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Abstract This paper introduces a novel parameter estimation method for the probability
tables ofBayesian network classifiers (BNCs), using hierarchicalDirichlet processes (HDPs).
The main result of this paper is to show that improved parameter estimation allows BNCs
to outperform leading learning methods such as random forest for both 0–1 loss and RMSE,
albeit just on categorical datasets. As data assets become larger, entering the hyped world of
“big”, efficient accurate classification requires three main elements: (1) classifiers with low-
bias that can capture the fine-detail of large datasets (2) out-of-core learners that can learn
from data without having to hold it all in main memory and (3) models that can classify new
data very efficiently. The latest BNCs satisfy these requirements. Their bias can be controlled
easily by increasing the number of parents of the nodes in the graph. Their structure can be
learned out of core with a limited number of passes over the data. However, as the bias is
made lower to accurately model classification tasks, so is the accuracy of their parameters’
estimates, as each parameter is estimated fromever decreasing quantities of data. In this paper,
we introduce the use of HDPs for accurate BNC parameter estimation even with lower bias.
We conduct an extensive set of experiments on 68 standard datasets and demonstrate that our
resulting classifiers perform very competitively with random forest in terms of prediction,
while keeping the out-of-core capability and superior classification time.
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1 Introduction

With the ever increasing availability of large datasets, Bayesian network classifiers (BNCs)
show great potential because they can be learned out-of-core, i.e., without having to hold
the data in main memory. This can be done in a discriminative fashion, for example, TAN
(Friedman et al. 1997), kDB (Sahami 1996) and Selective kDB (SkDB) (Martínez et al. 2016)
as well as generatively, using fixed-structure models such as naïve Bayes (Lewis 1998) and
average n-dependence estimators—AnDE (Webb et al. 2005, 2012). In contrast, random
forests (RFs) (Breiman 2001), are not easily learned out-of-core because they require either
repeated sorting of the datasets or sampling. Standard implementations side-step the problem
either by ensuring that the training sets for each tree of the forest is small enough to be in-
core (Lyubimov and Palumbo 2016), or by relying on on-disk operations (Chen and Guestrin
2016).

Constraints on the network structure of BNCs are usually considered to be the main
control on their bias-variance trade-off. If the number of parents for nodes is restricted to a
relatively low number, then bias will generally be high and the variance on their estimates
relatively low (we will actually show in the experiments that the variance can be high even
for structures with low complexity). For large datasets, lower bias or higher complexity is
preferable because it allows the models to more precisely capture fine detail in the data,
translating into higher accuracy (exemplified by the success of deep networks). The number
of parameters to estimate increases exponentially with the number of parents allowed for
each node; thus, for larger models, accurate estimation of the parameters becomes critical.

We now turn to the aim of this current paper. One of the main issues with low-bias learners
is their variance; it is logical that when increasing the number of free parameters, even with
the largest possible dataset, there will be a point at which some parameters will not have
sufficient examples to be learned with precision. Variance is thus not just a problem for
small datasets, but can reappear when designing effective learners for large datasets because
they require low bias. When the number of examples per parameter decreases, the variance
increases because parameter estimation fails to derive accurate estimates. This, of course, is
why maximum-likelihood estimates (MLEs) are not often used with low-bias learners unless
ensembles are also involved.

Remarkably, experiments in this paper show that for networks as simple as TAN (where
each node has two parents at most), which significantly underperform RFs when using
Laplace smoothing, can significantly outperform RFs once more careful parameter estima-
tion is performed. This is particularly surprising because one wouldn’t expect the variance to
be high for models such as TAN. This is due to the fact that the variance is not even among
all combinations of feature values and can indeed be relatively high for some of them. We
will see that our estimates automatically adapt to cases with high or low variance by careful
use of the hierarchical Dirichlet process (HDP).

Drawing the link between BNCs and HDP Say you want to estimate the cancer rate in a
population and you are only given 10 samples; you will get a very crude estimate. In effect,
this happens 100’s of times over at each leaf of a decision tree or clique of a Bayesian network
when data is not abundant at the node. For n-gram models, where one wishes to estimate
extremely low-bias categorical distributions and for which very few examples per parameter
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are available, MLEs have long since been abandoned in favour of sophisticated smoothing
techniques such as modified Kneser-Ney (Chen and Goodman 1996). These, however, have
complex back-off parameters that need to be set. For our more general and heterogeneous
context of probability table estimation, there exist no techniques to set these parameters. The
Hierarchical Pitman–Yor process (HPYP) is the Bayesian version of Kneser-Ney smoothing;
it was introduced by Teh (2006) and uses empirical estimates for hyperparameters. This has
been demonstrated to be very effective (Wood et al. 2011; Shareghi et al. 2017a). HPYP is
well-suited for Zipfian contexts: where discrete variables have hundreds or more outcomes
with very biased probabilities. Since we have discrete variables with mostly fewer outcomes
we do not use the HPYP, and prefer the lower-variance hierarchical Dirichlet process (HDP)
(Teh et al. 2006)—it is equivalent to HPYP with discount parameter fixed to 0.

In this paper, we propose to adapt the method of Teh (2006) for parameter estimation for
n-gram models and apply it to parameter estimation for BNCs. Rather than the HPYP used
by Teh (2006) we use the more computationally efficient HDP. In this context, the model
is simpler because a HDP with a finite discrete base distribution is by definition equivalent
to a Dirichlet distribution, that is HDPs become hierarchical Dirichlet distributions in our
context. While conceptually simpler, we still use HDP style algorithms, albiet more recent
collapsed techniques, because they are relatively efficient compared to the older Chinese
restaurant style algorithms (Buntine and Mishra 2014; Lim et al. 2016).

Having shown that our approach outperforms state-of-the-art BNC parameter estimation
techniques, we use RF as an exemplar of state-of-the-art machine learning because it is a
widely used learning method for the types of tabular data to which our methods are suited
which can be used out of the box without need for configuration. We show that our estimator
allows BNCs to compete against RFs on categorical datasets. Furthermore, because our
method is completely out-of-core, we demonstrate that we can obtain results on large datasets
on standard computers with which RF cannot even be trained using standard packages such
as Weka. Our models can also classify orders of magnitude faster than RF.

This paper is organised as follows. In Sect. 2, we review Bayesian network classifiers
(BNCs). In Sect. 3 wemotivate our use of hierarchical Dirichlet Processes (HDPs) for BNCs’
parameter estimation. We present our method in Sect. 4 and related work in Sect. 5. We have
conducted extensive experiments, reported in Sect. 6.

2 Standard Bayesian network classifiers

2.1 Notations

Let D = {x(1), . . . , x(N )} be a dataset with N objects. Each datum x = 〈x1, . . . , xn〉 is
described over random variable X1, . . . , Xn . The following framework can be found in texts
on learning Bayesian networks, such as Koller and Friedman (2009). A BN B = 〈G,Θ〉, is
characterised by the structure G (a directed acyclic graph, where each vertex i is associated
to a random variable Xi ), and parameters Θ , that quantifies the dependencies within the
structure. The parameter objectΘ , contains a set of parameters for each vertex in G: θxi |Πi (x),
where Πi (.) is a function which given the datum x = 〈x1, . . . , xn〉 as its input, returns the
values of the attributes which are the parents of node i in structure G. Note, each attribute
is a random variable Xi and xi represents the value of that random variable. For notational
simplicity we write θxi |Πi (x) instead of θXi=xi |Πi (x). We also use θXi |Πi (x) to represent the full
vector of values for each xi . A BN B computes the joint probability distribution as
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Table 1 List of symbols used

Notation Description

n Number of attributes—also number of variables used to estimate the
conditional probability

N Number of data points in D
Y Random variable associated with class label—also X0

y Value taken by Y

|Y | Number of classes

Xi Random variable associated with attribute i

xi Value taken by Xi

Xc Child variable for which we are estimating the conditional probability

θXc |y,x1,...,xn Parameter vector associated with leaf node (at level n + 1) for values
y, x1, . . . , xn

φXc |y,x1,...,xi Latent prior parameter for node at level i associated with branching values
y, x1, . . . , xi

α Concentration parameter for the Dirichlet distributions

nxc |y,x1,...,xn Leaf-node parameter representing the number of data points with values
xc|y, x1, . . . , xn

nxc |y,x1,...,xi Intermediate-node parameter representing the number of data points
received from its children nodes nxc |y,x1,...,xi−1 = ∑

xi
txc |y,x1,...,xi

txc |y,x1,...,xi Latent variable representing the fraction of nxc |y,x1,...,xi that is passed up
to its parent

n.|y,x1,...,xi Marginal count n.|y,x1,...,xi = ∑
xc nxc |y,x1,...,xi

t.|y,x1,...,xi Marginal count t.|y,x1,...,xi = ∑
xc txc |y,x1,...,xi

PB(x) =
n∏

i=1

θxi |Πi (x).

The goal of developing a BN classifier is to predict the value of an additional variable
X0 = Y : X0 is the random variable associated with the class and we also denote it by Y and
its values by y ∈ Y . The data then takes the form D = {(y(1), x(1)), . . . , (y(N ), x(N ))}, the
network takes an additional node and we can write:

PB(y|x) = PB(y, x)
PB(x)

= θy|Π0(x)
∏n

i=1 θxi |y,Πi (x)∑
y′∈Y θy′|Π0(x)

∏n
i=1 θxi |y′,Πi (x)

.

For simplicity, in the following, we use θy to denote θy|Π0(x). Most notations are summarised
in Table 1.

2.2 Structure learning for BNCs

Most approaches to learning BNCs learn the structure first and then learn the parameters
as a separate step. Numerous algorithms have been developed for learning BNC network
structure. The key difference that distinguishes BNC structure learning from normal BN
structure learning is that the precision of the posterior estimates PB(y|x) matters rather than
the precision of PB(y, x). As a result, it is usually important to ensure that all attributes in the
class’ Markov blanket are connected directly to the class or its children. As a consequence,
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X2 X4 X1 X3

Y

(a)

X2 X4 X1 X3

Y

Decreasing mutual information with Y

(b)

Fig. 1 Example BNC structures: a Naïve Bayes, b kDB-1

it is common for BNCs to connect all attributes to the class. Naïve Bayes [NB—see e.g.
Lewis (1998)] is a popular BNC that makes the class the parent of all other attributes and
includes no other edges. The resulting network is illustrated in Fig. 1a and assumes con-
ditional independence between all attributes conditioned on the class. As a consequence,
PB(y|x) ∝ θy

∏n
i=1 θxi |y . Tree-augmented naïve Bayes (TAN) (Friedman et al. 1997) adds

a further parent to each non-class attribute, seeking to address the greatest conditional inter-
dependencies. It uses the Chow–Liu (1968) algorithm to find the maximum-likelihood tree
of dependencies among the attributes in polynomial time.

K-dependence Bayes (kDB) (Sahami 1996) allows each non-class attribute to have up to
k parents, with k being a user-set value. It first sorts the attributes on mutual information with
the class. Each attribute xi is assigned the k parent attributes that maximize the conditional
mutual information (CMI) with the class, CMI(y, xi |Πi (x)), out of those attributes with
higher mutual information with the class. Figure 1b shows kDB-1 (for k = 1).

Selective kDB (SkDB) (Martínez et al. 2016) selects values n∗ ≤ n and k∗ ≤ k such that
a kDB over the n∗ attributes with highest mutual information with the class and using k∗
in place of k maximizes some user selected measure of performance (in the current work,
RMSE) assessed using incremental cross validation over the training data.

Other discriminative scoring schemes have been studied, see for example the work by
Carvalho et al. (2011). A recent review of BNCs was written by Bielza and Larrañaga (2014).

2.3 Maximum likelihood estimates

Given data points D = {(y(1), x(1)), . . . , (y(N ), x(N ))}, the log-likelihood of B is:

N∑

j=1

log PB
(
y( j), x( j)

)
=

N∑

j=1

(

log θy( j)|Π0(x( j)) +
n∑

i=1

log θ
X ( j)
i |y( j),Πi (x( j))

)

, (1)

with
∑

y∈Y
θy|Π0(x) = 1, and

∑

Xi∈Xi

θXi |y,Πi (x) = 1. (2)

Maximizing the log-likelihood to optimize the parameters (Θ) yields the well-known MLEs
for Bayesian networks. Most importantly, MLEs factorize into independent distributions for
each node, as do most standard maximum aposterior estimates (Buntine 1996).

Theorem 1 (Wermuth and Lauritzen 1983) Within the constraints in Eq. 2, Eq. 1 is maxi-
mized when θxi |Πi (x) corresponds to empirical estimates of probabilities from the data, that
is, θy|Π0(x) = PD(y|Π0(x)) and θXi |Πi (x) = PD(Xi |Πi (x)).
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Thus our algorithms decompose the problem into separate sub-problems, one for each
θXi |y,Πi (x).

2.4 Efficiency of BNC learning

One often under-appreciated aspect of many BNC learning algorithms is their computa-
tional efficiency. Many BNC algorithms can be learned out-of-core, avoiding the overheads
associated with retaining the training data in memory.

NB requires only a single pass through the data to learn the parameters, counting the joint
frequency of each pair of a class and an attribute value. TAN and kDB require two passes
through the data. The first collects the statistics required to learn the structure, and the second
the joint frequency statistics required to parameterize that structure. SkDB requires three
passes through the data. The first two collect the statistics required to learn the structure and
parameters, as per standard kDB. The third performs an incremental cross validation to select
a subset of the attributes and the k∗ ≤ k to be used in place of k.

3 Why and how are we using HDPs?

The key contribution of this paper is to use hierarchical Dirichlet processes for each categori-
cal distribution θXi |Πi (x), which yields back-off estimates that naturally smooth the empirical
estimates at the leaves.

The intuition for our method is that estimation of conditional probabilities should share
information with their near neighbours. Suppose you wish to estimate a conditional proba-
bility table (CPT) for P(y|x1, x2, x3) from data where the features x1, x2, x3 take on values
{1, 2, 3, 4}. This CPT can be represented as a tree: the root node branches on the values of x1
and has 4 branches, the 2nd and 3rd level nodes test x2 and x3 and have 4 branches. The 4th
level consists of leaves and each node has a probability vector for y that we wish to estimate.
The sharing intuition says that the leaf node representing P(y|x1 = 1, x2 = 2, x3 = 1)
should have similar values to the leaf for P(y|x1 = 1, x2 = 2, x3 = 2) because they have a
common parent, but should not be so similar to P(y|x1 = 3, x2 = 1, x3 = 2), which only
shares a great grandparent.

We achieve this sharing by using a hierarchical prior. So we have vectors P(Y |x1 =
1, x2 = 2, x3 = u) (for u = 1, 2, 3, 4) that are generated from the same prior with a common
mean probability vector, say q(Y |x1 = 1, x2 = 2). Now P(y|x1, x2, x3) can often be similar
to P(y|x1, x2) which in turn can often be similar to P(y|x1) and in turn to P(y). However,
strictly speaking, P(y|x1, x2), P(y|x1) and P(y) are aggregate values here derived from the
underlying model which specifies P(y|x1, x2, x2). So, to model hierarchical similarity with
a HDP, instead of using the derived P(y|x1, x2), P(y|x1) and P(y) in the hierarchical prior,
we introduce some latent (hierarchical) parameters, say q(y|x1, x2), q(y|x1) and q(y). This
indeed is the innovation of Teh (2006). In our case we use hierarchical Dirichlet distributions
because the variables are all discrete and finite, but the algorithm relies onmethods developed
for a HDP (Lim et al. 2016).

3.1 Intuition developed for naïve Bayes

Imagine a simple naïve Bayes structure such as illustrated in Fig. 1a: the class is the sole
parent of every node in G. In this case, we use a (non-hierarchical) Dirichlet as suggested for
Bayesian naïve Bayes (Rennie et al. 2003), for i = 1, . . . , n and all y
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θXi |y ∼ Dir
(
φXi , αi

)
, (3)

where αi is a (Dirichlet) concentration parameter for node i (we will later develop howwe tie
these parameters in different configurations in the hierarchical case). Note the non-standard
notation for the Dirichlet: for convenience we separate the vector probability φXi and the
concentration αi , making it a 2-argument distribution.1

We can think of this model in two ways: we add a bias to the parameter estimation that
encourages parameter estimates of each θXi |y to have a commonmeanφXi for different values
of y. Alternatively, we expect θXi |y for different values y to be similar. If they are similar,
it is natural to think that they have a common mean, in this case φXi . Note, however, that
φXi is a prior parameter, introduced above as q(·), and does not correspond to the mean
estimated by marginalising with

∑
y p̂(y)θXi |y readily estimated from the data. The φXi is a

latent variable and a Bayesian hierarchical sampler is required to estimate it.
The hyperparameter αi , called a concentration, controls how similar the categorical dis-

tributions θXi |y and φXi should be: if αi is large, then each θXi |y virtually reproduces φXi ;
conversely, θXi |y can vary more freely as αi tends to 0. Estimation also involves estimating
the hyperparameters, as discussed in Sect. 4.4.2.

3.2 Intuition developed for kDB-1

As described in Sect. 2.2, kDB-1 relaxes naïve Bayes’ assumption about the conditional
independence (given y) between the attributes by allowing one extra-parent per node as
presented in Fig. 1a. The structure learning process starts from theNB structure. Then it orders
the nodes by highest mutual information with the class to be ranked first, e.g., 〈x2, x4, x1, x3〉
in Fig. 1a. Finally, it considers all candidate parents with higher mutual information with the
class than itself (before it in the order), and chooses the one that offers the highest mutual
information between the class and the child node when conditioned on it. We keep the same
idea for the estimation of θXi |Πi (x) as in the NB case, Eq. 3, except that now Xi has 2 parents:
the class and another covariate. This translates into the following, for i = 1, . . . , n and all
y,Π(i)

θXi |y,Π(i) ∼ Dir
(
φXi |y, αi |y

)
, (4)

where Π(i) only comprises a single node for all i > 1 (the first node has only y as a parent).
Now we could have used φXi as the latent parent, so it is independent of y, but this would
mean all leaves in the tree have similar probability vectors. This is a stronger statement than
we need; rather we prefer adjacent nodes on the tree to be similar, not all nodes. With a
hierarchical model we add another level of complexity, making the dependence on y and
require a further parent above for i = 1, . . . , n and all y

φXi |y ∼ Dir
(
φXi , αi |1

)
. (5)

This means that different branches in the tree can have different means, and thus the model
is more flexible (and has hence relatively low bias). Our Bayesian estimation handles these
additional parameters and hyperparameters and limits the effect of variance on the model.

The model naturally defines the hierarchical structure given in Fig. 2, with the formula
above represented by the graphical model given in Fig. 2a.

1 Some papers would use the notation Dir
(
αiφXi

)
or separate the vector (αiφXi ) into its |Xi | arguments.
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φXi

φXi|y

θXi|y,Π(i)

αi|0 αi|1

αi|y

|Π(i)|

|Y |

(a)

φXi
αi|0

φXi|y

θXi|y,Π(i)

αi|1

αi|2

|Π(i)|

|Y |

(b)

Fig. 2 Our parameter structure model for one Xi and kDB-1. a Tying the concentration at the parent. b Tying
the concentration at the level. Details on tying are given in Sect. 4.4.2

3.3 Intuition—general framework

The intuition of the framework for kDB-1 naturally extends to BNs with higher numbers
of parents. We structure the estimation of the conditional probability of each factor “child
given parents” to have a hierarchy with as many levels as the node has parents. At each level,
the hierarchy branches on the different values that the newly introduced parent takes: on the
different values of y at the first level, on the different values of the first parent at the second
level, etc. Once the structure is set, all we need is to have an order between the parents. For
naïve Bayes, there is only one parent—y. For tree-augmented naïve Bayes (TAN), as nodes
cannot have more than a single parent apart from the class, we place the class first and its
other parent second. For all other structures, we place y as the first parent and then order
the parents Πi by highest mutual information between them and the child conditioned on
the class. This follows both the NLP framework for n-gram estimation and kDB structure
learning: position first in the hierarchy the nodes that are most likely to have an influence on
the estimate. Positioning the class first allows us to pull the estimates to be most accurate
in the probability space that is near P(y|x), which is our final target for classification, as
we are not really interested in obtaining accurate estimates of P(Xi |y,Π(i)) in parts of the
probability space that are unrelated to y.

Note that the latent/prior probability vectors φXi |y,Πi (x) do not model observed data, as
the θXi |y,Πi (x) do. We represent them with different symbols (φ versus θ ) to highlight this
fundamental difference.

Finally, note that in the finite discrete context, DPs are equivalent to Dirichlet distributions
(Ferguson 1973), so we present our models in terms of Dirichlets, but the inference is done
efficiently using a collapsed Gibbs sampler for HDPs (Du et al. 2010; Gasthaus and Teh
2010; Buntine and Mishra 2014; Lim et al. 2016). These recent collapsed samplers for
the hierarchical Bayesian algorithms are considerably more efficient and accurate and so
do not suffer the well-known algorithmic issues of original hierarchical Chinese restaurant
algorithms (Teh et al. 2006). Note however that, unlike some applications of HDPs, there are
no ‘atoms’ generated at the root of the HDP hierarchy because the root is just a Dirichlet,
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which effectively has the finite discrete set of atoms already present. The HDP formalism is
used to provide an efficient algorithm as a collapsed version of a Gibbs sampler.

4 Our framework: HDPs for BNCs

This section reviews our model and sampling approach.

4.1 Model

Consider the case of estimating P(Xc|y, x1, . . . , xn) where Xc represents the child variable
of which we are trying to estimate the conditional probability distribution, and y, x1, . . . , xn
are respectively used to denote the variable values Y = y, X1 = v1, . . . , Xn = vn . The
variables X1, . . . , Xn for n ≥ 0 are ordered by mutual information with Xc as described
previously. Later, wewill see that Xc will represent the child variable in the Bayesian network
of which we want to estimate the conditional probability distribution given its parents values
y, x1, . . . , xn . We can present this as a decision tree where the root node banches on y (i.e., on
the values of Y ), all nodes at the 1st level branch on x1 (i.e., on the values taken by X1), at the
2nd level test x2 and so forth. A node at the leaf (the n + 1-th level) has the parameter vector
θXc|y,x1,...,xn for values of y, x1, . . . , xn given by its branch on the tree. A node at the i-th level
(for i = 1, . . . , n) has a parameter φXc|y,x1,...,xi—which is a latent prior parameter—where
again values of y, x1, . . . , xi are given by its branch on the tree. The full hierarchical model
is given by

θXc |y,x1,...,xn ∼ Dir
(
φXc |y,x1,...,xn−1 , αy,x1,...,xn

)

φXc|y,x1,...,xi ∼ Dir
(
φXc |y,x1,...,xi−1 , αy,x1,...,xi

)
for i = 1, . . . , n − 1

φXc|y ∼ Dir
(
φXc , αy

)

φXc ∼ Dir

(
1

|Xc|1, α0

)

.

Note eachDirichlet has a concentration parameter as a hyperparameter, and denote the full set
of these by α∗. These are known to significantly change the characteristics of the distribution,
so they must be estimated as well. We discuss below, in Sect. 4.4.2, how we can tie these
hyperparameters α∗ so that they are not all distinct. Experience has shown us that there should
not be just one value in the entire tree, nor should there be a different value for each node.

4.2 Posterior inference

To consider how posterior inference is done with this model, first consider the simplest case
of a single node with probabilities φXc|y where a data vector nXc|y is sampled with total count
n·|y= ∑

xc nxc|y :
φXc|y ∼ Dir

(
φXc , αy

)

nXc |y ∼ multinomial
(
φXc |y, n·|y

)
.

For example, in Dataset 1 given later in Table 2, the values of nx1|y are as follows, for each
value of X1 and Y :

n0|0 = 2
n1|0 = 0
n0|1 = 20
n1|1 = 5
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These are contained into two vectors for Y = 0 and Y = 1:

nX1|0 = [2, 0]
nX1|1 = [20, 5]

The total count for the first vector are thus respectively n.|0 = 2 and n.|1 = 25. The
marginalised likelihood for this, which marginalises out φXc|y takes the form (Buntine 1996)

P
(
nXc |y |φXc , αy, n·|y

) =
(

n·|y
nXc |y

)
Γ (αy)

∏
xc Γ

(
φxc|yαy

)

∏
xc Γ

(
φxc|yαy + nxc|y

)

Γ
(
αy + n·|y

) . (6)

where xc represents the values taken by Xc. Our goal in this is to estimate the φXc parameters.
As it stands, this is going to be very costly because they appear in a complex form inside

gamma functions,
∏

xc
Γ (φxc |yαy+nxc |y)

Γ (φxc |yαy)
. New collapsed methods developed for HDPs deal

with this problem by modifying it with the introduction of new (latent) variables that make
the gamma functions disappear.

While one can formalise Eq. 6 using HDPs, in this case a direct augmentation can be done
using the identity (for n ∈ N+)

Γ (α + n)

Γ (α)
=

n∑

t=1

αt Snt (7)

where Snt is an unsigned Stirling number of the first kind. The Stirling number is a combi-
natoric quantity that is easily tabulated (Du et al. 2010) and simple asymptotic formula exist
(Hwang 1995). This is sometimes converted into the Chinese restaurant distribution (CRD)
in the form

P(t |CRD, n, α) = Γ (α)

Γ (α + n)
αt Snt (8)

and note the normalisation of Eq. 8 is shown by Eq. 7, where t ∈ {1, . . . , n} for n > 0.
To simplify Eq. 6, multiply the LHS by

∏
xc P(txc|y |CRD, nxc|y, φxc|yαy) and the RHS

by the corresponding RHSs from Eq. 8. This is called an augmentation because we are
introducing new latent variables txc|y for each xc, represented in our notation as tXc |y . The
terms in Γ (φxc|yαy) etc., cancel out yielding

P
(
nXc |y, tXc |y |φXc , αy, n·|y

) =
(

n·|y
nXc|y

)
Γ (αy)

Γ
(
αy + n·|y

)
∏

xc

(αyφxc )
txc |y S

nxc |y
txc |y

=
(

n·|y
nXc|y

)
α
t·|y
y

α
(n·|y )
y

∏

xc

φ
txc |y
xc S

nxc |y
txc |y (9)

where α(n) = α(α + 1) · · · (α + n − 1) is a rising factorial.
Notice what has been done here for the current nodes Xc:

– the parent probabilities φXc now appear in a simple multinomial likelihood
∏

xc φ
txc |y
xc ,

– their prior complex form inside gamma functions has been eliminated,
– but at the expense of introducing new latent variables tXc |y .

This operation forms the basis for simplifying a full tree of such nodes recursively, presented
in the next section. Equation 9 was originally developed and used in the context of the HDP,
but the above alternative derivation is adequate for our purposes.

One can think of this in terms of Bayesian inference on a DAG where evidence functions
are passed between nodes. Instead of passing the evidence represented by Eq. 6 from nodes
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φXi

nXi

tXi

φXi|y1
nXi|y1
tXi|y1

φXi|y2
nXi|y2
tXi|y2

θXi|y1,Π(i)1
nXi|y1,Π(i)1
tXi|y1,Π(i)1

θXi|y1,Π(i)2
nXi|y1,Π(i)2
tXi|y1,Π(i)2

θXi|y2,Π(i)1
nXi|y2,Π(i)1
tXi|y2,Π(i)1

θXi|y2,Π(i)2
nXi|y2,Π(i)2
tXi|y2,Π(i)2

Y = y1 Y = y2

Π(i)1 Π(i)2 Π(i)1 Π(i)2

Fig. 3 Context tree for our parameter structure model for kDB1 and one Xi

Xc to parent y, we pass the evidence
∏

xc φ
txc |y
xc which is just a multinomial likelihood so it

can be combined with the prior in the usual manner. So for every count nxc|y > 0 in the tree,
one is introducing a pseudo-count txc|y as a latent variable, where 1 ≤ txc|y ≤ nxc|y .

How does this relate to a Chinese restaurant process (CRP)? Suppose we have a Dirichlet
process with base distribution φXc and we sample n·|y data generating a Chinese restaurant
configuration, where the n·|y sample points are distributed over a number of tables. Then the
txc|y variables above corresponds to the number of tables in the restaurant for data xc, which
is by definition between 1 and nxc|y when nxc|y > 0 (Lim et al. 2016). Indeed the probability
of the CRD above is the formula for a collapsed CRP (Du et al. 2010; Gasthaus and Teh
2010), where the numbers of data at each table are marginalised out, only keeping the count
of tables. This represents a huge advantage computationally because one only needs to store
the number of tables at each node, not the full configuration of customers at tables. This
eliminates the need for dynamic memory that burdens a hierarchical CRP.

4.3 Context tree—data structure

The intuition of Eq. 9 is that each node θXc|y,x1,...,xn or φXc|y,x1,...,xi passes up some fraction
of its own data as a multinomial likelihood to its parent. So the nodes will have a vector of
sufficient statistics nXc |y,x1,...,xi recorded for each node. These have a virtual CRPwith which
we only record the number of tables tXc |y,x1,...,xi , which we refer to as pseudo-counts. The
counts tXc|y,x1,...,xi represents the fraction of nXc|y,x1,...,xi that is passed (in a multinomial
likelihood) up to its parent node, as dictated by Eq. 9. An example of context tree for kDB1
is given in Fig. 3, which simply unfolds the plate notations used in Fig. 2 and adds the t and
n variables.

As with hierarchical CRPs, these statistics are related for i ≥ 0:

nxc|y,x1,...,xi−1 =
∑

xi

txc|y,x1,...,xi , (10)
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and moreover the base case nxc = ∑
y txc|y . The counts nxc|y,x1,...,xi−1 here only represent

real data counts at the leaf nodes. At internal nodes, the n∗ represent totals of psuedo-counts
from the child nodes, as passed up by the multinomial evidence messages for the children.

The likelihood for the data with this configuration can be represented with θ and all but
the root φ marginalised out:

P(D, n, t |φXc , α) =
(

∏

xc

φ
nxc
xc

)
n∏

i=0

⎛

⎝
∏

y,x1,...,xi

α
t·|y,x1,...,xi
y,x1,...,xi

α
(n·|y,x1,...,xi )
y,x1,...,xi

∏

xc

S
nxc |y,x1,...,xi
txc |y,x1,...,xi

⎞

⎠ , (11)

and the ‘dot’ notation is used to represent totals, so n·|y = ∑
xc nxc|y . The multinomial

likelihood on φXc can also be marginalised out with a Dirichlet prior. Note the formula can
be seen to be derived by recursive application (bottom up) of the formula in Eq. 9.

Once the parameters have been estimated (described in the next sub-section), the parame-
ters θ can be estimated recursively using the standard hierarchical CRP estimation formula:

φ̂xc = nxc + 1
|Xc|α0

n· + α0
(12)

φ̂xc|y,x1,...,xi = nxc|y,x1,...,xi + φ̂xc|y,x1,...,xi−1αy,x1,...,xi

n·|y,x1,...,xi + αy,x1,...,xi
(13)

θ̂xc|y,x1,...,xn = nxc|y,x1,...,xn + φ̂xc|y,x1,...,xn−1αy,x1,...,xn

n·|y,x1,...,xn + αy,x1,...,xn
(14)

4.4 Gibbs sampling

Note, in Eq. 11, the counts n∗ are derived quantities (summed from their child pseudo-
counts) and all pseudo-counts t∗ are latent variables that are sampled using a Gibbs
algorithm. Moreover, the parameters θxc|y,x1,...,xi and φxc|y,x1,...,xi are estimated recursively
fromφxc|y,x1,...,xi−1 and the corresponding counts nxc|y,x1,...,xi using the standard CRP param-
eter estimation of Eqs. 12–14. Gibbs sampling of the pseudo-counts t∗ and the concentration
parameters α∗ is done and the estimation of θxc|y,x1,...,xi is made periodically to obtain an
MCMC estimate for it. This section then discusses how the Gibbs sampling of these are done.

4.4.1 Sampling pseudo-counts t∗

We use a direct strategy for sampling the t∗, sweeping through the tree sampling each pseudo-
count individually using a formula derived from Eq. 11:

P
(
txc|y,x1,...,xi |D, n∗, t−xc |y,x1,...,xi∗ , φX , α

)
∝

α
txc |y,x1,...,xi
y,x1,...,xi

α

(
n·|y,x1,...,xi−1

)

y,x1,...,xi−1

S
nxc |y,x1,...,xi−1
txc |y,x1,...,xi−1

S
nxc |y,x1,...,xi
txc |y,x1,...,xi

,

where t−xc|y,x1,...,xi∗ represents t∗−{txc|y,x1,...,xi }. Note that txc|y,x1,...,xi exists implicitly in the
two sums n·|y,x1,...,xi−1 and nxc|y,x1,...,xi−1 due to Eq. 10. This sweep is made efficient because
computing the Stirling numbers is a table lookup, and the Stirling numbers are shared among
the different trees, so they are only calculated once for all nodes of the BNC.
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The base case, i = 0 is different because the root parameter vector φXc is marginalised
using the Dirichlet integral:

P
(
txc|y |D, n, t−xc |y, α

)
∝ Γ

(
nxc|y + α0/|Xc|

)

Γ
(
n·|y + α0

) α
txc |y
y S

nxc |y
txc |y .

These two sampling formula, as they stand, are also inefficient because txc|y,x1,...,xi ranges
over 1, . . . , nxc|y,x1,...,xi when nxc|y,x1,...,xi > 0.

From DP theory, we know that the pseudo-counts txc|y,x1,...,xi have a standard deviation
given by O(log1/2 nxc|y,x1,...,xi ), which is very small, thus in practice the full range is almost
certainly never used. Moreover, note the mean of txc|y,x1,...,xi changes with the concentration
parameter, so in effect the sampler is coupled and large moves in the “search” may not be
effective. As a safe and efficient option, we only sample the pseudo-counts within a window
of ± 10 of their current value. We have tested this empirically, and due to the standard
deviations, it is safer as the Monte Carlo sampling converges and smaller moves are typical.

Moreover, to initialise pseudo-counts in the Gibbs sampler, we use the expected value of
the pseudo-count for a HDP given the current count and the relevant concentrations:

t ←
{
n if n � 1
max(1, �α (ψ0(α + n) − ψ0(α))
 if n > 1

(15)

This requires sweeping up the tree from the data at the leaves; ψ0 represents the digamma
function: ψ0(x) = Γ ′(x)

Γ (x) .

4.4.2 Sampling and tying concentrations α∗

No proper mention has been made yet of how the concentration parameters α∗ are sampled.
The concentration parameters influence how similar the child probability will be to the parent
probability. We know this because Dirichlet theory tells us, looking at the model in Sect. 4.1,

Variance
(
θXc|y,x1,...,xn

) ≈ 1

αy,x1,...,xn
φXc |y,x1,...,xn−1

(
1 − φXc|y,x1,...,xn−1

)

Since we cannot be sure of how large this will be, we also sample concentration. Experience
with other models using HDPs alerts us that significant improvements should be possible by
judicious sampling of the concentration parameters (Buntine and Mishra 2014).

Note we expect the variance to get smaller as we go down the tree, so the concentration
should be larger further down the tree.

Tying Since the number of parameters α∗ is equal to the number of nodes in the tree, there
are possibly too many to sample. So rather than using a separate concentration parameter
αXc |y,x1,...,xi for every node, we tie some, which means that we make their values equal for
some different nodes. Figure 2a, b represent two different tying strategies of concentration
parameters. The first one corresponds to tying the concentrations for all nodes that share a
parent node: therewill thus be a concentration parameter for all nodes in the tree but the lowest
one. The second one has only one concentration parameter for each level of the tree. Tying is
only done within one context-tree, i.e. the parameters are inferred completely independently
for each conditional probability distribution θXi |Πi (x). Experiments on the tying of these
hyperparameters are presented in Sect. 6.2.

Note that the sampling described below iterates over all the tied nodes (see j); so different
tying strategies only affect the nodes that the sampler runs over.
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SamplingWeuse an augmentation detailed in Sect. 4.3 of Limet al. (2016). This introduces
a new latent variable for each node, and then a gamma sample can be taken for the tied variable
after summing the statistics across the tied nodes. The general form of the likelihood for a

concentration, α, from Eq. 11 is
∏

j
α
t j

α
(n j )

where j runs over the tied nodes and (n j , t j ) are

the corresponding counts at the nodes. To sample α we need to augment the denominator
terms α(n j ) because they have nomatch to a known distribution. This is done by adding a new
term on both sides P(q|α, n) which introduces q j |α ∼ Beta(α, n j ), then the joint posterior
is derived as follows

P(α|D, n, t)P(q|α, n) ∝ P(α)

⎛

⎝
∏

j

αt j

α(n j )

⎞

⎠P(q|α, n)

P(α, q|D, n, t) ∝ P(α)
∏

j

αt j

α(n j )

∏

j

qα−1
j (1 − q j )

n j
Γ (α + n j )

Γ (α)Γ (n j )

∝ P(α)
∏

j

αt j qα−1
j (1 − q j )

n j .

Looking closely at this, one can see α in the augmented distribution has a gamma likelihood.
Thus, using a gamma prior α ∼ Gamma(ν0, μ0)makes everything work simply. The derived
sampling algorithm for α is as following:

1. sample q j ∼ Beta(α, n j ) for all j , then

2. sample α ∼ Gamma
(
ν0 + ∑

j t j , μ0 + ∑
j log 1/q j

)
.

Note for our experiments we use an empirical Bayesian approach, so ν0 = μ0 = 0, and leave
the issue of selecting an appropriate prior as further research.

4.5 Algorithmic description

We present here a high-level description of our sampler and associated HDP-estimates in
Algorithms 1–5.

Algorithm 1 is the main algorithm: it takes as an input a dataset and returns a context tree
containing our HDP estimate. It starts by creating the tree based on the dataset, i.e., creating
the branches for the different cases present in the dataset, as well as storing the count statistics
at the leaves. The tree is a typical hierarchical structure with a root node; nodes contain the
count statistics t
 and n
, a link to its concentration α and a link to a table of children (one
child per value of the branching variable at that node). It then calls the initialisation of the
pseudo-counts t
 in the tree, and creates an array of concentration parameters that are tied
at each level. It then proceeds with the sampling process. For each iteration of the sampling
process, we first sample the t
 from the leaves up to the root, thenwe sample the concentration
parameters (one per level except for the root node, which is not sampled). Finally, after the
burn-in period has passed, we record and average the probability estimates in the tree at the
current iteration. When the sampling process is terminated, these averaged estimates (stored
in the tree) constitute our HDP estimates; they can be accessed by querying the tree. For
brevity, we do not describe the following simple functions:

– getNodesAtDepth: returning all nodes at a given depth of the tree
– initTreeWithDataset: creating the branches of the tree down to the leaves for

which data exists
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– createConcentrationArray: creating an array of concentration objects of given
size

– recordProbabilityRecursively: averaging the estimates for all nodes in the
tree

Algorithm 1: EstimateProbHDB(data, nIters, nBurnIn)
Input: D: the dataset
Input: nIters: number of iterations to run the sampler for
Input: nBurnIn: number of burn-in iterations before starting to average out the θs

1 tree ← initTreeWithDataset(D) // create tree with avail. data
2 initParametersRecursively(tree.root) // Algorithm 2
// table of concentrations, one per level (Level tying)

3 cTab ← createConcentrationArray(tree.depth)
4 for depth ← 1 to tree.depth do
5 foreach node ∈ tree.getNodesAtDepth(depth) do
6 node.α ←cTab[depth]
7 end
8 end
9 for iter ← 1 to nIters do // Gibbs sampler

// sampling parameters for all nodes bottom-up
10 for depth ← tree.depth to 1 do
11 foreach node ∈ tree.getNodesAtDepth(depth) do
12 sampleNode(node,10,cTab[depth]) // Algorithm 3
13 end
14 end
15 for level ← 2 to tree.depth do // sampling concentrations
16 sampleConcentration(α,tree.getNodesAtDepth(level)) // Algorithm 5
17 end
18 if iter > nBurnIn then
19 recordProbabilityRecursively(tree.root)
20 end
21 end
22 return tree

Algorithm 2 describes the initialisation process of the tree’s statistics, which is performed
bottom-up. Starting from the leaves, we propagate the pseudo-count t
, which constitutes
the n
 statistics of the parent nodes (lines 1–9). Initialisation of the pseudo-counts t
 is done
following Eq. 15.

Algorithm 3 describes the sampling of the pseudo-counts t
 associated with a node, i.e.,
the data that should be propagated up to the parent node. Sampling happens if and only if the
node is not the root node, and the n
 count statistics are strictly greater than 1.2 The pseudo
count is then sampled using the window described in Sect. 4.4.1; values either outside this
window, or impossible given the pseudo-count at the parent get assigned a 0 probability of
being sampled (see Algorithm 4). Valid values within the window are sampled following the
Equations presented in Sect. 4.4.1.

Algorithm 4 both changes the value of a pseudo-count t
 at a node and returns its probabil-
ity. As described above, it starts by checking that the new value for the pseudo-count is valid
(else does not do the change and return probability 0). It then updates the pseudo-count for

2 If n
 = 0, then no data has been propagated from the children, and hence no data can be propagated up to
the parent. If n
 = 1, then that datapoint has to be propagated to the parent and hence needs no sampling.
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Algorithm 2: initParametersRecursively(node)
Input: node: node of which we want to initialise the parameters

1 if node is not a leaf then // init. children and collect stats
2 foreach child ∈ node.children do
3 initParametersRecursively(child)
4 for k ← 1 to |Xc| do
5 node.n[k] ←node.n[k]+child.t[k]
6 node.n ←node.n+node.n[k] // marginal
7 end
8 end
9 end

10 if node is root then
11 ∀k, node.t[k] ← min(1, node.n[k])
12 else
13 for k ← 1 to |Xc| do
14 if node.n[k] � 1 then
15 node.t[k] ← node.n[k]
16 else
17 node.t[k] ← max(1, �node.α (ψ0(node.α + node.n) − ψ0(node.α))
)
18 end
19 end
20 end
21 node.t ← ∑

k node.t[k] // marginal

Algorithm 3: sampleNode(node, w, α)
Input: node: node of which we want to sample the parameters
Input: w: window for sampling
Input: α: concentration to assign to node

1 if node is root then
2 ∀k, node.t[k] ← min(1, node.n[k]) // no sampling
3 else
4 node.α ← α // assign concentration to node
5 for k ← 1 · · · |Xc| do
6 if node.n[k] � 1 then
7 node.t[k] ← node.n[k] // value fixed
8 else
9 minTk ← max (1, node.t[k] − w)

10 maxTk ← min (node.t[k] + w, node.n[k])
// Constructing a vector to sample node.t[k] from

11 v ← 0 // length is (node.n[k] + 1)
12 for t ← minTk · · · maxTk do
13 vt ← changeTkAndGetProbability(node, k, t) // Algorithm 4
14 end
15 ∀t, vt ← vt∑

t vt
// Normalize vector

16 t ∼ multinomial (v)
17 changeTkAndGetProbability(node, k, t) // Algorithm 4
18 end
19 end
20 end
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that node, and the count statistic n
 at the parent. It finally returns the probability as described
in Sect. 4.4.1.

Algorithm 4: changeTkAndGetProbability(node,k,newValue)
Input: node: node of which we want to sample the parameters
Input: k: index of the value we want to change in t
Input: newValue: value to replace tk by, if possible

1 inc ← newValue − node.t[k]
2 if inc< 0 then // check if valid for parent
3 if node is not root and (node.parent.n[k]+inc) < node.parent.t[k] then
4 return 0
5 end
6 end
7 node.t[k] ← node.t[k] + inc
8 node.t ← node.t + inc // marginal
9 if node is not root then // update statistics at the parent

10 node.parent.n[k] ← node.parent.n[k] + inc
11 node.parent.n ← node.parent.n + inc // marginal
12 end

13 return
node.αnode.t[k]·Snode.parent.n[k]

node.parent.t[k] ·Snode.n[k]
node.t[k]

rising_ f actorial(node.parent.α,node.parent.n[k])

Finally, Algorithm 5 describes a simple sampling of the concentration parameters in the
tree, assuming that tying is done using the Level strategy. As described in Sect. 4.4.2,
tying requires iterating through the t
 and n
 of the ‘tied’ nodes. For all the ‘tied’ nodes, it
thus performs a change of variable to q and then samples the new concentration. Other tying
strategies are given in the source-code function Concentration.java:sample() (see
beginning of Sect. 6.1 for link to source code).

Algorithm 5: sampleConcentration(α, nodes)
Input: α: concentration to sample
Input: nodes: nodes sharing this concentration parameter (tying)

1 rate ← 0
2 foreach node ∈ nodes do
3 q ∼ Beta(α, node.n) // change of variable, sample q
4 rate ← rate − log(q)

5 end
6 α ∼ Gamma

(∑
n∈nodes n.t, rate

)
// sample α

7 foreach node ∈ nodes do // assign new α to nodes
8 node.α ← α

9 end

4.6 Worked example

We have now fully described our HDP-based estimates. In this section, we draw all the theory
together and show how our method applies to two simple datasets, highlighted in Table 2.
Both datasets have two binary variables X1 and Y , and a simple naïve Bayes structure, i.e., we
focus on the estimation of P(X1|Y ). Although this simple structure does not give full justice
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Table 2 Example datasets with associated estimates

Dataset Value for Y Frequency nX1|y p̂(X1|Y )

MLE m-estimate (m = 1) HDP

1 0 [2, 0] [1.00, 0.00] [0.83, 0.17] [0.89, 0.11]
1 [20, 5] [0.80, 0.20] [0.79, 0.21] [0.79, 0.20]

2 0 [2, 0] [1.00, 0.00] [0.83, 0.17] [0.86, 0.14]
1 [4, 9] [0.31, 0.69] [0.32, 0.68] [0.34, 0.66]

to our estimates for deeper hierarchies, we feel that such an example helpswith understanding
the different components of our method.

Our aim is to highlight how information is shared between P(X1|Y = 0) and P(X1|Y = 1)
through the marginal (mean) probability P(X1). Let us describe the two datasets given in
Table 2: Dataset #1 has P(X1|Y = 0) ≈ P(X1|Y = 1) – but with only little data available to
estimate P(X1|Y = 0) – while Dataset #2 has P(X1|Y = 0) �≈ P(X1|Y = 1).

Let us start by the analysis of the cases with Y = 0 compared for the two datasets, cases
for which the data available is identical. The first thing to observe is that, as the frequency
is the same for both datasets for the cases with Y = 0, so are the MLEs and m-estimates,3

respectively. MLEs and m-estimates are agnostic of the marginal; m-estimates only pull
the estimates toward a uniform prior. Second, we can observe that our HDP estimates for
Dataset #1 are closer to the MLEs than to the m-estimates. This is because the data available
for Y = 1 ‘corroborates’ the fact that P(X1 = 0|Y ) is much greater than P(X1 = 1|Y ).
For Dataset #2 where the two cases for Y differ, we can see that our estimate for Y = 0 is
closer to the m-estimate than it was for Dataset #1 although the frequencies are the same;
this is because now the data available for Y = 1 does not support the hypothesis that the
marginal P(X1) is helpful to estimate P(X1|Y = 0)while having little data available. Finally,
we can see that our HDP estimate for P(X1|Y = 1) in Dataset #2 goes even further than
the m-estimate and pulls the estimate even closer to a uniform probability. This is again here
because of the data for Y = 0.

5 Related work

Extensive discussions of methods for DP and PYP hierarchies are presented by Gasthaus and
Teh (2010) and Lim et al. (2016). Standard Chinese restaurant process (CRP) samplers (Teh
et al. 2006) use dynamicmemory so are computationally demanding, and not being collapsed
also makes them considerably slower. Lim et al. (2016) deal with the case where the counts
at the leaves of the tree are latent, and thus are not applicable to our context. The direct
samplers of Du et al. (2010), which are also collapsed CRP samplers, are more efficient than
CRP samplers and those of Lim et al. (2016) in the current context. Gasthaus and Teh (2010)
dealt with a PYP where the discount parameters change frequently so direct samplers were
inefficient because the cache of Stirling numbers needed constant recomputation. On-the-fly
samplers have also been developed by Shareghi et al. (2017b) for PYP hierarchies, making
it possible to use PYP for deep trees and large dataset sizes. This however does not change

3 More information about m-estimates is given in Sect. 6.1.
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the issue of constant recomputation of Stirling numbers, which is why initialisations based
on modified Kneser-Ney have been developed by Shareghi et al. (2016).

The use of DP and PYP hierarchies for regression and clustering—as opposed to clas-
sification in our case—has been studied by Nguyen et al. (2015) and Huynh et al. (2016),
respectively.

Related work for BNCs was discussed in Sect. 2.2. There are other methods for improving
BNCs. A simple back-off strategy, backing off to the root, is proposed by Friedman et al.
(1997). Moreover, for some simple classes of networks, such as TAN, a disciminative gener-
alisation of logistic regression can be used because the optimisation surface is convex (Roos
et al. 2005; Zaidi et al. 2017). Neither techniques are applicable to the more complex BNCs
we consider.

Bayesian model averaging methods are common for Bayesian network learning (Fried-
man and Koller 2003). Average n-dependence estimators—AnDE (Webb et al. 2005, 2012),
another ensemble method, is competitive for smaller data sets but cannot compete against
SkDB for larger data sets (Martínez et al. 2016).

Either way, these invariably use the same Laplacian prior as the m-estimates reported here
in Sect. 6.

6 Experiments

The aim of this section is to assess our HDP-based estimates for Bayesian network classifiers
(BNCs). In Sect. 6.1, we give the general settings that are necessary to understand and
reproduce our experiments. Then, in Sect. 6.2, we start by studying how to parameterize our
method: i.e., by studying the influence of the number of iterations and the tying strategy used.
In Sect. 6.3, we demonstrate the superiority of our estimates over the state of the art across 8
different BNC structures. Finally, having obtained significant improvements over the state-
of-the-art, we then turn to comparing the best-performing configuration (TANand SkDBwith
HDP estimates) with random forest (RF) in Sect. 6.4. We show that our estimate allows even
models as simple as TAN to significantly outperform RF (with statistical significance), while
standard approaches to parameter estimation are beaten by RF. We conclude the experiments
with a demonstration of our system’s out-of-core capability and show results obtained on the
Splice dataset with 50 million training examples, a quantity that RF cannot handle on most
machines.

6.1 Experimental design and setting

DesignAll experiments are carried out on a total of 68 datasets from theUCI archive (Lichman
2013); 38 datasets with less than 1000 instances, 23 datasets with instances between 1000
and 10,000, and 7 datasets with more than 10,000 instances. The list and description of the
datasets is given in Table 3 at the end of this paper. For all methods, numeric attributes are
discretized by using the minimum description length (MDL) discretization method (Fayyad
and Irani 1992). A missing value is treated as a separate attribute value and taken into
account exactly like other values. Each algorithm is tested on each dataset using twofold
cross validation repeated 5 times. We assess the results by reporting 0–1 Loss and RMSE,
and report Win–Draw–Loss (W–D–L) results when comparing the 0–1 Loss and RMSE of
two models. A two-tail binomial sign test is used to determine the significance of the results,
using p ≤ 0.05.
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Table 3 Datasets

Domain Case Att Class Domain Case Att Class

Connect-4Opening 67,557 43 3 PimaIndiansDiabetes 768 9 2

Statlog(Shuttle) 58,000 10 7 BreastCancer(Wisconsin) 699 10 2

Adult 48,842 15 2 CreditScreening 690 16 2

LetterRecognition 20,000 17 26 BalanceScale 625 5 3

MAGICGammaTelescope 19,020 11 2 Syncon 600 61 6

Nursery 12,960 9 5 Chess 551 40 2

Sign 12,546 9 3 Cylinder 540 40 2

PenDigits 10,992 17 10 Musk1 476 167 2

Thyroid 9169 30 20 HouseVotes84 435 17 2

Mushrooms 8124 23 2 HorseColic 368 22 2

Musk2 6598 167 2 Dermatology 366 35 6

Satellite 6435 37 6 Ionosphere 351 35 2

OpticalDigits 5620 49 10 LiverDisorders(Bupa) 345 7 2

PageBlocksClassification 5473 11 5 PrimaryTumor 339 18 22

Wall-following 5456 25 4 Haberman’sSurvival 306 4 2

Nettalk(Phoneme) 5438 8 52 HeartDisease(Cleveland) 303 14 2

Waveform-5000 5000 41 3 Hungarian 294 14 2

Spambase 4601 58 2 Audiology 226 70 24

Abalone 4177 9 3 New-Thyroid 215 6 3

Hypothyroid(Garavan) 3772 30 4 GlassIdentification 214 10 3

Sick-euthyroid 3772 30 2 SonarClassification 208 61 2

King-rook-vs-king-pawn 3196 37 2 AutoImports 205 26 7

Splice-junctionGeneSequences 3190 62 3 WineRecognition 178 14 3

Segment 2310 20 7 Hepatitis 155 20 2

CarEvaluation 1728 8 4 TeachingAssistantEvaluation 151 6 3

Volcanoes 1520 4 4 IrisClassification 150 5 3

Yeast 1484 9 10 Lymphography 148 19 4

ContraceptiveMethodChoice 1473 10 3 Echocardiogram 131 7 2

German 1000 21 2 PromoterGeneSequences 106 58 2

LED 1000 8 10 Zoo 101 17 7

Vowel 990 14 11 PostoperativePatient 90 9 3

Tic-Tac-ToeEndgame 958 10 2 LaborNegotiations 57 17 2

Annealing 898 39 6 LungCancer 32 57 3

Vehicle 846 19 4 Contact-lenses 24 5 3

Note theRMSE is related to theBrier score,which is a proper scoring rule for classifiers and
thus generally preferable to error, especially in the context of unequally occurring classes or
unequal costs. Itmeasures howwell calibrated the probability estimates are.We use it because
we suspected that ourmethods could improve probability estimates but not necessarily errors.

Software To ensure reproducibility of our work and allow other researchers to easily build
on our research, we have made our source code for HDP parameter estimation available on
Github.
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Compared methodsWe assess our estimates for 8 BNC structures with growing complex-
ity.OurBNCstructures are: naïveBayes (NB), tree-augmented naïveBayes (TAN) (Friedman
et al. 1997), k-dependenceBayesian network (kDB) (Sahami 1996)with k = 1 to 5 and selec-
tive kDB (SkDB) (Martínez et al. 2016) with maximum k set to 5 also.4 When comparing
to random forest (RF), we use the Weka default parameterization, i.e., selecting log2(n) + 1
attributes in each tree,5 no minimum leaf size and using 100 decision trees in this work.

For BNCs, we compare our HDP estimates to so-called m-estimates6 (Mitchell 1997) as
follows:

p̂ (xi |Π(i)) = counts (xi ,Π(i)) + m
|Xi |

counts (Π(i)) + m
(16)

whereΠ(i) are the parent-values of Xi . The value ofm is set by cross-validation on a holdout
set of size min(N/10, 5000) among with m ∈ {0, 0.05, 0.2, 1, 5, 20}.

Count statistics are stored in a prefix tree; for m-estimates, if zero counts are found, we
back off as many levels in the tree as necessary to find at least one count. For instance, if
counts(x4, x0, x3) is equal to zero, then p̂(x4|x0) is considered instead of p̂(x4|x0, x3). Note
that not using this strategy significantly degrades the performance of BNCs when using m-
estimates (for our HDP estimates, the intermediate nodes φ are considered latent and thus
inferred directly during sampling).

6.2 Tying and number of iterations

Before proceeding with the comparison of our method to the state of the art, it is important
to study two elements: (1) for how many iterations to run the sampler and (2) how to tie the
concentration parameters. These two elements are directly related because the less tying, the
more parameters to infer, which means that we expect to have to run the sampler for more
iterations.
We consider three different tying strategies:

1. Same Parent (SP): children of each node share the same parameter—illustrated in Fig. 2a.
2. Level (L): we use one parameter for each level of the tree—illustrated in Fig. 2b.
3. Single (S): all parameters tied together.

Number of iterations Asymptotically, the accuracy of the estimates improves as we
increase the number of iterations. The question is how quickly they asymptote. We thus
studied the performance of our two flagship classifiers—TAN and SkDB—on all datasets
as we increase the number of iterations from 500 to 50,000. For each combination of clas-
sifier× tying strategy, we assess the win–loss profile for x iterations versus 50,000. The
resulting win–loss plot in Fig. 4 shows that across all tying strategies and models, running
our sampler for 50,000 iterations is significantly better than with fewer iterations. Even for
models as simple as TAN with a Single concentration parameter, running the sampler for
5000 iterations wins 13 times and loses 42 times as compared to running it for 50,000 itera-
tions. Unless specified otherwise, we thus run the sampler for 50,000 iterations. We surmise
that even more iterations could further improve accuracy but leave this for future research.

4 We do not consider higher values of k, because (1) for kDB we will see in Sect. 6.3 that the superiority of
our HDP estimates is statistically significant further increases with k; (2) for SkDB, 95% of the experiments
see it choose a structure with k < 5, differences with higher k would thus be minimal.
5 Selecting

√
n attributes produces similar results and conclusion, so the results are left out of this paper for

concision.
6 Also known as Schurmann–Grassberger’s Law when m = 1, which is a particular case of Lidstone’s law
(Lidstone 1920; Hardy 1920) with λ = 1

|Xi | , also based on a Dirichlet prior.
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In this area, 50,000 iterations wins

Fig. 4 Win/loss plot on RMSE for each combination of (flagship classifier) × (tying strategy). Comparison
is for running each combination for x iterations versus 50,000 and include Single, Level and SameParent

Tying strategy Having seen that 50,000 iterations seems important regardless of the tying
strategy, we here show that tying per Level seems to be the best default strategy. It is important
to note that we do not intend to give a definitive answer valid for all domains here, but are
simply giving a reasonable ‘default’ parameterization. The Level strategy was illustrated
for kDB-1 in Fig. 2b. To illustrate this we compare TAN and SkDB parameterized with the
same parent (SP) and single (S) strategies versus using the level (L) tying strategy across
different numbers of iterations. Figure 5 gives the win-loss plot. We see that L provides
a uniformly good solution providing both the best results with 50,000 iterations but also
providing solid performances as early as 500 iterations. It is worth noting that for TAN, the
L and S strategies are very similar, only differing by one concentration parameter. The SP
strategy seems to clearly underperform L, all the more when the complexity of the model
increases, which makes sense given that the number of concentration parameters to estimate
increases exponentially with the depth of the prefix tree, which is mostly controlled by the
number of parents for each node i . It is possible that for large amounts of data, the SP strategy
would offer a better bias/variance tradeoff but such a study falls out of the scope of this paper.
We thus use L as a tying strategy for the remainder of this paper.

6.3 HDP versus m-estimates for Bayes network classifiers

So far, we have only assessed the relative performance of HDP estimates with different
parameterizations. Having settled on 50,000 iterations and per Level tying, we now turn to
the full comparison with the state-of-the-art in smoothing Bayesian network classifiers: using
m-estimates with the value of m cross-validated on a holdout set. We also remind the reader
that, to provide the best competitor, we also added the back-off strategy described above,
without which m-estimates cannot compete at all.

We report in Table 4 the win–draw–loss of our HDP estimates versus m-estimates across 8
different BNCs from naïve Bayes and TAN to kDBwith 1 � k � 5 and SkDB. It is clear from
this table that our HDP estimates are far superior to m-estimates. It is even quite surprising
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In this area, tying at ’Level’ wins most often

Fig. 5 Win/loss plot of each combination of (flagship classifier) × (S or SP tying strategy) versus tying at
level (L)

Table 4 Win/Draw/Loss for 8
BNCs for our HDP estimate
versus m-estimate

Classifier Win–draw–loss for HDP versus m-estimate

0/1-loss RMSE

Naive Bayes 41–4–23 40–0–28

TAN 45–4–19 52–1–15

kDB-1 45–4–19 50–1–17

kDB-2 54–2–12 54–0–14

kDB-3 52–4–12 53–2–13

kDB-4 56–4–08 56–0–12

kDB-5 60–4–04 60–2–06

SkDB 45–4–19 54–0–14Stat. sig. (p < 0.05) results are
depicted in boldface

to see our estimates outperform m-estimates with models as simple as Naïve Bayes, where
our hierarchy only has one single level. Moreover, as the model complexity increases (the
maximum number of parents for each node), this difference increases. The scatter-plot for
kDB-5 HDP versus m-estimate is given in Fig. 6a and shows again the same trend with
HDP significantly outperforming m-estimates. As usual when dealing with a broad range
of datasets, there are a few points for which HDP loses. Interestingly, the most important
loss is for the Cylinder-Bands dataset, which contain only 540 samples, and thus for
which we would have expected that smoothing would be important; detailed inspection of
this dataset show that the 540 cases seem to be relatively similar to each other (in which case
the cross-validation used for the m-estimates helped discover this).

It is also interesting to study the capacity of HDP to prevent overfitting as compared to
the m-estimate (with m cross-validated). In Fig. 6b, we report for m-estimates the win–loss
plot for kDB-5 compared to kDBs with increasing complexity from 0 (kDB-0 is NB) to 4.
Given that kDB-5 has generally lower bias than kDB ∀k � 4, we can typically attribute its
losses to overfitting. Startingwith the bottom line, which represents the behaviour of usingm-
estimates, we can see that kDB-5 generally loses to lower complexity kDBs. The maximum
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Here m-estimate wins

Here HDP wins

This is kDB-5 vs kDB-x for our HDP estimates

In this area, kDB5 is prone to overfitting

Our HDP estimates make kDB-5
   to remain the ’white’ area

This is kDB-5 vs kDB-x for m-estimates

(a) (b)

Fig. 6 a Scatter plot on RMSE for kDB-5 for HDP versus m-estimate. b Win/loss plot of kDB-5 versus
kDB-x for m-estimates versus our HDP ones

Fig. 7 Learning curves on RMSE for HDP and m-estimate. The x-axis is dataset size, the y-axis is RMSE

difference is with kDB-3 which seems to globally have a nice bias/variance tradeoff on this
collection of datasets.

Conversely, we can see that HDP estimates (top-curve in Fig. 6b) allows us to nicely
control for overfitting. What happens is that we make the most of the low-biased structure
offered by kDB, while not being overly prone to overfitting. In some sense, our hierarchical
process makes it possible to pull the probability estimates towards higher-level nodes for
which we have more data, and this automatically depending on the dataset. It seems that it
makes it possible to be less strict about the structure and to be powerful at controlling for the
variance. In fact, controlling for overfitting is what selective kDB (SkDB) tries to achieve;
in our experiments, kDB5-HDP has a slight edge over SkDB5-HDP with a win–draw–loss
of 33–5–30 on RMSE. Nevertheless, it remains that HDP largely outperforms m-estimates
with a win–loss—for SkDB—of 60 to 8.

Finally, we present some learning curves for TAN and SkDB on a some larger datasets
in Fig. 7. Each point corresponds the mean RMSE for quantity of data x over 10 runs.
Globally, we can see that our HDP estimates seem to ‘learn’ faster, i.e. overfit less. For
the connect-4 dataset, SkDB-HDP dominates all the way through with the difference in
RMSE getting smaller as the quantity of data increases. For adult, we can observe the
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Table 5 Win/Draw/Loss
m-estimates and our HDP
estimates, as compared with
random forest. We use our 2
flagship classifiers TAN and
SkDB

Compared classifiers Win–draw–loss

0/1-loss RMSE

TAN-m versus RF 26–3–39 25–0–43

SkDB-m versus RF 27–3–38 29–1–38

TAN-HDP versus RF 42–3–23 42–0–26

SkDB-HDP versus RF 35–3–30 44–0–24Stat. sig. results (p < 0.05) are
depicted in boldface

Fig. 8 0–1 loss scatter plot of
SkDB with our HDP parameter
estimate versus random forest

Here SKDB wins

same behaviour for SkDB. Interestingly, for TAN on this dataset, although HDP estimates
do learn faster, they are overtaken by m-estimates after 10,000 datapoints.

6.4 BNCs with HDP versus random forest

Having shown that our approach outperforms the state of the art for BNCs parameter esti-
mation, we compare BNCs using our HDP estimates against random forest (RF). The aim of
this section is not to suggest that BNCs should replace RF, but rather that BNCs can perform
competitively.

Before proceeding, it is important to recall that RF is run on the same datasets as our
BNCs with HDP estimates, i.e., with attributes discretized when necessary.

We report in Table 5 and Fig. 8 the results of TAN and SkDB. From this table we can see
that RF is generally more accurate than the BNCs with m-estimates. Conversely, we can see
that BNCs with HDP outperform RF more often, even with a model as simple as TAN. This
result is important because our techniques are all completely out-of-core and do not need to
retain the data in main memory, as do most state-of-the-art learners. Note that comparing
0–1 loss is probably fairer to RF, because RF is not a probabilistic model [even if plain RF
estimates as we do have been reported to outperform other RF variations in terms of RMSE
(Boström 2012)].

Obviously, for the larger datasets, RF catches up to TAN-HDP (which has a high-bias
structure) but for the 10 largest datasets we considered, TAN-HDP still wins 6 times (1 draw)
and SkDB-HDP is extremely competitive with a win–draw–loss of 7–0–3.

123



1328 Mach Learn (2018) 107:1303–1331

Table 6 Results on the Splice
dataset on which RF cannot run

Classifier 0/1-loss RMSE

SkDB5-m 1.499% 0.1093

SkDB5-HDP 0.318% 0.0544

XGBoost 0.314% 0.0594

6.5 Out-of-core capacity

Our last set of experiments aims at showcasing the out-of-core capacity of our system. We
run SkDB on the Splice dataset (Sonnenburg and Franc 2010)—which contains 50 million
training examples and is provided with a test dataset with 5M samples—and compare our
HDP estimates to the m-estimates. Note that this dataset is imbalanced with only 1% of
examples for the positive class.

On this dataset, RF could not run using Weka defaults, requiring more than our limit of
138GB of RAM.We thus used instead XGBoost (Chen andGuestrin 2016), which is the state
of the art for scalable mixtures of trees (here boosting) and used widely by data scientists
to achieve state-of-the-art results on many machine learning challenges [XGBoost was used
in 17 out of 29 winning solutions in the machine learning competition site Kaggle in 2015
(Chen and Guestrin 2016)]. We use XGBoost’s default parameters as per version 0.6—we
use maximum depth of 6 and 50 rounds of boosting. Similarly to the previous, the aim of this
section is not to suggest that BNCs should replace XGBoost, but rather to show that BNCs
are an interesting set of models that can perform out-of-core and perform competitively when
using our HDP-estimates.

The results are reported in Table 6. They show that HDP dramatically improves both
0–1 loss and RMSE as compared to m-estimates. Note that m-estimates would even be
outperformed in terms of error-rate by simply predicting the majority class. The comparison
with XGBoost is interesting, it shows that SkDB5 with our HDP estimates comes very close
to XGBoost in terms of 0–1 loss. In terms of probability calibration our HDP estimates even
push BNCs beyond XGBoost’s performance, as evidenced by the RMSE.

6.6 Running time

Although running time is not directly a focus of this paper, we give below some associated
observations:

– Training time complexity increases linearly with the number of iterations the sampler
runs for, linearly with the number of covariates and linearly with the number of nodes in
the trees (which increases exponentially with depth).

– Training time is reasonable. As an example, training of SkDB5-HDP (with maxK = 5)
on Splice with 50 million samples took under 4h, among which 1.5h are spent to learn
the structure of the BN. SkDB5 implied that the 140 independent hierarchies have a depth
of 6 and we run 5000 iterations of the sampler. This also implies that SkDB5-m takes a
bit more than 1.5h to be trained. XGBoost – which is a highly optimised package – on
Splice required just under one hour of computation.

– For the Adult dataset training SkDB5 with 25k samples and 50,000 iterations with level
tying took 86 seconds, for the Abalone dataset training with 2k samples took 6 seconds
– Classification time takes less than 1s to classify 25k samples, which is one of the
strength of BNCs: once learned, classification is a simple look-up for each factor. This
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classification time is actually under 1s for all models considered in this paper for the
Adult dataset.

7 Conclusions

This paper presents accurate parameter estimation for Bayesian network classifiers using
hierarchical Dirichlet process estimates, combining these well-researched areas for the first
time. We have demonstrated that HDPs are not only capable of outperforming state-of-the-
art parameter estimation techniques, but do so while functioning completely out-of-core.
We have also showed that, for categorical data, this makes it possible to make BNCs highly
competitive with random forest. We note that while BNCs are not currently state of the art for
classification, they are still popular in applications. With this improvement in performance,
and usable implementations in packages such as R, BNCs will be far more useful in real-
world applications because they are readily implemented on high performance desktops, and
do not require a cluster.

Thiswork naturally opens up a number of opportunities for future research. First, wewould
like to perfect our sampler by assessing the influence of the different runtime configurations
of our system including: how often should we sample concentration, widening the window
of pseudo-counts at the start of the system and burn-in. Second, we would like to extend this
work to Pitman–Yor processes, which offer an exciting avenue for research, in particular for
variables with high cardinality. Third, we would like to extend this framework to the general
class of Bayesian networks.
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