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Abstract
Inverse reinforcement learning (IRL) aims to explain observed strategic behavior by fitting
reinforcement learningmodels to behavioral data. However, traditional IRLmethods are only
applicable when the observations are in the form of state-action paths. This assumption may
not hold inmany real-worldmodeling settings,where only partial or summarized observations
are available. In general, we may assume that there is a summarizing function σ , which acts
as a filter between us and the true state-action paths that constitute the demonstration. Some
initial approaches to extending IRL to such situations have been presented, but with very
specific assumptions about the structure of σ , such as that only certain state observations
are missing. This paper instead focuses on the most general case of the problem, where
no assumptions are made about the summarizing function, except that it can be evaluated.
We demonstrate that inference is still possible. The paper presents exact and approximate
inference algorithms that allow full posterior inference, which is particularly important for
assessing parameter uncertainty in this challenging inference situation. Empirical scalability
is demonstrated to reasonably sized problems, and practical applicability is demonstrated by
estimating the posterior for a cognitive science RL model based on an observed user’s task
completion time only.

Keywords Inverse reinforcement learning · Bayesian inference · Monte-Carlo estimation ·
Approximate Bayesian computation

1 Introduction

Inverse reinforcement learning (IRL) has generally been formulated (Russell 1998; Ng and
Russell 2000) as:
Given (1) a Markov decision-process (MDP) with reward-function R(s; θ), where the θ are
unknown parameters; (2) a set of state-action pathsΞ = {ξ1, . . . , ξN } demonstrating optimal
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behavior given the true θ∗, where ξi = (si
0, ai

1, . . . , ai
Ti −1, si

Ti
); and optionally (3) a prior

P(θ).
Determine a point estimate θ̂ or the posterior P(θ |Ξ).

IRL problems arise when it is of interest to infer the goals or predict future behavior
of intelligent agents based on observations of the agent’s past behavior. Overall, there are
many situations where humans behave in a complex and adaptive manner, which might not
be explainable by a simpler model. Examples include driver route modeling (Ziebart et al.
2008), helicopter acrobatics (Abbeel et al. 2010), learning to perform motor tasks (Boularias
et al. 2011), dialogue systems (Chandramohan et al. 2011), pedestrian activity prediction
(Ziebart et al. 2009; Kitani et al. 2012), and commuting routines (Banovic et al. 2016).

Humans are, in general, able to understand and predict the behavior of other humans
in familiar settings, even from rather limited observation data. Developing a similar abil-
ity in autonomous agents could thus, for example, enable them to interact more naturally
with humans in rich every-day situations. However, a limitation with the traditional problem
formulation is the assumption that full paths containing both actions and states have been
observed. In many real-world situations such fine-grained observations may not be available
for multiple reasons. For example, it may be too costly to set up sensors that could gather the
fine-grained observations, or it may even be impossible to change the measurement devices if
they are owned by a third party. Also, even if accurate sensors are used, various environmen-
tal factors may cause unavoidable occlusion, censoring or distortion to the measurements.
Furthermore, existing datasets are unlikely to contain full path data, if the data have not been
collected with IRL in mind. We elaborate on these motivations later.

There have been a few initial approaches for addressing this issue. The earliest was to
assume that instead of the actual paths, we might just observe the expected sum of state
feature values the agent encounters during the demonstrated paths, known as feature expec-
tations (Abbeel and Ng 2004). Later approaches have relaxed the assumption on the state
observations from accurate to probabilistic: instead of observing the states, they assume a
probability distribution P(st ) over the state-space is given for each timestep (Kitani et al.
2012). However, the existing methods are not applicable in more general situations, where
the external observer has partial observability at the path level.

Summary of contributions This paper formulates the IRL from summary data (IRL-SD)
problem, which extends the IRL problem to situations where the full paths are not directly
available. We assume a summarizing function σ acts as a filter between the external observer
and the true paths. We demonstrate that even in the most general case with no prior assump-
tions about the summarizing function, inference is still possible for this problem class, thus
significantly extending the scope of problems where IRL can be performed. We derive the
exact likelihood for this problem and two approximations that are significantly faster to eval-
uate. The first approximation is a Monte-Carlo estimate and the second uses an approximate
Bayesian computation (ABC) approach. We demonstrate that both of these approximations
are feasible for MDPs for which optimal policies can be estimated in a reasonable time.
Using a grid world toy example, we demonstrate that both the exact and approximate meth-
ods are able to recover the parameters of the reward function with good accuracy, and that the
approximate methods scale significantly better. Using a recent RL model from the cognitive
science literature, we demonstrate that a sensible approximate posterior can be inferred based
only on the task completion times collected from user experiments.

Themethods have additional interesting properties. First, they do not differentiate between
different types ofMDP parameters, which allows inference to be easily extended to any inter-
esting parameters of the generative process besides the traditional reward function. Second,
they also allow non-linear reward functions to be used, which is not the case with many
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existing methods. Third, the approximate methods can also be used in situations where the
transition function is not known, as long as we can generate draws st+1 ∼ P(st+1|st , at ).

2 Inverse reinforcement learning

We give a brief overview of the standard assumptions existing IRL methods make of the
observation data, and mention the main approaches to inference. For a more complete review
see, for example, Zhifei and Joo (2012).

2.1 Model assumptions

The standard IRL modeling assumption is that an agent is interacting with an MDP
environment, demonstrating optimal behavior over N independent episodes, thus creat-
ing paths Ξ = (ξ1, . . . , ξN ). Each path is a sequence of states and actions, denoted as
ξi = (si

0, ai
0, . . . , ai

Ti −1, si
Ti

), where st and at are the state and action at timestep t , and Ti is
the length of trajectory i .

An MDP M is defined by the tuple (S, A, T , R, γ ), where S is a set of states, A is a set
of actions, T = P(st+1|st , at ) is the transition function, R(s) is the reward function, and γ

is the discount rate. M is defined in terms of some unknown parameters θ . An instance of M
with fixed parameters θ is denoted by Mθ .

If the agent has partial observability of the environment state, the situation is defined
as a POMDP (S, A, T , R,�, O, γ ), where � is the set of possible observations and O =
P(ot |st , at ) is the observation function.

2.2 Observation assumptions

Regarding the observations the external observer has of the agent’s behavior, four types of
settings have been studied:

(1) The policy π = P(at |st ) of the agent is known (Ng and Russell 2000); in other words,
we know exactly how the agent will behave in any situation.

(2) Noise-free observations of the states of the environment (belief states in POMDP sit-
uations (Choi and Kim 2011)) and actions of the agent are available (Ng and Russell
2000; Ratliff et al. 2006; Neu and Szepesvári 2007; Ramachandran and Amir 2007;
Dimitrakakis and Rothkopf 2011; Rothkopf and Dimitrakakis 2011; Klein et al. 2012;
Michini and How 2012; Klein et al. 2013; Tossou and Dimitrakakis 2013; Choi and
Kim 2015; Nguyen et al. 2015; Herman et al. 2016). This is probably the most common
formulation in the literature. A benefit of this assumption is that it allows the likelihood
to be factorized per state transition.

(3) Feature expectations of paths traveled by the agent are available (Abbeel and Ng 2004;
Ziebart et al. 2008;Boularias et al. 2011;BloemandBambos 2014). Feature expectations

are computed from the true paths by μ̂E = 1

N

∑N
i=1

∑Ti
t=0 γ tφ(si

t ),whereφ is a function

yielding a vector of state features. If the reward function is linear in state features,
R(s) = θT φ(s), the inference problem can be formulated as a function of θT μ̂E .

(4) Probabilistic observations of the states of the environment are available (Kitani et al.
2012; Surana 2014). Here it is assumed that instead of observing the state st , the exter-
nal observer only observes a distribution ut = P(st ). This is a natural assumption, for
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example, assuming measurement noise. The general approach is to estimate the state
visitation frequencies based on the observations and use them in turn to estimate the
feature expectations μ̂E , after which standard methods can be used. Both feature expec-
tations and probabilistic observations can be seen as specific summaries, or incomplete
versions, of the actual paths.

2.3 Inference approaches

There are two common approaches for solving the IRL problem. MCMC can be applied for
computing samples of the posterior when the unnormalized likelihood can be evaluated in
closed form (Ramachandran and Amir 2007). Gradient descent can be applied for giving
point estimates when the gradient of the likelihood can be evaluated in closed form (Ziebart
et al. 2008). Also point estimation based on linear programming (Ng and Russell 2000) and
classification (Klein et al. 2012) have been considered.

2.4 Relationship to imitation learning

The formulation of the IRL problem is close to that of imitation learning (IL), also known as
apprenticeship learning (Abbeel and Ng 2004). While in IRL we are interested in recovering
the underlying parameters of the model, in IL being able to replicate the behavior of the
expert is sufficient. Thus, the goal is to recover a policy π = P(at |st ) such that the behav-
ior generated by the policy matches that demonstrated by the expert, instead of explicitly
recovering the parameters θ∗ of the underlying MDP.

In general, IRL is a more complex problem than IL, as the parameter recovery problem is
generally under-determined, and, depending on the formulation, may also have degenerate
solutions (such as a reward function that is 0 everywhere) (Ng and Russell 2000). For this
reason, the approach has been to either recover the full posterior that quantifies our uncertainty
(Ramachandran and Amir 2007), or to find point estimates that are maximally robust (Ratliff
et al. 2006). A solution to the IRL problem generally solves the corresponding IL problem,
andmight give a robust solution as the reward structure is often more generalizable compared
to just a policy replicate. For example, it is not clear how an IL policy should behave in a state
that is not covered by the examples, while the parameters recovered by IRL can be used to
estimate the corresponding Q-values and thus generate behavior that best follows the values
of the expert.

3 IRL from summary data

3.1 Problem definition

Let M be an MDP parametrized by θ , where θ is any finite set of parameters of interest (not
limited to the reward function parameters). Let the true parameters be θ∗ and assume an agent
whose behavior agrees with an optimal policy for Mθ∗ . We do not know θ∗, but may have a
prior P(θ). Assume that the agent has taken paths (ξ1, . . . , ξN ) but we only have observed
summaries of these paths: Ξσ = (ξ1σ , . . . , ξNσ ), where ξiσ ∼ σ(ξi ). σ(ξi ) = P(ξiσ |ξi ) is a
stochastic summary function that transforms a path into another type of observation, which
generally contains less information than the original path (thus the name summary function).
The inverse reinforcement learning problem from summary data (IRL-SD) problem is:
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Given (1) a set of summaries Ξσ from optimal behavior; (2) a summary function σ ; (3) an
MDP M with θ unknown; and optionally (4) a prior P(θ).
Determine θ̂ or the posterior P(θ |Ξσ ).

In the traditional IRL setting θ would be the parameters of the reward function. Our
formulation extends the inference problem to other parameters of theMDP as well. A similar
extension in the traditional IRL setting was recently considered by Herman et al. (2016).

3.2 Motivating example

To illustrate the issue with traditional IRL methods, consider the following example: “Alice
can travel from home to work using any reasonable route. The different routes go through
different kinds of scenery, and Alice has specific preferences for what kind of scenery she
prefers to look at when commuting. If we know the duration of the commute, can we say
anything about Alice’s preferences regarding scenery?”

This is clearly an IRL-type problem, as the reward function of a rational agent should
be estimated based on observation data. However, all the existing methods for IRL fail to
solve the problem, as no state-action trajectories or feature expectations are available. In
comparison, humans are generally able to perform inference in similar settings based on
mental simulation (Gallese and Goldman 1998). This suggests that problems such as this are
regularly encountered in realistic settings and that they can be solved at least approximately
in reasonable time.

However, the above example precisely corresponds to the IRL-SDproblem,withσ extract-
ing the duration of the path. Thus, methods that are able to solve the IRL-SD problem will
both extend the scope of problems which can be solved with IRL-type approaches and be a
step towards being able to imitate human reasoning more closely.

3.3 Reasons for summarized observation data

There are multiple concrete reasons that prevent the use of full paths in modeling strategic
behavior.

First, environmental and physical restrictions, such as physical occlusion or sensor satu-
ration may prevent us from observing the full paths.

Second, coarse-grained or noisy observations are generally cheaper to acquire compared
to accurate path observations. For example, it is significantly easier to log keyboard and
mouse clicks from computer users compared to eye-tracking or think-aloud observations.

Third, full path data takes up more space than summaries, which makes it more likely
that only the most relevant features of the data are stored for later analysis. Also bandwidth
restrictions might prevent transmitting full path data if observations are done remotely.

Fourth, when modeling an adversary, she will likely prevent us from observing the full
paths. For example in games of incomplete information, such as poker or Starcraft, the
opponent hides the details of her states and actions when possible.

Fifth, privacy guarantees result in data being released only as non-identifying summaries.
This is complementary to the previous; here the data is summarized to prevent a possible
adversary from identifying specific types of information.
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4 Inferencemethods for IRL-SD

We first derive the observation likelihood for the IRL-SD problem. However, as evaluating
the likelihood function can be very expensive, we also propose approximations that are faster
to evaluate.

4.1 Exact likelihood

To derive a computable likelihood, we assume both |S| and |A| are finite (e.g. through
discretization) and that the maximum number of actions within an observed episode is Tmax .
We denote the finite set of all plausible trajectories (that have non-zero contribution to the
likelihood) by Ξap ⊆ STmax +1 × ATmax .

The likelihood for θ given summary observations Ξσ is

L(θ |Ξσ ) =
N∏

i=1

P(ξiσ |θ) =
N∏

i=1

∑

ξi ∈Ξap

P(ξiσ |ξi )P(ξi |θ),

where P(ξiσ |ξi ) is determined by the summary function σ , which is assumed to be known,
and

P(ξi |θ) = P(si
0)

Ti −1∏

t=0

π∗
θ (si

t , ai
t )P(si

t+1|si
t , ai

t ).

The main difficulty with the exact likelihood is finding the setΞap and evaluating the sum
over it. If σ has a known finite support, this might be used to constrain the set Ξap as paths
outside the support can be immediately ruled out.

4.2 Monte-Carlo estimate of likelihood

One possibility to deal with the sum over Ξap is to use a Monte-Carlo estimate. In this
approach, paths ΞMC (set of size NMC � |Ξap|) are simulated using an optimal policy
π∗

θ , so that each path is drawn with probability P(ξ |θ). The likelihood of each individual
observation can be estimated by a Monte-Carlo sum:

L̂(θ |Ξσ ) =
N∏

i=1

1

NMC

∑

ξn∈ΞMC

P(ξiσ |ξn)P(ξn |θ)

P(ξn |θ)

=
N∏

i=1

1

NMC

∑

ξn∈ΞMC

P(ξiσ |ξn).

As the contribution of each sample is weighted by the probability of the path, this cancels
out the existing term from the product.

A benefit of this approach is that the transition probabilities P(st+1|st , at ) do not need
to be defined any more in closed form: for generating the Monte-Carlo samples it is enough
that we can draw samples. We also need not assume that A or S are finite in size.

One issue with this approach is that there might not be any paths in the Monte-Carlo
sample that have a non-zero observation probability for a certain observation in the dataset
(that is, P(ξiσ |ξn) = 0 for all n). This is common when σ has a negligible support in Ξap ,
or when the path distribution has a “fat tail” which is not sufficiently covered by the finite
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sample. One way to alleviate this problem is to add a small constant value to the likelihood of
each observation as an a-priori estimate. For example, 1/NMC might be a sensible heuristic,
as it vanishes with a large enough sample.

4.3 ABC estimate of likelihood

A third alternative is to avoid evaluating the likelihood function entirely, and use an approxi-
mate Bayesian computation (ABC) approach (Sunnåker et al. 2013) instead. ABC also uses
Monte-Carlo samples for estimating the likelihood, but does it by comparing the samples
directly to the observation data using a discrepancy function, which is often chosen to be
similar to the prediction error function. Essentially this means that the Monte-Carlo sample
is transformed into simulated summary observations using σ , after which the discrepancy to
the observation data is computed.

The discrepancy function is denoted by

δ(Ξ A
σ ,Ξ B

σ ) → [0,∞).

As we make no assumptions about the type of the summary observations, the choice of δ is
not fixed here. Often in the ABC literature δ is a norm between the general features of the
summary datasets, or the prediction error function or its logarithm is used.

Using δ we can define a stochastic variable

dθ ∼ δ(Ξ sim
σ ,Ξσ ),

where Ξ sim
σ = {σ(ΞMC,n)}n=1...|Ξσ |. The ability of θ to generate data similar to the obser-

vation data is quantified by the distribution of dθ .
The likelihood can be retrieved exactly using a δ with the property δ(Ξ A

σ ,Ξ B
σ ) = 0 ⇔

Ξ A
σ = Ξ B

σ . In this case the likelihood can be written as

L(θ |Ξσ ) = P(Ξσ |θ) = P(Ξ sim
σ = Ξσ |θ)

= P(dθ = 0|θ),

which follows from the fact that the process for generating Ξ sim
σ is precisely our assumed

generative model.
However, estimating P(dθ = 0|θ) from a finite Monte-Carlo sample is challenging as

most realizations lead to dθ 
 0. For this reason, we do an ABC approximation:

L̃ε(θ |Ξσ ) = P(dθ ≤ ε|θ),

with an approximation threshold ε ∈ [0,∞). This approximate likelihood is easier to estimate
when ε is similar to the observed values of dθ . The choice of ε is often done adaptively.

This approach can be seen as “IRL through imitation learning”, as we are estimating the
parameter likelihood through behavior similarity. This is an extension to matching feature
expectations (Abbeel and Ng 2004), but generalized to the global features of the behavior
available through σ . A further benefit of this approach is that the observation probabilities
P(ξσ |ξ) do not need to be available in closed form, as long as we can draw samples from σ .

4.4 Inference

Recentwork has shown the feasibility ofGaussian process (GP) (Rasmussen 2004) surrogates
for expensive likelihoods (Rasmussen 2003), also in theABC setting (Gutmann andCorander
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2016). We use this approach as well, as the likelihoods we work with are expensive to
evaluate. The Bayesian optimization (BO) (Brochu et al. 2009) sampling strategy is used for
concentrating the samples so that high likelihood regions are well estimated.

Algorithm 1 summarizes the estimation of the likelihood surface based on both the exact
and approximate methods. As we are performing global non-convex optimization, we make
the additional assumption that the likelihood is mainly contained within a bounded regionΘ .
We utilize two generic subroutines: RL(M) is a function that given MDP M finds an optimal
policy π∗, and SIM(M, π) is a function that given an MDP M and policy π simulates a
path ξ using the policy. For a GP fit with data D and hyperparameters H , we denote the
predicted mean at θ by Gμ(θ |D, H) and the standard deviation by Gs(θ |D, H), and the full
GP posterior is denoted by G(θ |D, H). We denote the number of samples for estimating the
surrogate by Nopt and the BO acquisition function value at θ by Acq(θ |D, H) (the maximum
of Acq defines the next sample location in BO). 
(ε|μ, σ) denotes the CDF of N (μ, s) at
ε. The threshold ε was set to the minimum predicted value of discrepancy, as it represents
the “best that the model can do” given the available information.

Algorithm 1 Likelihood Estimation for IRL-SD
Input: M , Ξσ , Θ , H , Nopt , NMC
Output: Likelihood estimate L̄(θ)

D ← ∅

for i = 1 to Nopt do
θi ← argmaxθ Acq(θ |D, H)

π∗
θi

← RL(Mθi )

if Exact then
dθ ← log L(θi |Ξσ )

else
ΞMC ← {SIM(Mθi , π

∗
θi

)}n=1...NMC
if Monte-Carlo then

dθ ← log L̂(θi |Ξσ )

else if ABC then
Ξ sim

σ ← {σ(ΞMC,n)}n=1...NMC

dθ ← δ(Ξ sim
σ , Ξσ )

end if
end if
D ← {D, (θi , dθ )}

end for
if ABC then

ε ← minθ Gμ(θ |D, H)

L̄(θ) ← 
(ε|Gμ(θ |D, H), Gs (θ |D, H))

else
log L̄(θ) ← G(θ |D, H)

end if

For posterior inference, the log-likelihood in Algorithm 1 can be replaced with the log-
posterior. With ABC, the likelihood can be multiplied by the prior after estimation.

5 Experiments

To study the performance of the proposed inference methods, we start with a well-known
toy MDP, but change the observation assumptions to match the IRL-SD problem. Through
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Fig. 1 Visualization of a 13 × 13 grid with three features, generated by placing 13 random walls per feature.
Each feature is shown individually, with black squares denoting the presence of the feature. Each feature can
be thought of as a different type of terrain (e.g. mountains, swamp, forest)

this example, we demonstrate that we are able to infer the parameters of the agent’s reward
function based only on summarized path observations. With this MDP the approximate
methods are able to recover the reward function parameters with comparable quality to the
exact method, but considerably faster.

We also demonstrate that our approach scales to realistic modeling cases as well. We
show that the ABC approximation is able to infer a reasonable approximate posterior for
a RL-based cognitive model from the HCI literature, based on measurements of real user
behavior. The details of the experiments are given in “Appendix A”.

5.1 Grid world

Grid world is a well-known problem type in the IRL literature (Ng and Russell 2000; Abbeel
and Ng 2004; Neu and Szepesvári 2007; Boularias et al. 2011; Herman et al. 2016). In this
problem, an agent is located on a cell in a discrete two-dimensional grid of w × w cells.
When the agent enters a cell, it receives a reward based on the features of the cell φ(s) and
the features of the agent’s reward function θ , according to R(s) = θT φ(s) + rstep .

In our case, the agent is initially located on a random cell at the edge of the grid. The cell at
the center of the grid is the goal, and entering the goal gives the agent a large positive reward
and ends the episode. Each grid cell has N f binary features, which have been generated by
placing w walls for each feature at random on the grid (the seed value used for generating
the grid is part of the MDP definition). An example of a grid with three features is shown in
Fig. 1.

The summary function is defined as σ(ξ) = (s0, |ξ |), yielding the initial state at the edge,
and the number of steps it took to reach the goal at center (i.e. we do not know what the
intermediate states or actions were). Our problem is to infer likely values for θ ∈ [−1, 0]N f ,
such that the simulated behavior with these values matches the observations, given a set
of summary observations Ξσ and the MDP definition. It is also easy to verify that this
corresponds to the motivating example mentioned before in Sect. 3.2, related to Alice’s
scenery preferences while commuting.

5.2 Experiment 1: algorithm run-time

First, we compared the empirical run-times of the exact and approximate methods. For the
approximate methods we use a Monte-Carlo sample of size 1000.

We simulated observation sets with N = 200 from grids of various sizes. We used grids
with no features (N f = 0) to avoid long paths that would make the exact method infeasible
to evaluate. We computed the first iteration step for all algorithms and recorded the elapsed
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Fig. 2 Mean duration (log10 scale) of the first step of the exact and approximate methods as a function of size
of the problem (N = 5). Smaller is better

wall-clock time. The algorithms were implemented with Python and executed on an Intel
Xeon X5650 2.67 GHz processor restricted to 300 MB of memory.

The empirical run-time of the exact algorithmgrows rapidly as the size of the grid increases
(Fig. 2). This is expected, as |Ξap| grows exponentially as the length of the path grows linearly.
On the other hand, the run-times of the approximate algorithms scale comparatively much
better. ABC is equally expensive to Monte-Carlo (MC), as expected.

5.3 Experiment 2: inference quality

We compared the quality of inference between the exact and approximate methods on small
grids.We also investigate the performance of the approximate methods on larger grids, where
the exact method is computationally infeasible. The experiments were performed with N f =
2 and 3. When comparing to the exact method (w being 9 and 11), we limited the length of
paths in the observation dataset to be atmost 12 to keep the computation time feasible (leaving
on average 97 and 93% of observations, respectively). We also use a random baseline, which
is a uniform random draw from the parameter space.

We measure inference quality both by the accuracy of the parameter recovery, which
quantifies IRL performance, and prediction accuracy, which quantifies imitation learning
performance. The accuracy of the parameter recovery was measured with RMSE between
likelihood mean (computed using MCMC) and ground truth. The mean was used instead of
ML as the likelihoods were sometimes broad; the mean was a more robust estimate in initial
trials.

Prediction errorwasmeasuredwith theMAE inpath length per individual starting location,
measured on a separate dataset generated with the same ground truth parameters. As the
discrepancy δ we used the logarithm of the prediction error computed on the observation
dataset (as the errors appeared to be log-normally distributed).

We observe that the approximatemethods performwell compared to the exactmethod. The
approximate methods are able to recover the reward function parameters with comparable
accuracy as the exact method, shown in Fig. 3. This demonstrates that Monte-Carlo sampling
is a feasible approach for estimating the true likelihood, as is directly matching the global
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Fig. 3 RMSE to ground truth (mean and standard deviation, N = 30), smaller is better

Fig. 4 Prediction error on test data (mean and standard deviation, N = 30), smaller is better

features of the predicted behavior with ABC. Also, the discrepancy of the predicted behavior
is relatively low with all methods, suggesting that the policies recovered by the methods are
good approximations of the true policy. There were no statistically significant differences
in ground truth errors or prediction errors with any of the methods, except for the random
baseline which was worse (N = 30).

The approximate methods are able to performwell on larger grids where the exact method
is computationally infeasible. They are able to recover the parameter values reliably (Fig. 3)
and the discrepancy also increases predictably with the grid size (Fig. 4).

We also observe that the approximate likelihood densities are sensible estimates of the
true likelihood, as shown in Fig. 5. In this particular example it can be seen that the ratio of the
rewards is well identified, but there is still uncertainty left in the scale of the rewards. It would
not have been possible to infer this insight from just a point estimate, which demonstrates
the benefit of estimating the full likelihood surface.

5.4 Experiment 3: modeling computer users

In the final experiment we infer the full posterior of a recent RL-based cognitive model using
realistic observation data.
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Fig. 5 Representative example of likelihood densities estimated with different methods (2 features). Both
Monte-Carlo and ABC are able to produce a reasonable approximation of the exact likelihood. Left: exact.
Center: Monte-Carlo. Right: ABC. The color maps are chosen so that the maxima of the functions are white
and minima are black. The likelihood mean is marked with a square and the ground truth parameters with a
star. More examples are found in “Appendix A” (Color figure online)

The task is to estimate the parameters of an MDP modeling the oculomotor system of
a user who is searching for a specific menu-item from a computer drop-down menu (Chen
et al. 2015; Kangasrääsiö et al. 2017). Although with large computer screens traditional IRL
methods have been used as detailed actions can be measured with eye-tracking (Mohammed
and Staadt 2015), with small menus the accuracy of eye-tracking is often poor in comparison.
However, simple summary statistics, such as the time between opening a menu and clicking
the target item, are simple to measure accurately, but require solving the IRL-SD problem.

Recently Kangasrääsiö et al. (2017) found MAP parameter estimates for the model using
summary observations from a user study by Bailly et al. (2014). The summary observation
included the task completion time in milliseconds (TCT, sum of the durations of all actions
in an episode) and whether the target was present or absent in the menu. We extend their
analysis by showing that full posteriors can be estimated based on the same dataset and a
similar model (see “Appendix A” for details of the model).

Although the state transition function is only defined as a computable algorithm, and the
summary function σ is a delta distribution, the ABC method is still applicable.

Getting the average TCT predicted correctly is the primary goal of the model, and getting
the variation correct as well is the secondary goal. For this reason, the discrepancy function
δ was chosen to be the logarithm of the squared differences in TCT means plus the absolute
differences in standard deviations summed from both menu conditions.

We infer the posteriors of three parameters of the MDP: (1) the duration of eye fixations
fdur (units of 100 ms); (2) the duration of moving the mouse to select an item dsel (units of
1 s); and (3) the probability of recalling the full menu layout from memory prec.

The reward function is such that the agent receives a penalty equal to the number of
milliseconds spent on performing the action. The duration of an action is the sum of saccade
duration (based on the distance between two consecutive fixation locations), fdur and dsel .
From this perspective, fdur and dsel can also be seen as parameters of the reward function.
Finding the correct item leads to a reward 10k, as does quitting when there is no target item
in the menu. Quitting when there is a target present results in a penalty -10k.

The posterior is visualized in Fig. 6 using 2D slices at the MAP location (dsel = 0.05,
prec = 0.80, fdur = 2.6). We observe that a posteriori there is a correlation between fdur

and prec, and similarly for fdur and dsel . Both of these are understandable, as increasing
fdur would increase the predicted TCT, as would decreasing prec or increasing dsel . The
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Fig. 6 The approximate posterior inferred with ABC demonstrates that the parameters can be identified and
that the remaining uncertainty is well characterized. Left: fixation duration fdur and menu recall probability
prec . Center: fixation duration fdur and selection delay dsel . Right: menu recall probability prec and selection
delay dsel . The color map is chosen so that the maximum of the posterior is white and minimum is black
(Color figure online)

Table 1 Comparison of menu
model prediction means (MAP
estimate) and observation data
means

Feature MAP Observation data

TCT (abs) 430 ms 470 ms

TCT (pre) 980 ms 970 ms

Saccades (abs) 1.4 1.9

Saccades (pre) 3.1 2.2

The condition when the target is absent from the menu is denoted by
(abs), and the condition when the target is present by (pre)

posterior of fdur is centered around 260 ms, but there is still uncertainly left in dsel and prec.
The uncertainty in dsel is explained by the difficulty of pointing precisely to the target item
with the cursor, which causes variation in its duration. The uncertainty in prec is explained
by the fact that the menus encountered early on in the experiments were completely new
to the subjects, but as the experiment progressed the subjects were more and more likely to
recall the menus. We also observe that there is no significant posterior correlation between
prec and dsel . This indicates that although they both affect the TCT, the effects they have are
orthogonal; increasing the probability of recalling a menu can not be fully compensated just
by increasing the selection duration.

The simulated data at the MAP location was able to reproduce the general features of the
observation data. A comparison of key features is shown in Table 1.

6 Discussion

The experiments demonstrate that the proposed approximate methods are applicable for
inferring RL-based models based on aggregate observation data, when it is acceptable that
the inference takes some time. For example, many off-line scientific modeling scenarios
fall into this setting. However, there are still multiple complementary options for improving
the speed and scalability of the proposed methods from here on. One option to scale up
to higher-dimensional parameter spaces is to find a lower-dimensional subspace where the
most interesting variation takes place (Wang et al. 2016). One option to increase the speed
of finding solutions to RL problems is to use RL transfer learning, as it is generally faster to
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find a good policy based on an existing policy from a nearby location (Ramachandran and
Amir 2007), compared to learning it from scratch.

An interesting feature of both of the proposed approximations is that they do not explicitly
depend on the path likelihood.With theMC approximation, this is due to a term cancellation,
and with the ABC approximation this is due to the likelihood-free modeling approach. This
means that the limitations to performance are different than usually; instead of being limited
by the ability to evaluate the path likelihood function, the methods are limited by the ability
to generate reasonable behavior with certain parameter values. Although generating samples
from themodel is often a less efficient inferencemethod compared to evaluating the likelihood
function directly, the situation is different when one does not have the luxury of choosing the
observation data to precisely match the model assumptions, such that the likelihood would
have a convenient form. Furthermore, the fact that the generative model is now “decoupled”
from the inference method might open up new avenues of research in modeling strategic
behavior, as this decoupling enables greater flexibility in the design of the generative model,
instead of being limited strictly to the MDP assumptions.

With full path observations the summary function σ becomes the identity and the exact
likelihood becomes the same as in most traditional IRL methods. Thus the proposed exact
method should in principle yield a similar posterior as existing Bayesian IRL methods (e.g.
Ramachandran and Amir 2007). The two proposed approximations have been designed
specifically for the situation where the observations are available only in summarized form.
If MC is used with full path observations, the possibility of sampling precisely similar paths
as in the observation data might be arbitrarily small, which causes practical problems with
this method. The ABC approximation can be used with full path observations as long as the
discrepancy function δ and threshold ε are reasonable. However, due to the likelihood-free
approach, the ABC approximation will likely be slower than more specialized methods when
the full paths are available and the likelihood gradient is computable.

The need to have some knowledge of the summarizing function σ is, in general, an
unavoidable requirement for performing inference. In this work it was assumed that σ was
known in advance. If σ is unknown, it might be estimated from data if full path observations
are available for some data.

Also, it is clear that the amount of information available of the model parameter values
depends on σ . Thus, not all possible σ lead to a feasible setting for inference. As it is chal-
lenging to define requirements for σ without considering the specific application, evaluating
the feasibility of inference needs to be made based on expert knowledge or empirical exper-
iments. However, a key benefit of the proposed Bayesian approach is that the full posterior
allows the remaining uncertainty to be directly estimated.

The need to choose the discrepancy function δ and threshold ε is unavoidable in ABC;
a recent summary of different methods is provided by Lintusaari et al. (2017). The most
promising choices are to either use domain knowledge, which is naturally task-specific, or
more generally to learn from data a classifier which can be used to form the discrepancy
function (Gutmann et al. 2018).

7 Summary

In this paper we defined the IRL-SD problem, where the task is to do inverse reinforcement
learning based on summarized observations of the agent’s behavior. We proposed exact and
approximate methods for inference. The Monte-Carlo approximation can be used when the
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summary function σ is available as a probability distribution with a non-negligible support,
and the ABC even when σ can only be evaluated.We demonstrated that all proposedmethods
are able to produce feasible results, but the exact method is computationally expensive.
However, the approximate methods can be used even for full posterior inference with realistic
MDPs and real observation data. The methods presented are feasible baselines for more
specialized inference algorithms that may take advantage of further assumptions, and are
state-of-the-art in situations that are currently out-of-reach for existingmore specificmethods.

Overall, regarding partial observability in IRL, there have been two cases for which meth-
ods exist:

– If the agent has partial observability of the environment state, a POMDP model can be
used (Choi and Kim 2011).

– If the external observer has partial observability of the environment state, traditional IRL
methods can be extended (Kitani et al. 2012).

This work extends this list by a third item:

– If the external observer has partial observability of the complete path, then the presented
methods for IRL-SD can be applied.

Acknowledgements This work has been supported by the Academy of Finland (Finnish Centre of Excellence
in Computational Inference Research COIN, and Grants 294238, 292334). Computational resources were
provided by the Aalto Science IT project.

A Appendix

A.1 Experiments 1 and 2

Model details
The walls that define the grid cell features are generated as follows: (1) choose one grid cell
at random; (2) choose vertical or horizontal direction at random; (3) choose another cell at
random along the chosen direction; (4) set the feature values to 1 for all cells between (and
including) these two cells, except if the cell is the goal cell.

The agent has four actions that allow it to move to neighboring cells. Each action fails with
probability pslip , resulting in the agent moving to a random neighboring cell. Attempting
to move outside the grid returns the agent to the current cell. We used pslip = 0.05 and
rstep = -0.05. Tmax was set to 10w steps. Optimal policy was estimated with Q-learning over
2000w episodes in batches of 500; parameters were step size 0.2, learning rate 0.5, γ 0.99,
exploration rate 0.2.
Inference details
For theMonte-Carlo estimate of the likelihood, we added 1/NMC to the estimated likelihood
of each observation, to prevent the likelihood being 0 when P(ξiσ |ξn) = 0 for all n in the
sample set. This can be thought of as a “prior” for the observation likelihood.

We estimated the mean of the likelihood using MCMC samples (Metropolis-Hastings
sampling). We drew 10,000 samples with a burnout of 1000 and thinning 5, starting from the
center of the boundaries. The proposal distribution was a symmetric Gaussian with standard
deviation 0.1. For the exact andMonte-Carlo estimates, aswe are sampling froma distribution
over the log-likelihood surfaces (the GP posterior), for computing the acceptance ratio, for
each sample, we drew one realization from theGP posterior and computed the likelihood ratio
on that realization.We found that this way of taking the uncertainty into account was superior
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Fig. 7 Left: GP predictive mean and BO samples. Center left: unnormalized log-likelihood surface mean.
Center right: samples from log-likelihood and sample mean on top of unnormalized log-likelihood surface
mean. Right: estimated likelihood density and sample mean

Fig. 8 An example of a narrow likelihood. In this case it is possible to identify the values of both parameters
with good accuracy based on the observation data

to just using the predictive mean. The samples from the predictive mean often resulted in an
unrealistically narrow likelihood as they did not take into account the remaining uncertainty in
the log-likelihood surface. For theABCapproach,weused standardMCMCas the uncertainty
in the GP surface is taken into account by the ABC likelihood. For estimating the likelihood
density from the samples, we used a Gaussian kernel density estimate with the bandwidth
decided by Scott’s rule. Illustration of the process is shown in Fig. 7.
Experiment 2 details
We used evenly spread out constant values for the parameter ground truth θ∗. For N f =
2 we used [−0.33,−0.67] and for N f = 3 we used [−0.25,−0.5,−0.75]. This was done
to remove the noise in the results caused by variation in the ground truth and to promote
the identifiability of the parameters. With 2 features, the number of BO samples was 200,
computed in batches of 10. With 3 features, the number of samples was increased to 600. Θ
was [−1, 0]N f . The same sets of Ξσ were used for all algorithms when comparing perfor-
mance. Further examples of different types of characteristic likelihood surfaces are shown
in Figs. 8 and 9.

A.2 Experiment 3

Model definition
The MDP environment contains a drop-down menu that consists of 8 items, which can be in
multiple states: the semantic relevance of the item is either unobserved, low, medium or high,
or the item is the target item. The length of the item is either unobserved, correct or incorrect.
These constitute the state that the agent observes. Initially all items are unobserved, and the
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Fig. 9 An example of a wide likelihood. In this case the parameter values are not well identified based on the
observation data

agent can observe them by fixating at any item. The agent always observes the semantic
relevance of the fixated item. The semantic relevance of a neighboring item is observed with
probability psem . With probability 0.95 the agent will observe the length of the current item
and with probability 0.89 the length of a neighboring item. Also, with probability prec the
agent will recall the full menu layout after the first fixation (that is, observe the features of
all the items). The duration of a fixation is fdur (in units of 100 ms). When the agent fixates
on the target item, the agent will select it, which takes additional dsel seconds. The agent can
also quit, which is instantaneous. The probability for a target item to appear in a menu was
0.9 and the maximum number of actions in a session was 100.

We note that the model is actually a POMDP encoded as anMDP, which is why the transi-
tion function is difficult to define as an explicit probability distribution. The implementation
generates a full menu layout at the beginning of each episode, and the state transitions during
the episode are based on this menu realization.
Inference
We use a similar prior as Kangasrääsiö et al. (2017): for fdur we use truncated Normal with
μ 3, σ 1; for dsel truncated Normal with μ 0.3, σ 0.3, for prec Beta with α 3, β 1.35. Θ was
fdur ∈ [0, 5], dsel ∈ [0, 1], prec ∈ [0, 1]. The optimal policy is estimated with Q-learning
over 5M sessions in batches of 10k sessions. Step size was 0.05, learning rate 0.3, γ 0.98 and
exploration rate 0.1. The training was done on a fixed set of 20k menus and the predictions
were done on a separate set of 10k menus. We computed 1000 BO samples in batches of 50
for estimating the posterior.

A.3 Bayesian optimization details

A radial basis function kernel was used for the GP. The initial lengthscale of the kernel was
set to 10% of the bound width, the variance to roughly 50% of the maximum difference
between the minimum and maximum sample values observed in initial tests and the noise
variance to 0.1. After each batch, the parameters were optimized from the initial values. For
computing the batch sample locations we used a LCB acquisition rule combined with local
penalization (González et al. 2016).
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