) ≤ ec0

R(H0;Rp)

√
e

2π

p
√
det(H0 + (diag λ)2)

det(diag λ)2
.

Proof As in the proof of Corollary 1, it follows from Theorem 1 and the fact that g(·, λ) is
((diag λ)2, 1/2, 0)-upper smooth. ��

Finally, we present a useful extension for RERMs with Tikhonov regularization, which
contains the inverse temperature parameter β ∈ [a, b] (0 < a ≤ b) as a part of the parameter:

fX (β, θ) = β f̃ X (θ) + logC(β), (6)

g(β, θ, λ) = β g̃(θ, λ) = β

d∑

j=1

λ j

2
θ2j , (7)

whereC(β)
def= ∫

e−β f̃ X (θ)dν(X) < ∞ is the normalizing constant of the loss function. Here,
we assume that C(β) is independent of the non-temperature parameter θ . Interestingly, the
uLNML of variable temperature models (6), (7) coincides with that of the fixed temperature
models given in Corollary 1 except with a constant.

Corollary 3 (Bound for variable temperaturemodel)Let (β, θ) ∈ [a, b]×Ω be the parameter
of the model (6). Suppose that f̃X (θ) is (H0, c0, r)-upper smooth for all X ∈ X n.

Then, there exists a constant C[a,b] such that

Z(λ) ≤ Ca,b e(b+a/2)c0

R( a2 H0;Rp)

√
det
(
H0 + diag λ

)

det diag λ
.

Proof Let F̃X (λ) = minθ∈Ω f̃ X (θ) + g̃(θ, λ). Let W = [a/2, b + a/2] and q̃λ(X) =
∫
W exp

{
−β F̃X (λ) − logC(β)

}
dβ. Note that logC(β) is continuous and hence bounded

over W , which implies that it is upper smooth. Let (hβ, cβ, rβ) be the upper smoothness of
logC(β) over W . Then, using the same techniques as in Theorem 1, we have

Z(λ) =
∫

max
β∈[a,b], θ∈Ω

exp
{
−β
[
f̃ X (θ) − g̃(θ, λ)

]
− logC(β)

}
dν(X)

≤ max
β∈[a,b] sup

X∈X n
exp
{
−β F̃X (λ) − logC(β) − log q̃λ(X)

} ∫
q̃λ(X)dν(X)

≤ Ca,b

∫

W
dβ

∫
max
θ∈Ω

exp
{
−β f̃ X (θ) − β g̃(θ, λ) − logC(β)

}
dν(X)

≤ Ca,b

∫

W
dβ

eβc0

R(βH0;Rp)

√
det β

(
H0 + diag λ

)

det β diag λ

= Ca,b e(b+a/2)c0

R( a2 H0;Rp)

√
det
(
H0 + diag λ

)

det diag λ
,

where Ca,b
def= ecβ

Rβ (hβ ;[−a/2,a/2])
√

hβ

2π . ��
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2.4 Gap between LNML and uLNML

In this section, we evaluate the tightness of uLNML. To this end, we now bound LNML from
below. The lower bound is characterized with strong convexity of fX and g(·, λ).

Definition 2 (H-strong convexity) Let H ∈ S
p
++ ⊂ R

p×p be a symmetric positive definite
matrix. A function f (θ) is H -strongly convex if there exists a vector-valued function ξ :
R

p → R
p such that

f (ψ) − f (θ) ≥ 〈ξ(θ), ψ − θ〉 + 1

2
‖ψ − θ‖2H , ∀ψ ∈ R

p,∀θ ∈ R
p.

Note that H -strong convexity can be seen as the matrix-valued version of the standard strong
convexity. Now, assume the strong convexity of fX and g j :

Assumption 3 (Strongly convex objective) Both of the following equivalent conditions are
satisfied:

(i) fX is H0-strongly convex for all X ∈ X n and g j is H j -strongly convex ( j = 1, . . . , d).

(ii) fX (·) + g(·, λ) is H(λ)-strongly convex for all X ∈ X n and all λ ≥ 0, where H(λ)
def=

H0 +∑d
j=1 λ j H j .

Then, we have the following lower bound on Z(λ).

Theorem 2 (Lower bound of Z(λ)) Suppose that Assumptions 1 and 3 hold. Let T (V )
def=

infψ∈V
∫
D(0) exp {− fX (ψ)} dν(X).

Then, for all V ⊂ Ω0, we have

Z(λ) ≥ T (V )
det H(λ)

1
2√

2π
p

∫

V
e−g(θ,λ)dθ. (8)

Proof Let qλ(X)
def= ∫

V exp {− fX (θ) − g(θ, λ)} dθ . First, from the positivity of qλ, we have

Z(λ) =
∫

X n
max
θ∈Ω

exp {− fX (θ) − g(θ, λ)} dν(X)

≥
∫

D(λ)

max
θ∈Ωo

exp {− fX (θ) − g(θ, λ)} dν(X)

≥ inf
X∈D(λ)

max
θ∈Ωo

exp {− fX (θ) − g(θ, λ)}
qλ(X)

︸ ︷︷ ︸
A

∫

D(λ)

qλ(X)dν(X)

︸ ︷︷ ︸
B

.

Then, we bound from below A and B in the right-hand side, respectively. Since we assumed
that fX (θ) is a logarithmic loss, the second factor is simply evaluated using Fubini’s theorem,

B ≥
∫∫

V×D(0)
exp {− fX (θ) − g(θ, λ)} dθdν(X)

≥ T (V )

∫

V
e−g(θ,λ)dθ,

where the first inequality follows from Assumption 1.
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On the other hand, by Lemma 1, we have

A−1 = qλ(X) min
θ∈Ωo

exp { fX (θ) + g(θ)}

=
∫

Ω

exp

{

min
θ∈Ωo

fX (θ) + g(θ, λ) − fX (ψ) − g(ψ, λ)

}

dψ

≤
∫

Ω

exp

{

−1

2
‖z‖2H(λ)

}

dz

≤
√
2π

p

det H(λ)
1
2

.

This concludes the proof. ��
The lower bound in Theorem 2 has a similar form with the upper bound Z̄(λ). Therefore,

combining Theorem 2 with Theorem 1, we have a uniform gap bound of uLNML.

Theorem 3 (Uniform gap bound of uLNML) Suppose that the assumptions made in Theo-
rems 1 and 2 are satisfied. Suppose that the penalty function is quadratic, i.e., H j = H j
and c j = 0 for all j = 1, . . . , d. Then, the gap between LNML and uLNML is uniformly
bounded as, for all X ∈ X n and λ ∈ A,

L̄(X |λ) − L(X |λ) ≤ c0 + 1

2
log

det H0

det H0
− log R(H0;U ) − log T (Ω +U ), (9)

where R(H0;U ) and T (V ) is defined as in the preceding theorems.

Proof From Theorems 1 and 2, we have

L̄(X |λ) − L(X |λ) ≤ log Z̄(λ) − log Z(λ)

≤ c(λ) + 1

2
log

det H(λ)

det H(λ)
− log R(H0;U ) − log T (V )

+ log

∫
Ω+U e−g(θ,λ)dθ
∫
V e−g(θ,λ)dθ

,

where c(λ) = c0 from the assumption. Taking V = Ω +U to cancel out the last term,
we have

L̄(X |λ) − L(X |λ) ≤ c0 + 1

2
log

det H(λ)

det H(λ)
− log R(H0;U ) − log T (Ω +U ). (10)

Let κ(Q)
def= log det(H0+Q)

det(H0+Q)
for Q ∈ S

p
+ and let Q = H

− 1
2

0 QH
− 1

2
0 and Q = H

− 1
2

0 QH
− 1

2
0 .

Then, we have

∂

∂t
κ(t Q) = tr

(
(H0 + t Q)−1Q − (H0 + t Q)−1Q

)

= tr
(
(I + t Q)−1Q − (I + t Q)−1Q

) ≤ 0,

where the last inequality follows from Q � Q. This implies that

log
det H(λ)

det H(λ)
= κ

⎛

⎝
d∑

j=1

H j

⎞

⎠ ≤ κ(O) = log
det H0

det H0
,

which, combined with (10), completes the proof. ��
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The theorem implies that uLNML is a constant-gap upper bound of the LNML code length
if fX is strongly convex. Moreover, the gap bound (9) can be utilized for choosing a good
neighbor U . Suppose that there is no effective boundary in the parameter space, Ω = Ωo.
Then, we can simplify the gap bound and the optimal neighbor U is explicitly given.

Corollary 4 (Uniform gap bound for no-boundary case) Suppose that the assumptions made
in Theorem 3 is satisfied. Then, if Ω = Ωo, we have a uniform gap bound

L̄(X |λ) − L(X |λ) ≤ c0 + 1

2
log

det H0

det H0
− log R(H0;U ) (11)

for all X ∈ X n and all λ ∈ A. This bound is minimized with the largest U, i.e., U =⋂
θ∈Ω [Ω0 − {θ}].

Proof According to Theorem 3, it suffices to show that T (V ) ≡ 1 for all V ⊂ Ω0. From
the existence of the RERM estimate in Ω , we have θ̂ (X , λ) ∈ Ω = Ωo for all X ∈ X n

and all λ ∈ A. Therefore, we have D(λ) = X n = D� and hence
∫
D�

e− fX (ψ)dν(X) ≡ 1
for all ψ ∈ Ω0, which is followed by T (V ) ≡ 1. The second argument follows from the
monotonicity of R(H ; ·). ��

As a remark, if we assume in addition that fX is a smooth i.i.d. loss, i.e., fX =∑n
i=1 fxi

and c0 = 0, the gap bound is also uniformly bounded with respect to the sample size n. This
is derived from the fact that the right-hand side of (11) turns out to be

log
det nH

det nH
− logE

z∼Nm [0, 1n H
−1
0 ]
[
1U (z)e−r(‖z‖2)] n→∞−→ log

det H

det H
< ∞.

2.5 Discussion

In previous sections, we derived an upper bound of the normalizing constant Z(λ) and
defined an easy-to-compute alternative for the LNML code length, called uLNML. We also
presented uniform gap bounds of uLNML for quadratic penalty functions. Note that uLNML
characterizes Z(λ) with upper smoothness of the loss and penalty functions. This is both
advantageous and disadvantageous. The upper smoothness can often be easily computed
even for complex models like deep neural networks. This makes uLNML applicable to a
wide range of loss functions. On the other hand, if the Hessian of the loss function drastically
varies across Ω , the gap can be considerably large. In this case, one may tighten the gap by
reparametrizing Ω to make the Hessian as uniform as possible.

The derivation of uLNML relies on the upper smoothness of the loss and penalty functions.
In particular, our current analysis on the uniform gap guarantee given by Theorem 3 holds
only if the penalty function is smooth. This is violated if one employs the 
1-penalties.

We note that there exists an approximation of LNML called Rissanen’s asymptotic expan-
sion (RAE), which was originally given by Rissanen (1996) for a special case and then
generalized by Grünwald (2007). RAE approximates LNML except for the o(1) term with
respect to n,

L(X |λ) = min
θ∈Ω

fX (θ) + g(θ, λ) + p

2
log

n

2π
+ log

∫

Ω

√
det I (ψ)e−g(ψ,λ)dψ + o(1),

where I (ψ)
def= ∫ [∇ fX (θ)∇ fX (θ)�

]
e− fX (θ)dν(X) denotes the Fisher information matrix.

Differences between RAE and uLNML are seen from two perspectives: their approximation
errors and tractability.
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As for the approximation errors, one of the largest differences is in their boundedness.
RAE’s o(1) term is not necessarily uniformly boundedwith respect to λ, and actually it can be
unboundedly large for every fixed n as ‖λ‖ → ∞ in the case of, for example, the Tikhonov
regularization. This is in contrast to uLNML in that the approximation gap is uniformly
bounded with respect to λ according to Corollary 3, but it does not necessarily go to zero as
n → ∞. This difference can be significant, especially in the scenario of penalty selection,
where one compares different λ while n is fixed.

In terms of tractability, uLNML is usually easier to compute than RAE. One of the major
obstacles when one compute RAE is that the integrand

√
det I (ψ)e−g(ψ,λ) depends on both

of fX and λ. Unless the analytic value of the integral is known, which is unlikely especially
for complex models, one may employ the Monte Carlo approximation to evaluate it, which
is typically computationally demanding for high-dimensional models. On the other hand in
uLNML, the unwieldy integral is replaced with the upper-smoothness term and the integral
of the penalty. The upper smoothness can be computed with differentiation, which is often
easier than integration, and the penalty integral does not depend on fX anymore. Therefore,
uLNML is often applicable to a wider class of models than that of RAE. See Sect. 3.2 for
example.

3 Examples of uLNML

In the previous section, we have shown that the normalizing factor of LNML is bounded if the
upper smoothness of fX (θ) is bounded. The upper smoothness can be easily characterized
for a wide range of loss functions. Since we cannot cover all of it here, we present below a
few examples that will be used in the experiments.

3.1 Linear regression

Let X ∈ R
n×m be a fixed design matrix and let y ∈ R

n = X n represent the corresponding
response variables. Then, we want to find β ∈ R

m such that y ≈ Xβ. We assume that
the ‘useful’ predictors may be sparse, and hence, most of the coefficients of the best β for
generalization may be close to zero. As such, we are motivated to solve the ridge regression
problem:

min
σ 2∈[a,b], β∈Rd

− log p
(
y|X , β, σ 2)+ 1

2σ 2

p∑

j=1

λ jβ
2
j , (12)

where − log p(y|X , β, σ 2) = 1
2σ 2 ‖y − Xβ‖2 + n

2 log 2πσ 2. According to Corollary 3, the
uLNML of the ridge regression is given by

L̄(X |λ) = min
σ 2∈[a,b], β∈Rd

− log p
(
y|X , β, σ 2)+ 1

2σ 2

p∑

j=1

λ jβ
2
j

+ 1

2
log

det(C + diag λ)

det diag λ
+ const.,

where C
def= X�X . Note that the gap of the uLNML here is uniformly bounded, because the

LNML of the variable temperature model (12) is bounded from below with that of fixed-
variance models, which coincides with the above uLNML except with a constant.
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3.2 Conditional dependence estimation

Let X = (x1, x2, . . . , xn)� ∈ R
n×m = X n be a sequence of n observations independently

drawn from the m-dimensional Gaussian distribution Nm[0,Σ]. We assume that the con-
ditional dependence among the m variables in X is scarce, which means that most of the
coefficients of precision Θ = Σ−1 ∈ R

m×m are (close to) zero. Thus, to estimate the
precision matrix Θ , we penalize the nonzero coefficients and consider the following RERM

min
Θ∈Ω

− log p(X |Θ) + 1

2

∑

i �= j

λi jΘ
2
i j , (13)

where− log p(X |Θ) = 1
2

{
tr X�XΘ − n log det 2πΘ

}
denotes the probability density func-

tion of the Gaussian distribution. Here, we take Ω = {
Θ ∈ S

m++
∣
∣ Θ � R−1 Im

}
such that

the Hessian is appropriately bounded, ∇2
Θ fX = Θ−1 ⊗ Θ−1 � H0 = R2

2 Im×m . As for
the choice of R, we can use any upper-bound estimates of the largest eigenvalue of Θ−1.
Specifically, we employed R = ∥∥X�X/n

∥
∥∞ in the experiments. As it is an instance of the

Tikhonov regularization, fromCorollary 1 with H0 = n
2 R

2 Im2 , the uLNML for the graphical
model is given by

L̄(X |λ) = min
Θ∈Ω

− log p(X |Θ) + 1

2

∑

i �= j

[

λi jΘ
2
i j + log

(

1 + nR2

2λi j

)]

.

4 Minimization of uLNML

Given data X ∈ X n , we want to minimize uLNML (5) with respect to λ ∈ A as it bounds the
LNMLcode length,which is ameasure of the goodness of the penaltywith respect to theMDL
principle (Rissanen 1978; Grünwald 2007). Furthermore, it bounds the risk of the RERM
estimate EY fY (θ̂(X , λ)) (Grünwald and Mehta 2017). The problem is that grid-search-like
algorithms are inefficient since the dimensionality of the domain A ⊂ R

d is high.
In order to solve this problem,we derive a concave–convex procedure (CCCP) for uLNML

minimization. The algorithm is justified with the convergence properties that result from the
CCCP framework. Then, we also give concrete examples of the computation needed in the
CCCP for typical RERMs.

4.1 Concave–convex procedure (CCCP) for uLNMLminimization

In the forthcoming discussion, we assume that A is closed, bounded, and convex for compu-
tational convenience.We also assume that the upper bound of the normalizing factor log Z̄(λ)

is convex with respect to λ. This is not a restrictive assumption as the true normalizing term
log Z(λ) = log

∫
exp {maxθ∈Ω − fX (θ) − g(θ, λ)} dν(X) is always convex if the penalty is

linear as given in (2). In particular, it is actually convex for the Tikhonov regularization and
lasso as in Corollarys 1 and 2, respectively.

Recall that the objective function, uLNML, is written as

L̄(X |λ) = min
θ∈Ω

fX (θ) + g(θ, λ) + log Z̄(λ).
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Therefore, the goal is to find λ� ∈ A that attains

L̄(X |λ�) = min
θ∈Ω,λ∈A hX (θ, λ),

where hX (θ, λ)
def= fX (θ) + g(θ, λ) + log Z̄(λ). Note that the existence of λ� follows from

the continuity of the objective function L̄(X |λ) and the closed nature of the domain A.
The minimization problem can be solved by alternate minimization of hX with respect

to θ and λ as in Algorithm 1, which we call MDL regularization selection (MDL-RS). In
general, minimization with respect to θ is the original RERM (1) itself. Thus, it can often
be solved with existing software or libraries associated with the RERM problem. On the
other hand, for minimization with respect to λ, we can employ standard convex optimization
techniques since hX (θ, ·) is convex as both g(θ, ·) and log Z̄(·) are convex. Specifically, for
some types of penalty functions, we can derive closed-form formulae of the update of λ. If
one employs the Tikhonov regularization and H0 is diagonal, then

∂

∂λ j

[
g(θt , λ) + Z̄(λ)

] = 0 ⇔ λ = H0, j j

2

[√

1 + 4

θ2t, j H0, j j
− 1

]
(
= λ̃t, j

)
.

Therefore, ifA = [a1, b1]×· · ·×[ad , bd ], the convexpart is completedbyλt, j = Π[a j ,b j ]λ̃t, j ,
where Π[a j ,b j ] is the projection of the j-th coordinate. Similarly, if one employs the lasso,

λ̃t, j = 3

√√
√
√
√α +

√√
√
√

α2 +
(
H0, j j

3

)3

+ 3

√√
√
√
√α −

√√
√
√

α2 +
(
H0, j j

3

)3

,

where α = H0, j j/
∣
∣θt, j

∣
∣. The projection procedure is the same as that for Tikhonov regular-

ization.

Algorithm 1MDL regularization selection (MDL-RS)
Require: X ∈ X n , λ0 ∈ A

1: t ← 0
2: repeat
3: t ← t + 1
4: θt ← argminθ∈Ω fX (θ) + g(θ, λt−1)
5: λt ← argminλ∈A g(θt , λ) + log Z̄(λ)

6: until stopping condition is met
7: return θt , λt

The MDL-RS algorithm can be regarded as a special case of concave–convex proce-
dure (CCCP) (Yuille and Rangarajan 2003). First, the RERM objective is concave as it is
the minimum of linear functions, FX (λ) = minθ∈Ω fX (θ) + g(θ, λ). Hence, uLNML is
decomposed into the sum of concave and convex functions,

L̄(X |λ) = FX (λ) + log Z̄(λ).

Second, F̃ (t)
X (λ)

def= fX (θt )+g(θt , λ) is a linear majorization function of FX (λ) at λ = λt−1,

i.e., F̃ (t)
X (λ) ≥ FX (λ) for all λ ∈ A and F̃ (t)

X (λt−1) = FX (λt−1). Therefore, as we

can write λt = argminλ∈A F̃ (t)
X (λ) + log Z̄(λ), MDL-RS is a concave–convex procedure

for minimizing uLNML. The CCCP interpretation of MDL-RS immediately implies the
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following convergence arguments. Please refer to Yuille and Rangarajan (2003) for the
proofs.

Theorem 4 (Monotonicity of MDL-RS) Let {λt }∞t=0 be the sequence of solutions produced
by Algorithm 1. Then, we have L̄(X |λt+1) ≤ L̄(X |λt ) for all t ≥ 0.

Theorem 5 (Local convergence of MDL-RS) Algorithm 1 converges to one of the stationary
points of uLNML L̄(X |λ).

Even if the concave part, i.e., minimization with respect to θ , cannot be solved exactly,
MDL-RS still monotonically decreases uLNML as long as the concave part monotonically
decreases the objective value, fX (θt ) + g(θt , λt−1) ≤ fX (θt−1) + g(θt−1, λt−1) for all
t ≥ 1. This can be confirmed by seeing that L̄(X |λt ) = hX (θt+1, λt ) ≤ hX (θt , λt ) ≤
hX (θt , λt−1) = L̄(X |λt−1) where hX (θ, λ) = fX (θ) + g(θ, λ). Moreover, if the subrou-
tine of the concave part is iterative, early stopping may be even beneficial in terms of the
computational cost.

4.2 Discussion

We previously introduced the CCCP algorithm for minimizing uLNML, namely, MDL-RS.
The monotonicity and local convergence property follow from the CCCP framework. One
of the most prominent features of the MDL-RS algorithm is that the concave part is left
completely black-boxed. Thus, it can be easily applied to the existing RERM.

There exists another approach for minimization of LNMLs in which a stochastic mini-
mization algorithm is proposed (Miyaguchi et al. 2017). Instead of approximating the value
of LNML, this directly approximates the gradient of LNML with respect to λ in a stochastic
manner. However, since the algorithm relies on the stochastic gradient, there is no trivial way
of judging if it is converged or not. On the other hand, MDL-RS can exploit the information
of the exact gradient of uLNML to stop the iteration.

Approximating LNML with uLNML benefits us more; We can combine MDL-RS with
grid search. Since MDL-RS could be trapped at fake minima, i.e., local minima and saddle
points, starting from multiple initial points may be helpful to avoid poor fake minima, and
help it achieve lower uLNML.

5 Related work

In the literature of model selection based on the MDL principle, there exist a number of
methods that are concernedwith discrete sets of candidatemodels (for example, seeRoos et al.
2009; Hirai and Yamanishi 2011 among others). Note that in the problem of regularization
selection, the candidate models are infinite in general and hence typical methods of the
MDLmodel selection cannot be straightforwardly applied. Nevertheless, some of the RERM
problems are addressed utilizing such methods. For example, the 
0-norm RERM can be
casted into the discrete model selection over all the subsets of features (e.g., see Dhillon et al.
2011;Miyaguchi et al. 2017). On the other hand, our method is applicable to arbitrary penalty
functions as long as they are reasonably upper-smooth, although this is not the case with the

0-penalty. Therefore, our method can be regarded as a complement of the conventional
discrete model selection.

As compared to existingmethods of regularization selection,MDL-RS is distinguished by
its efficiency in searching for penalties and its ease of systematic computation. Conventional
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penalty selection methods for large-dimensional models are roughly classified into three
categories. Below, we briefly describe each one emphasizing its relationship and difference
to the MDL-RS algorithm.

5.1 Grid search with discrete model selection criteria

The first category is grid search with a discrete model selection criterion such as the cross
validation score, Akaike’s information criterion (AIC) (Akaike 1974), and Bayesian infor-
mation criterion (BIC) (Schwarz 1978; Chen and Chen 2008). In this method, we choose a
model selection criterion and a candidate set of the hyperparameter {λ(k)}Kk=1 ∈ A ⊂ R

d

in advance. Then, we calculate the RERM estimates for each candidate, θ(k) = θ̂ (X , λ(k)).
Finally, we pick the best estimate according to the pre-determined criterion. This method is
simple and universally applicable for any model selection criteria. However, the time com-
plexity grows linearly as the number of candidates increases, and an appropriate configuration
of the candidate set can vary corresponding to the data. This is specifically problematic for
high dimensional design spaces, i.e., d � 1, where the combinatorial number of possible
configurations is much larger than the feasible number of candidates.

On the other hand, the computational complexity of MDL-RS often scales better. Though
it depends on the time complexity of the subroutine for the original RERM problem, the
MDL-RS algorithm is not explicitly affected by the curse of dimensionality. However, it can
be used for model selection in combination with the grid search. AlthoughMDL-RS provides
a more efficient way to seek a good λ in a (possibly) high-dimensional space as compared to
simple grid search, it is useful to combine the two. Since uLNML is nonconvex in general,
MDL-RSmay converge to a fakeminimum such as localminima and saddle points depending
on the initial point λ0. In this case, starting MDL-RS with multiple initial points λ0 = λ(k)

may improve the objective value.

5.2 Evidencemaximization

The second category is evidencemaximization. In thismethodology, one interprets theRERM
as a Bayesian learning problem. The approach involves converting loss functions and penalty
functions into conditional probability density functions p(X |θ) = e− fX (θ) and prior density
functions p(θ; λ) = e−g(θ,λ)(

∫
e−g(ψ,λ)dψ)−1, respectively. Then, the evidence is defined as

p(X; λ) = ∫ p(X |θ)p(θ; λ)dθ and it is maximized with respect to λ. A successful example
of evidence maximization is the relevance vector machine (RVM) proposed by Tipping
(2001). It is a Bayesian interpretation of the ridge regression with different penalty weights
λ j on different coefficients, as described in Corollary 1. This results in so-called automatic
relevance determination, and makes the approach applicable to redundant models.

Themaximization of the evidence can also be thought of as an instance of theMDL princi-
ple, as it is equivalent to minimizing − log p(X; λ) with respect to λ, which is a code-length
function of X . Moreover, both LNML and the evidence have an intractable integral in it.
A notable difference between the two is the computational cost to optimize them. Though
LNML contains an intractable integral in its normalizing term log Z(λ), it can be system-
atically approximated by uLNML and uLNML is efficiently minimized via CCCP. On the
other hand, in the case of evidence, we do not know of any approximation that is as easy
to optimize and as systematic as uLNML. Even though a number of approximations have
been developed for evidence such as the Laplace approximation, variational Bayesian infer-
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ence (VB), and Markov chain Monte Carlo sampling (MCMC), these tend to be combined
with grid search (e.g., Yuan and Lin 2005) except for some special cases such as the RVM
and Gaussian processes (Rasmussen and Williams 2006).

5.3 Error boundminimization

The last category is error bound minimization. The generalization capability of RERM has
been extensively studied in bounding generalization errors specifically on the basis of the PAC
learning theory (Valiant 1984) and PAC-Bayes theory (Shawe-Taylor and Williamson 1997;
McAllester 1999). There also exist a considerable number of studies that relate error bounds
with the MDL principle, including (but not limited to) Barron and Cover (1991), Yamanishi
(1992) and Chatterjee and Barron (2014). One might determine the hyperparamter λ by
minimizing the error bound. However, being used to prove the learnability of new models,
such error bounds are often not used in practice more than the cross validation score. MDL-
RS can be regarded as an instance of the minimization of an error bound. Actually, uLNML
bounds the LNML code length, which was recently shown to be bounding the generalization
error of theRERMestimate under some conditions including boundedness of the loss function
and fidelity of hypothesis classes (Grünwald and Mehta 2017).

6 Experiments

In this section, we empirically investigate the performance of theMDL-RS algorithm in terms
of generalization errors.1 We compareMDL-RSwith conventional methods applying the two
models introduced in Sect. 3 on both synthetic and benchmark datasets. In particular, because
we expect that the proposed method performs better than the other methods if the model is
high-dimensional, we focus on the dependency of the performance on the dimensionality.

6.1 Linear regression

Setting For linear regression, we compared MDL-RS with the automatic relevance deter-
mination (ARD) regression with the relevance vector machine (RVM) (Tipping 2001) and
deterministic and random grid search methods for the cross validation score. As for the deter-
ministic cross validation, we employed the ridge regression and lasso while their penalty
weights are configured as 20 points spread over λ j = λ ∈ [10−4, 100] ( j = 1, . . . , p) log-
arithmically evenly. As for the random cross validation, 100 random points are drawn from
the log-uniform distribution over [10−4, 100]p . The performance metric is test logarithmic
loss (log-loss) − log p(y|X , β, σ 2) (see Sect. 3.1) on fivefold cross validation. Figure 1
shows the results of the comparison with six datasets, namely, three synthetic datasets and
three real-world dataset. In the synthetic datasets, the number of design variables m varies
from 5 to 100, and the true coefficients β are randomly chosen where some of them set
to zero. The real-world examples are taken from the Diabetes dataset,2 ResidentialBuilding

1 The source codes and datasets of the following experiments are available at https://github.com/koheimiya/
pymdlrs.
2 http://www4.stat.ncsu.edu/~boos/var.select/diabetes.html.
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Convergence of log-loss in linear regression. The horizontal axes show the number of training samples
in logarithmic scale, while the vertical axes show the test log-loss. Each shading area is showing ± 1 SD. a
m = 5. b m = 20. c m = 100. d Diabetes. e YearPredictionMSD. f ResidentialBuilding

dataset (Rafiei and Adeli 2015)3 and YearPredictionMSD dataset.4 We note that there is huge
variety in the dimensionality of their parameter spaces: m = 14 for Diabetes, m = 90 for
YearPredictionMSD and m = 103 for ResidentialBuilding dataset.

Result From the overall results, we can see that MDL-RS and RVM are comparable to
one another and outperform the other three. Figure 1a–c suggest that the proposed method
performs well in all the synthetic experiments. Figure 1d–f show the results of the real-world
experiments. One can observe the same tendency as in the synthetic ones; Both MDL-RS
and RVM outperform the rest in terms of generalization error (log-loss) and the difference
is bigger when the sample size is smaller. However, note that in the YearPredictionMSD
dataset, RVM converges to a poor local minima and hence fails to lower the log-loss well
even with large training samples. It is also noteworthy that the performance of the random
grid-search method becomes poor and unstable for the high-dimensional cases, which is due
to the curse of dimensionality of the design space. These results emphasize the efficiency of
MDL-RS in optimizing uLNML with high-dimensional models.

6.2 Conditional dependence estimation

Setting For the estimation of conditional dependencies, we compared MDL-RS with the grid
search of glasso (Friedman et al. 2008) with AIC, (extended) BIC and the cross validation
score. We generated data X ∈ R

n×m from m-dimensional double-ring Gaussian graphical
models (m = 10, 20, 50, 100) in which each variable j ∈ [1,m] is conditionally dependent
to its 2-neighbors j − 2, j − 1, j + 1 and j + 2 (mod m) with a coefficient of 0.25. Note
that MDL-RS can be applied to the graphical model just by computing the upper smoothness
while RVM cannot be applied straightforwardly.

Result Figure 2 shows the results of the experiment. It is seen that all the estimators converge
in the same rate, O(n−1), whereasMDL-RS gives the lowest Kullback–Leibler divergence by

3 https://archive.ics.uci.edu/ml/datasets/Residential+Building+Data+Set.
4 https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd.
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(a) (b)

(c) (d)

Fig. 2 Convergence of Kullback–Leibler divergence for graphical models. The horizontal axes show the
number of training samples in logarithmic scale, while the vertical axes show the divergence of estimates
relative to true distributions. Each shading area is showing ±one-standard deviation. a m = 10. b m = 20. c
m = 50. d m = 100

far specificallywith largem. In particular,whenm = 100, the proposed estimator outperforms
the others by more than a factor of five. This supports our claim that penalty selection in
high-dimensional design spaces has a considerable effect on the generalization capability
when the model is redundant.

6.3 Discussion

Both results indicate that MDL-RS performs well specifically when the model is high-
dimensional as expected. Note that the generalization error LNML and uLNML bound is
the expected logarithmic loss EX ,Y fY (θ̂(X , λ)), and the performance metric we employed
in the experiments is (an unbiased estimator of) the logarithmic loss itself. Hence, if the
metric is changed, then the result could be different.

7 Concluding remarks

In this paper, we proposed a new method for penalty selection on the basis of the MDL prin-
ciple. Our main contribution was the introduction of uLNML, a tight upper bound of LNML
for smooth RERM problems. This can be analytically computed, except for a constant, given
the (upper) smoothness of the loss and penalty functions. We also presented the MDL-RS
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algorithm, a minimization algorithm of uLNMLwith convergence guarantees. Experimental
results indicated that MDL-RS’s generalization capability was comparable to that of conven-
tional methods. In the high-dimensional setting we are interested in, it even outperformed
conventional methods.

In related future work, further applications to various models such as latent variable
models and deep learning models must be analyzed. As the above models are not (strongly)
convex, the extension of the lower bound of LNML to the non-convex case would also be an
interesting topic of future study. While we bounded LNML with the language of Euclidean
spaces, the only essential requirement of our analysis is upper smoothness of loss functions
defined over parameter spaces. Therefore, we believe that it is possible to generalize uLNML
to the Hilbert spaces to deal with infinite-dimensional models.

Acknowledgements Funding was provided by Core Research for Evolutional Science and Technology (Grant
No. JPMJCR1304).

Appendix: Utility Lemma of strong convexity

The following lemma introduces a useful lower bound of H -strongly convex functions.

Lemma 1 Let θ̂ = argminθ∈Ω f (θ) and suppose that θ̂ ∈ Ωo. Then, for all H-strongly
convex functions f : Rp → R, we have

f (ψ) ≥ f (θ̂) + 1

2

∥
∥
∥ψ − θ̂

∥
∥
∥
2

H
, ∀ψ ∈ R

p.

Proof Choose α0 and define μ(α)
def= αθ̂ + (1 − α)ψ (α0 ≤ α < 1) such that μ(α) ∈ Ω

for all α ∈ [α0, 1). Note that this is possible because θ̂ resides in the interior. By the strong
convexity of f and the inequality f (θ̂) ≤ f (μ(α)), we have

f (ψ) − f (θ̂) ≥ f (ψ) − f (μ(α)) ≥ α
〈
ξ(μ(α)), ψ − θ̂

〉
+ α2

2

∥
∥
∥ψ − θ̂

∥
∥
∥
2

H
,

0 ≥ f (θ̂) − f (μ(α)) ≥ −(1 − α)
〈
ξ(μ(α)), ψ − θ̂

〉
+ (1 − α)2

2

∥
∥
∥ψ − θ̂

∥
∥
∥
2

H
.

Then, adding the upper inequality to the lower one multiplied with α
1−α

yields that

f (ψ) − f (θ̂) ≥ α

2

∥
∥
∥ψ − θ̂

∥
∥
∥
2

H
.

Therefore, taking α → 1 completes the proof. ��
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