Mach Learn (2018) 107:1333-1361 @ CrossMark
https://doi.org/10.1007/510994-018-5716-2

Stagewise learning for noisy k-ary preferences

Yuangang Pan'® - Bo Han! . Ivor W. Tsang!

Received: 1 October 2017 / Accepted: 2 May 2018 / Published online: 11 May 2018
© The Author(s) 2018

Abstract The aggregation of k-ary preferences is a novel ranking problem that plays an
important role in several aspects of daily life, such as ordinal peer grading, online image-
rating, meta-search and online product recommendation. Meanwhile, crowdsourcing is
increasingly emerging as a way to provide a plethora of k-ary preferences for these types
of ranking problems, due to the convenience of the platforms and the lower costs. However,
preferences from crowd workers are often noisy, which inevitably degenerates the reliability
of conventional aggregation models. In addition, traditional inferences usually lead to mas-
sive computational costs, which limits the scalability of aggregation models. To address both
of these challenges, we propose a reliable CrowdsOUrced Plackett—LucE (COUPLE) model
combined with an efficient Bayesian learning technique. To ensure reliability, we introduce an
uncertainty vector for each crowd worker in COUPLE, which recovers the ground truth of the
noisy preferences with a certain probability. Furthermore, we propose an Online Generalized
Bayesian Moment Matching (OnlineGBMM) algorithm, which ensures that COUPLE is scal-
able to large-scale datasets. Comprehensive experiments on four large-scale synthetic datasets
and three real-world datasets show that, COUPLE with OnlineGBMM achieves substantial
improvements in reliability and noisy worker detection over other well-known approaches.
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1 Introduction

Originally formulated in social choice theory (Lijphart 1994; Saari 1999), ranking aggrega-
tion has been the subject of a renewed interest in the machine learning community. The array
of fields ranking aggregation has been applied to include ordinal peer grading (Raman and
Joachims 2014), online image-rating (Knight and Keith 2005), meta-search (Desarkar et al.
2016) and online product recommendation (Liu 2009). The goal of ranking aggregation is
to aggregate a set of k-ary preferences into an unanimous global preference! over a large
(finite) set of objects, where each k-ary preference? is a totally ordered subset with k elements.
With the increasing popularity of crowdsourcing, aggregation problems can now draw on a
plethora of available k-ary preferences for two reasons. First, crowdsourcing is a convenient
way to collect massive numbers of annotations (Deng et al. 2009). Second, annotations can be
procured on these platforms at very low cost (Richard 2013). However, previous aggregation
models face two obvious challenges when used in real-world applications: reliability and
scalability.

In terms of reliability, most of conventional models are challenged by the noisy preferences
crowd workers annotate, since these models fail to consider the quality of the preferences
sources (Kazai et al. 2011; Vuurens et al. 2011). Due to the limited expertise of many crowd
workers, their preferences may be noisy and inconsistent with the ground truth. Recently,
Chen et al. (2013) proposed CrowdBT to reliably aggregate noisy pairwise preferences by
explicitly modelling the quality of the worker. A simple method of generalizing CrowdBT
into k-ary preferences is to break each k-ary preference into a set of pairwise preferences,
then model each pairwise preference independently with CrowdBT. However, such a simple
rank-breaking method would ignoring the dependencies between k-ary preference, which
would, in turn, lead to inconsistent estimates (Soufiani et al. 2014; Khetan and Oh 2016).
It is worth noting that consistency is a desired statistical property in any proposed model
because, as the number of preferences used increases, the output of the model estimator
should converge in probability to the true parameters.

In terms of scalability, traditional inferences for aggregation models, usually lead to a
massive computational cost (Wainwright and Jordan 2008). For example, with a large number
of preferences (e.g., 5 x 10° preferences), both the expectation-maximization (EM) and Gibbs
sampling algorithms are too slow to infer the model’s parameters. Therefore, traditional
methods of inference make aggregation models impractical for large-scale datasets in the
real-world challenges.

Each of these challenges raises a question: Can we build a reliable aggregation model
for noisy k-ary preferences? Can we propose an efficient method of inference to ensure the
models scale to large-scale datasets?

To address both these challenges at once, we propose a reliable CrowdsOUrced Plackett—
LucE (COUPLE) model, combined with an efficient Bayesian learning technique. COUPLE
models a k-ary preference as a series of sequential comparison stages. In each stage, one
object from a number of alternatives is selected preferentially as a “local winner” without
replacement. Because many crowd workers have limited expertise, a simple stagewise strat-
egy can be easily confounded by the unreliable decisions crowd workers have made. Hence,
to ensure the reliability of the estimated ranking, we propose a robust learning paradigm,
called stagewise learning. This paradigm considers the indecision in crowd workers’ choices

! Inthis paper, we assume that the global preference has the single ground-truth ranking, which is a fundamental
assumption in many aggregation models. An in-depth discussion can be found in Sect. 3.3.

2 k is different for different subsets. An intuitive explanation can be found in Fig. 1.
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when selecting a local winner. In each stage, we identify several potential local winners
according to an estimate of each crowd worker’s expertise. Once all stages are complete,
this robust learning strategy recovers the ground truth from the noisy preferences with a
certain level of probability. To ensure COUPLE’s scalability, we propose an efficient online
Bayesian moment matching method, which ensures COUPLE scales to large-scale datasets.
Specifically, we design analytic rules to efficiently update the posterior of COUPLE after
each observation, which naturally leads to an online update facility. The contributions of this
paper are summarized as follows:

1. We present a CrowdsOUrced Plackett—LucE (COUPLE) model to directly aggregate
noisy k-ary preferences, which avoids the statistical inconsistencies caused by rank-
breaking.

2. To ensure the reliability, we introduce an uncertainty vector to model the quality of each
worker, which recovers the ground truth from their noisy preferences with a certain level
of probability.

3. To ensure the scalability of COUPLE, we propose Online Generalized Bayesian Moment
Matching (OnlineGBMM) algorithm to update the posterior of COUPLE analytically,
which ensures COUPLE is scalable to large-scale datasets.

4. We conduct comprehensive experiments on four large-scale synthetic and three real-
world datasets. Empirical results show that COUPLE with the proposed OnlineGBMM
algorithm delivers substantial improvements in reliability over current approaches.

The remainder of this paper is organized as follows. Section 2 discusses the related work. In
Sect. 3, we summarize the crowdsourced k-ary preference settings, followed by a detailed
outline of the COUPLE model. We also discuss COUPLE in the context of classical models.
Section 4 presents the OnlineGBMM algorithm for COUPLE. Section 5 demonstrates the
superiority of COUPLE through empirical results on both synthetic and real-world datasets.
Section 6 concludes the paper and envisions the future work.

2 Related work

This section contains a review of the literature related to our topic.

Probabilistic Ranking Models These models deal with learning probability distributions
over permutations (i.e., rankings or preferences over objects). They solely concern prefer-
ences, paying little attention to features. There are two main paradigms: permutation-based
and score-based ranking models. Permutation-based models are based on the notion of
distances (Mallows 1957; Fligner and Verducci 1986), which express the probability of a
permutation in terms of its distance to a reference permutation. Score-based models express
the probability of a permutation in terms of element-specific scores. In addition, score-based
models can be further divided into (1) the Bradley—Terry model (Bradley and Terry 1952),
which is based on pairwise preferences; (2) the Thurstonian model (Thurstone 1927), which
is also based on pairwise preferences, but adopts a different probability function; and (3) the
Plackett—Luce model (Luce 1959; Plackett 1975), which is based on k-ary preferences.

Ranking Aggregation (Dwork et al. 2001; Guiver and Snelson 2009) Ranking aggregation
aggregates preferences from different sources into one unanimous global preference. This
technique is used in applications such as (1) ordinal peer grading (Raman and Joachims 2014),
where ordinal feedbacks from different graders are aggregated to yield the final grades;
(2) preference aggregation (Volkovs and Zemel 2012), e.g., online image-rating,> which

3 https://en.wikipedia.org/wiki/Hot_or_Not.
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aggregates ratings for the attractiveness of photos provided by different users (Knight and
Keith 2005; Zagel et al. 2018); and (3) meta-search (Desarkar et al. 2016), which combines
the search results of multiple search engines.

However, most existing methods fail to consider the quality of preference sources (Tsi-
porkova and Boeva 2006) and reliability suffers as a result of problems with the crowdsourced
settings (Vuurens et al. 2011); crowdsourced k-ary preferences are often noisy (Liu et al. 2012;
Ok et al. 2016). Vitelli et al. (2014) used a Bayesian framework to deal with the preference
uncertainty, modelling the worker quality implicitly. Raman and Joachims (2014) proposed
PeerGrader as a way of dealing with random noise. However, this method does not generalize
well on real-world applications as they fail to model the human annotation noise. CrowdBT
(Chen et al. 2013), specifically designed for pairwise preferences, was proposed to model
the worker quality explicitly and aggregate the crowdsourced preferences reliably. How-
ever, CrowdBT needs to break each k-ary preference into independent pairwise preferences
before aggregation, which has been recently shown to introduce inconsistency (Soufiani et al.
2013, 2014; Khetan and Oh 2016). In this work, we directly integrate worker quality into
the Plackett—Luce model, which can aggregate the noisy preferences reliably and naturally
circumvent the inconsistency caused by rank-breaking.

Online Ranking Online ranking is a practical technique for handle large-scale datasets.
In these methods, the global rankings are updated with streaming preferences. Elo (1978)
and Glickman (1999) are famous online ranking systems. However, they were designed
for pairwise preferences, which limits their applications to more general cases that involve
multiple object comparisons. Herbrich et al. (2007) developed TrueSkill, which constructs a
graphical model and performs inference using an approximate message passing. Weng and
Lin (2011) introduced a Bayesian approximation method to derive simple analytic rules for
inference in k-ary preferences aggregation. Their methods, OnlineBT and OnlinePL, achieve
competitive accuracy with the TrueSkill system but are much faster, as they both rely on
analytical update rules rather than the iterative procedures in TrueSkill. The above techniques
were originally designed for clean preferences. However, given that the preferences from
crowd workers are often noisy, these online ranking techniques suffer from reliability under
the crowdsourced k-ary preferences setting.

3 Towards the robust aggregation of noisy preferences

In Sect. 3.1, we introduce the crowdsourced k-ary preferences setting, followed by a dis-
cussion on the deficiencies of classical models in Sect. 3.2.1. Inspired by the stagewise
interpretation of Plackett-Luce model, our COUPLE model is presented in Sect. 3.2.2, and its
reliability is investigated in Sect. 3.2.3. Finally, the connections between COUPLE, Plackett—
Luce, CrowdBT and other classical models are explored in Sect. 3.3.

3.1 Crowdsourced k-ary preferences setting

Before delving into the crowdsourced k-ary preferences setting, some common notations are
explained in Table 1.

In traditional ordinal evaluation problems, a full set €2 with L objects is presented to
W workers. Each worker ranks the entire set 2 independently to yield a full preference
according to a certain criterion, such as personal hobbies or attitudes. However, L tends to be
large in many real-world applications (Shah et al. 2013; Luaces et al. 2015). Normally, each
worker tends to rank the /(< L) objects they are most confident with, leaving the remaining
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Table 1 Common mathematical notation

Notation Explanation

Set of all objects, 2 = {01, 03, ..., 0L}

3 Subset of 2,& € Q

L |2, total number of all objects

w Number of crowd workers

D Collection of all k-ary preferences

Dy, Collection of k-ary preferences annotated by crowd worker w
Nw | Dy |, number of k-ary preferences annotated by crowd worker w
Pn,w The nth k-ary preference annotated by crowd worker w

Lop.w The length of preference oy, w

max (&) The best object in subset & according to a criterion

0; > 0; The ground truth order between O; and O

0; > 0; The preference annotated by crowd worker

e @ @ NS e full preference: )
l@ @ \ * 7 )
\,\

__01>02>03>04>05>~lz6 v
V-

fragment aggregate

/ _____________________ 1
I N, k-ary preferences annotated by worker w |
9 '
|
annotat 1 <o %
P . otate | P1w: 04> 02> 05 :
| Paw: 035 0,5 0550, |
| L)

|

| w

‘.}@@ ________ W .

Fig.1 Crowdsourced k-ary Preferences Setting. Fragment: a large set of objects is broken into several subsets;
Annotate: crowd workers annotate multiple (overlapped) subsets independently to yield k-ary preferences;
Aggregation: aggregation rules are used to aggregate the noisy k-ary preferences from crowd workers into
one unanimous global preference. Note that: (1) The tasks(subsets) with “v'” are assigned to the worker w.
(2) The notation W in the corner denotes that W crowd workers complete the annotation independently

L — [ objects undefined. To model these partial preferences, many researchers assume that
the remaining L — [ objects are tacitly to be ranked lower (Guiver and Snelson 2009; Mollica
and Tardella 2016). However, assuming that rare objects are less important is unrealistic,
especially for the large L ranking problem.

A promising approach for tackling large-scale evaluation problems originated in Massive
Open Online Courses (MOOC)—peer grading (Raman and Joachims 2014; De Alfaro and
Shavlovsky 2014; Kulkarni et al. 2013). In peer grading, student assignments are divided into
small groups; then, each grader orders the assignments in terms of quality independently.
Inspired by Peer Grading, we summarize a general setting: Crowdsourced k-ary Preferences
Setting in Fig. 1. Here, a large set of objects 2 is randomly broken into several tasks {&; }iT=l’
where each task &; is a subset of 2 and T is the number of tasks. Then {&; }l_l are assigned
randomly (with replacement) to W crowd workers to be annotated. We assume that each
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worker has their own beliefs as to the correct preferences for all L objects and will annotate
each k-ary preference according to those beliefs. To control the difficulty of the task, the
number of objects in each task is restricted to be much smaller than the total number of
objects (e.g., max|§;| ~ 7 < Q2| = L,Vi € {1,..., T}) (Raman and Joachims 2014).

]

The aim in this setting is to reliably and efficiently aggregate the noisy k-ary preferences
annotated by W crowd workers into one unanimous global preference over all objects.

3.2 Reliability: from classical models to COUPLE

In this subsection, we first discuss the deficiency of classical models for noisy k-ary pref-
erences. Then, we propose our COUPLE model and analyze its reliability and difficulty of
optimization.

3.2.1 Intractability of classical models

For the k-ary preference (ordering of k objects), a classic model is the Plackett—Luce model.
This model relies on Luce’s axiom of choice (Luce 1959), i.e., the odds of choosing an object
over another do not depend on the set of objects from which the choice is made. Suppose
we have a set of k objects & = {01, O, ..., O}. Under Luce’s axiom, the probability of

selecting an object i from & is given by ZkEAi

o where A; represents the score (real-value
constant) associated with object i. The larglér the score for A;, the higher position the object
i locates in the preference. Considering a k-ary preference p : O > O > -+ > O as
a sequence of choices: the top-ranked object is chosen first, followed by the second-ranked
object from the remaining objects, and so on. It follows that the probability of the preference
pis
k oo
freo) =] =—— ey

ko’
ol D €7

where p@ is the ith-ranked object in p. The above model is also derived in Plackett (1975);
hence the name the Plackett-Luce model. Given the assumption of a single ground truth,
Eq. (1) actually defines the likelihood of each preference over the subset, based on the
score (As) for each object. The more a preference is consistent with the ground truth (over the
subset), the larger the probability value of fp; . However, since the parameter As are unknown,
fpr itself cannot be viewed as an indicator to discriminate the high-quality preferences
from the low-quality ones. Further, the parameter As are usually estimated with a maximum
likelihood estimation (MLE), which aims to finding the parameter As (of fpy; model) that
best fit the data, without distinction of the preference quality. As previously mentioned,
preferences from crowdsourcing platforms are often noisy, and low-quality preferences could
easily skew estimates of parameter As. Therefore, the performance of a vanilla Plackett—Luce
model suffers when aggregating crowdsourced k-ary preferences.

Chen et al. (2013) proposed CrowdBT to reliably aggregate crowdsourced pairwise pref-
erences by introducing the worker quality n,, for crowd worker w, Vw € {1,2,..., W}.
Ny represents the probability that the pairwise preference annotated by crowd worker w
accords with the ground truth. Namely, n,, = P(O; > 0;|0; > Oj), where O; > O;
denotes the pairwise preference annotated by crowd worker w, and O; > O; is the
ground truth between O; and O;. According to the law of total probability, we have
P(O; > 0j) =1y P(0O; > 0j)+1—ny)P(O; < O;). However, CrowdBT was originally
designed for pairwise preferences, so it cannot directly model crowdsourced k-ary prefer-
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ence. A simple practice used to generalize CrowdBT into crowdsourced k-ary preference is
rank-breaking® (Soufiani et al. 2013; Shah et al. 2015; Negahban et al. 2016). Specifically,
for a k-ary preference p : O1 > 0y > --- = Oy, full rank-breaking refers to the pair compar-
isons A = {(0,- >0pli, je{l,2,....k},i> j};adjacent rank-breaking refers to the pair
comparisons B = {(0; > O;11)]i € {1,2, ...,k — 1}}; and position-i (< k) rank-breaking
refers to the pair comparisons C = {(Oi >0pljell,2,....k},j> i}. Therefore, we can
break each k-ary preference into a set of pairwise preferences. Then, CrowdBT can model
each pairwise comparison independently. Below, we take k = 3 as an example. The likelihood
of a ternary preference with full rank-breaking can be expressed as:

P(0,5 0y 5 0= [] [mP(O:i>0p)+1-n)P0; <0p},
(i,))eA

where A = {(a, b), (a, c), (b, c)}.

However, due to the ignored dependencies among the pairwise preferences, an inappro-
priate rank-breaking approach would result in inconsistent estimates according to Lemma 1.
Further, the computational burden caused by the full rank-breaking would limit its application
with large k preferences. See Sect. 4.4 for more details.

Lemma 1 (Corollary 1 in Soufiani et al. (2014)) Given a k-ary preference, the only consistent
rank-breaking for the Bradley—Terry model is the full rank-breaking. O

The above analysis motivates us to directly integrate worker quality into the Plackett—
Luce model. This not only avoids the inconsistency and computational burden caused by
rank-breaking, but also reliably aggregates noisy k-ary preferences. Again, our aim is to
reliably aggregate the noisy k-ary preferences annotated by crowd workers. Unlike the series
of practices proposed by Raman and Joachims (2014) that try to reduce the adverse impact of
noisy preferences, we aim to recover the ground truth by capturing each worker’s annotation
pattern from the noisy preferences. To compare k objects, there are k! distinct permutations,
which constitutes a finite partition of the entire permutation space. Therefore, we aim to
traverse the entire permutation space of each k-ary preference and identify the ground truth.

Inspired by CrowdBT, it is intuitive to traverse the entire permutation space explicitly,
where each permutation can be unique indexed based on its distance to the noisy preference (a
similar indexing strategy to the permutation-based ranking model). Formally, let o denote the
noisy preferences, and p[i] be the permutation indexed as ith. Then we have nfu = P(p|pli]),
which denotes the conditional probability that we observe p selected given that the i th indexed
permutation p[i] is the ground truth.

However, this approach has the following drawbacks: (1) It requires that all preferences
are the same length, and crowdsourced k-ary preferences may not satisfy this inflexible
constraint. (2) The permutation-based indexing method is not scalable as k increases. For
example, for moderate k = 6, the length of »,, reaches 6! (720), which is intractable for
inference. Therefore, we need to design a clever and practical indexing method to traverse
the permutation space.

3.2.2 The CrowdsOUrced Plackett—LucE (COUPLE) model

To assist in explaining COUPLE, it is helpful to revisit the Plackett-Luce model from the
beginning. The Plackett-Luce model can be regarded as a stagewise model (Volkovs and

4 Rank-breaking refers to the idea of splitting the observed preference into a set of pairwise comparisons and
applying estimators tailored for pairwise preferences treating each piece of comparisons as independent.

@ Springer



1340 Mach Learn (2018) 107:1333-1361

Crowdsourced Task § = {04, 03,04, 05}
Annotation Process:

Stage 1: max(04, 03,04, 05) —» 05 pV
Stage 2: max(04, 04,05) —» 0, p@
Stage 3: max(0,,05) —» 05 p®
04 p(4)
k-ary Preference  p: 03> 04> 05> 04

Fig. 2 Stagewise annotation process. In stage 1, object O3 is selected as the “local winner” and ranked first.
Then, O3 is removed from the candidate set and another “local winners” Oy is selected in stage 2; Os is
selected in stage 3, and so on

Zemel 2012) that constructs a preference through a series of sequential stages. In each stage,
compared to all the remaining alternatives, the object selected preferentially (without replace-
ment) is regarded as the “local winner” (Fig. 2).

Inspired by the stagewise annotation process, we introduce the following stagewise learn-
ing strategy, namely the learning process is broken down into a number of sub-tasks that
are completed in stages. The idea is to inject ranking information into the learning model
gradually so as to focus on modelling the local winner in each stage, rather than modelling
the complex ranking as a whole. Following the stagewise learning strategy, the Plackett-Luce
model decomposes each k-ary preference into a series of sequential stages and models each
stage independently. Therefore, the likelihood function for the k-ary preference p can also
be expressed as follows:

k k
Py =[P (Xi = p®) = T80, ®
i=1 i=1
where X; 2 max(p@, p+D . p®) denotes the local winner in stage i. Further, the
r (i) .
softmax function 8(A,0) = ﬁ is used to model the probability that object p® is
=ie?’

selected as the local winner in stage i.

Remark 1 Given the assumption of a single ground truth, fp actually defines the likelihood
of each preference over the subset. Hence, the preferences with a higher degree of consistency
to the ground truth (over the subset) have a higher fp; value. There are some rules that
govern the behaviour characteristics of crowd workers and the likelihood (fpr) of their
corresponding annotations: (1) Expert workers have a clear understanding about the contrast
among objects. Hence, their annotated preferences are usually fully consistent with the ground
truth (the order of As). Therefore, the likelihood fp of their preferences are usually the
greatest, almost 1. (2) Amateur workers may mistakenly annotate the preferences due to
their limited expertise with object contrast. In these cases, their annotated preferences are
often slightly inconsistent with the ground truth (the order of As), and the likelihood fpy, of the
preference is usually smaller than the annotations by experts. Therefore, if we directly model
the noisy k-ary preferences provided by amateur workers without making any distinctions
about the quality of the preferences, the Plackett—Luce model’s reliability would inevitably
degrade. O

The stagewise learning strategy is a scalable approach for k-ary preferences in two aspects:
(1) each stage can be further assumed independent, and can be updated in a distributed fashion.
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The first Stage . max(p(l)'p(z)' e ,p(t), vee ,p(K)) —_ p(l)

!
X X
MTw = [, M,y iy ]
t

w2 PX=pWx=p®)

Fig. 3 An intuitive example for the first stage of our robust stagewise learning strategy

(2) Since the local winner in each stage is much easier to model than the entire preference, it is
more flexible to introduce the latent variable with new functions (i.e., an indicator for worker
quality). Due to crowd workers’ limited expertise, a vanilla Plackett—Luce model (Eq. (2))
yields some deviations in modelling the noisy preferences. Hence, based on the introduced
stagewise learning strategy, we first split each preference into a series of sequential stages
and model each stage independently. Then we focus on recovering the ground truth in each
stage, rather than directly identifying the ground truth of the whole preference.

For a K -ary preference,’ at the first stage with K objects to be compared (See Fig. 3),
we only need to identify the actual object that is ranked first among the candidate set of
size K. Note that each candidate can be uniquely indexed based on the order in the original
K -ary noisy preference. Formally, let p denote the noisy preferences, where p is the fth
ranked object (indexed as fth in the candidate set). We have omitted the subscripts n and
w for brevity. Next, we introduce the uncertainty vector n,, for each crowd worker w to
model the worker quality. The length of 5, for any crowd worker w is set to the maximal
preference length K . Further, we assume 1, = [}, 72, ..., nX ] with Y5, nt =1, while
each entry !, = P(X = pW X = p®) denotes the conditional probablllty that we observe
oD selected given the rth indexed object p®) being the ground truth. X denotes the local
winner selected by crowd worker w. X represents the object that should have been selected
according to the ground truth. The strategy of stagewise learning overcomes the deficiency
with a permutation-based approach (Sect. 3.2.1), which needs to enumerate all possible
permutations, and significantly reduces the parameter space from K! to K.

However, given a K -ary preference p, each stage will have a different number of objects to
compare, which means different entries of the uncertainty vector will be active in each stage.
Therefore, a single uncertainty vector is not suitable for processing all stages simultaneously.
To avoid this issue, we propose the renormalization trick, namely normalizing the active
entries in each stage, to populate the definition of the uncertainty vector to subsequent stages.

(1—i+1)
Formally, in the ith stage, let r;(t +h = '7,?’17“, wheret =i,i+1, ..., K. Following the
)

above rules, we can model the follow-up stages sequentially until there is only one candidate
left (Fig. 4).

Specifically, only two objects are compared in stage K — 1. However, the corresponding
active entries [1),, 721 do not constitute a valid distribution because n, +72, # 1. Therefore,
we normalize the active entries to ensure at least one of the two objects is selected. Similarly,
in the general stage i, we have (K — i + 1) candidates, which is less than the maximal
preference length K. Only the top (K — i + 1) entries of n,, are active. Then, we apply

the renormalization trick on the active entries [n,]ﬂ, ni, R nz(UK ’H)] and generalize the
definition of the uncertainty vector accordingly.
5 K is the maximal preference length, where K = max, w lp, ,,n =1,2,..., Ny andw =1,2,..., W
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Repeat Stage i, where i = 2,---, K — 1.

Stage i: max(p(i)‘p(i*’l)‘ ,P(t), ‘p(K))—> p(l)

|
|
T
X I
1 K—-i+1
NMw = [77\%/: r]a/' ’nx " )1 /n\sv " ) nvlf/] :
|

—i ~ - |
ny V2 PX = p@Ix = p),

Fig. 4 Robust stagewise learning strategy. X denotes the local winner selected by crowd worker w. X
represents the object that should have been selected according to the ground truth. For brevity, we have
omitted the subscripts i which indicates the stage in which the object has been selected

Remark 2 According to our definition in Fig. 4, we can make the following observations:
(1) For an expert worker w, !, decreases exponentially with 7, as experts have a clearer
understanding about the contrast between the objects. (2) An amateur worker w may hesitate
over comparable objects due to limited expertise. That is to say, 1} , denoting the conditional
probability that the selected local winner accords with the ground truth, does not gain an
absolute advantage over other entries 1!, (f > 2), especially ni. O

Therefore, after integrating the Plackett—Luce model with the introduced uncertainty vec-
tor, the likelihood of the k-ary preference p in stage i can be represented as:

P(%=p"n, nw) ( =p1x = p") P (x = p"In)

G708 (o) - A3)

Combining Egs. (2) and (3), we propose our reliable COUPLE model for a collection of
crowdsourced preferences D, which can be expressed as follows:

W Ny

w
P (DA )1 ) = TT POl = [T TT PGonwli )

w=1 w=1n=1

w Nw /’nw

= [TTTIT 7 (% =pituin ) @
w=1n=1 i=1

w Nw l/’n w l)n w

=[TTTIT 2 "s00).

w=1n=1 i=1 t=i

where 7, is the uncertainty vector for each crowd worker w. This uncertainty vector reveals
crowd worker w’s indecision to select the local winner in each stage. The optimization
difficulty of the COUPLE model (Eq. 4) is discussed in Sect. 3.2.4. In particular, we resort
to the Bayesian framework to infer the uncertainty vector n,,, and choose a tailor-designed
prior distribution to circumvent the need to directly optimize the normalization.
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3.2.3 Reliability of COUPLE model

In this subsection, we characterize COUPLE’s reliability through the score parameter A and
the quality parameter {1, }K)V: 1

Analysis of parameters L: Assume in stage i of a k-ary preference p, worker w selects
object ,o(") as the local winner: (1) In easy tasks, Apu) > {)\.p(H»l), )\.p(H»Z), R )\.p(k)} denotes
object p!) exhibits significant advantages over the other objects. According to Eq. (3),
we have P (f( =p®, nw) ~ n}, namely, the likelihood function for stage i is mainly
dependent on worker’s expertise. (2) In a more difficult task, A Pl N N A plim) >

{Ap(,-+nl+1), e, Ap(k)}, we have P (f( = p(i)|k, nw) ~ ﬁ which means COUPLE cannot

distinguish these (m + 1) objects {pV, p@*D ... p@+™} regardless of the worker’s exper-
tise.

Analysis of parameters 1, : (1) If worker w is an expert, we have nlu ~ 1 and 7}, ~ 0 for
r > 2, which means the ground truth object wound be selected in each stage with no hesitation.
(2) Amateur workers tend to make more mistakes about similar objects, which means a choice
needs to be made between m potential local winners at some stages. Fortunately, these m
objects appear in abutting positions in a preference. Therefore, we have Y 7 0’ ~ 1 and
usually m = 2. (3) If worker w is a spammer, we have ! ~ n2 ~ ... ~ nX Thus, the
likelihood for each stage equals to some constant, which means COUPLE cannot distinguish
the objects and discard all the preferences D,, annotated by worker w. (4) Malicious workers
intentionally select inferior objects in each stage. COUPLE places more weighton ), (r > 1)
instead of ), to correct the order of the objects.

3.2.4 Optimization difficulty of COUPLE model

In this subsection, we discuss the optimization difficulty of the COUPLE model.

The objective of the proposed COUPLE model is formulated as a Maximum Likelihood
Estimation (MLE) problem. The aim is simply to estimate the model parameters (As and
{nw}xf:]) by maximizing Eq. (4). In principle, any solution strategies for MLE can be used
as a candidate to solve this problem. What actually makes this problem difficult or even
intractable for traditional MLE solutions lies in the introduced latent variable {1, }EJV:l (a.k.a.
uncertainty vector) and the renormalization trick required in each stage. In the following,
we leverage three examples (Bishop 2006): Coordinate Gradient Descent (CGD) algorithm
(Common practice for MLE), Expectation Maximization (EM) algorithm (Common practice
for MLE with latent variable) and Markov Chain Monte Carlo (MCMC) method (Common
practice for MLE with complex formula) to intuitively illustrate the difficulty of our proposed
model.

Interms of CGD, we need to calculate the first order partial derivatives of the log likelihood
(Eq. (4)) w.r.t. the parameters As and 7, respectively. However, because the sum (integration
over the latent variable 7,,) is inside of the product of Eq. (4), the partial derivatives w.r.t.
the parameters As and 5, become extremely complex. Further, since »,, is restricted to
[0, 1], the box-constrained optimization would lead to an inaccurate and inefficient solution.
Taking these two points into account, we shelved CGD and moved on to other possible
candidates.

In terms of EM, it avoids calculating the derivative to the sum of the latent variables
directly, and instead resorts to a surrogate lower bound for optimization. Therefore, EM, a
silver bullet for MLE with latent variables, seems a promising approach for Eq. (4). However,
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| likelihood | | prior |
posterior }—>[P(/1, ny|X = p(i))'é—*—'l’()? = p®|2, r]W)IXIP(A) P(1,,)

complex

22 Bayesian

Moment

approximate Matching

posterior > qt(l) q(bnlW)

ractable

Fig. 5 Bayesian Moment Matching: (1) define ¢(1)g(#,,) in the same form with the prior (product of a
Dirichlet with normals); (2) match the moments between ¢ (»,,,) and P (nw \f( = p(i)); (3) match the moments

between ¢(X) and P (llf( = p(i))

due to the introduced renormalization trick for ,, in each stage, we still need to calculate
the derivative w.r.t. 5, instead of 5,, directly. Therefore, the renormalization trick makes the
derivatives w.r.t. n,, remain complex. Moreover, we still need to conduct box-constrained
optimization to 5,, over the feasible region [0, 1]. In other words, EM does significantly
simplify the optimization over parameter As, but is still not able to complete the complex
optimization over parameter 3,,.

In terms of MCMC, it is a competitive candidate for parameter estimation, especially
for complex models. By constructing a Markov chain that has the desired distribution as
its equilibrium distribution (i.e., the posterior distribution w.r.t. the model parameter As and
{n,} uVE/: 1)» samples of the desired distribution can be obtained by observing the chain after a
number of steps. Then we estimate the parameters of the posterior distribution by calculating
the sufficient moments of the collected samples. According to the law of large numbers, the
more samples collected, the more closely the moments of the sample should match the actual
moments of desired distribution. However, due to the intrinsic properties of large-scale sam-
ples (large W and large N,, in Eq. (4)) and the high dimensionality of the parameters (large
number of objects, large number of crowd workers) in our problem, MCMC'’s sampling pro-
cess would become extremely inefficient. Therefore, MCMC is not a good option for Eq. (4).

The above difficulties prompted us to reject common practices and seek a tailor-made, but
powerful, solution for our specific problem.

Bayesian moment matching (BMM) (Jaini et al. 2016) is a Bayesian approach used to
estimate the model parameters. Specifically, it estimates the parameters of the approximate
posterior by matching a set of sufficient moments of the exact complex posterior. Therefore,
BMM can be viewed as an equivalent substitution of MCMC from the perspective of moment
matching: BMM resorts to approximation to match the moments, while MCMC leverages the
collected samples to match the moments. Under the independence assumption for samples,
BMM can be further extended to the sequential update strategy, OnlineBMM (see Fig. 5).
That is, the approximate posterior is updated after each sample instead of the whole dataset.
Therefore, BMM has some inherent advantages over MCMC when dealing with large-scale
datasets. In terms of the inefficiency of sampling-based methods (i.e. MCMC) for param-
eters with high dimensionality, the optimization-based methods (i.e. BMM) can naturally
circumvent the curse of dimensionality. Further, based on the Bayesian theorem, BMM only
needs to process the whole dataset once (see Fig. 6) and can be updated for new samples
online. These advantages prompted us to consider BMM as a basic framework for Eq. (4).
See Sect. 4 for more details.
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Real-time Input: preference p

- -~

approximate
posterior

~<_ -

Real-time Output: score
Fig. 6 Online Generalized Bayesian moment matching (OnlineGBMM) for COUPLE: Step (a) estimate

q(X)q(ny,) with generalized Bayesian moment matching; Step (b) replace prior P (X) P (1)) with approximate
posterior g (A)g (1)

3.3 Connection to related models

Connection to Plackett—Luce model If worker w is an expert, then we have ’7111; ~
1, which means worker w selects the local winner in each stage with no hesitation.

That is, in a general stage i of a k-ary preference p, we have P (f( = p@Oa, r]w> =

Zf:i Fl-itbp (X =p®IA) ~ P (X = p®|r) for worker w. Therefore, COUPLE (4)
degenerates into the vanilla Plackett-Luce model (1) when dealing with preferences from
domain experts.

Connection to CrowdBT CrowdBT extends the Bradley—Terry model to aggregate pairwise
preferences by considering the quality of the worker (Chen et al. 2013). The worker quality
actually denotes the probability that worker w agrees with the ground truth; while COUPLE
directly integrates worker quality into the Plackett—Luce model with an uncertainty vector n,),
for each worker w. The uncertainty vector represents worker w’s indecision about selecting
the “local winner” in each stage. When COUPLE deals with pairwise preferences, we have
[yl = K =maxy ,l,, , =2,YVwe{l,2,...,WhandVn € {1,2, ..., Ny}. According to
the definition of n,, in Sect. 3.2.2, n}}) represents the conditional probability that the object
ranked first according to the worker’s belief also accords with the ground truth. Therefore, 1),
also reveals the accuracy of worker w. Overall, our COUPLE (4) degenerates into CrowdBT
when dealing with pairwise preferences.

Connection to methods in Raman and Joachims (2014) COUPLE focuses on modelling the
human annotation process and aims to recover the ground truth from the noisy preferences.
Whereas, the methods in Raman and Joachims (2014) try to reduce the negative impact of
noisy preferences. In other words, COUPLE: trusts high-quality preferences from expert
workers; recovers the ground truth for low-quality preferences from amateur or malicious
workers; and reduces the negative impact of random preferences from spammer workers.
The methods proposed by Raman and Joachims (2014) trust the high-quality preferences
from expert workers just as COUPLE does, but indiscriminately reduce the impact of low-
quality preferences from non-expert workers. Therefore, benefiting from our fine-grained
categorization of noisy workers, COUPLE can distil more useful information from the noisy
preferences.
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Connection to classical mixture models COUPLE operates on the assumption of a single
ground truth, where the ground truth preference is a unanimous global preference shared
by the vast majority of workers. Therefore, workers whose preferences are consistent with
the ground truth preference are classified as experts; otherwise they are classified as noisy
workers. Although the heterogeneity is a very common phenomenon in human annotation
data, the proportions of the mixture components are distributed quite unevenly among the
annotations (Turner and Miller 2012; Vitelli et al. 2014; Khare et al. 2015). Usually, most
workers agree with the major component, while the remaining few workers agree with one
of the other minor components. If we adopt the classical mixture formulation, the model is
easy to underfit each minor component due to its insufficient number of supporting samples.
In addition, most of the time, only the major component supported by the majority of the
workers needs to be estimated. Therefore, we have assumed a single ground truth rather
than the multiple ground truths assumed in the classical mixture formulation. Further, we
have introduced a worker-specific uncertainty vector to weaken the influence of the minor
components, This vector identifies the minority workers as the noisy workers and eliminates
their preferences during the aggregation process. Specifically, for a crowd worker w who
agrees with the major component (the ground-truth), the first entry 5!, of his/her uncertainty
vector is close to 1, which denotes that he/she is an expert; while for a crowd worker w who
agrees with one of the minor components, he/she would be classified as noisy worker, since
nllu does not dominate his/her uncertainty vector 7,,. Section 3.2.3 contains some details on
an even finer-grained categorization.

4 The online generalized Bayesian moment matching (OnlineGBMM) for
COUPLE

Bayesian moment matching (Jaini et al. 2016) is a scalable technique for estimating a model’s
parameters. It estimates the approximate posterior by matching a set of sufficient moments
of the exact complex posterior after each observation. However, due to the non-conjugate
likelihood function (Plackett-Luce model), the moments for score A have no closed-form
integrations. To address this issue, we have combined COUPLE with a generalized Bayesian
moment matching (GBMM) technique that helps to circumvent the need to compute some of
the intractable moments. Based on the efficient posterior updating procedures, we introduce
our OnlineGBMM algorithm, which makes COUPLE scale to large-scale datasets.

4.1 Main routine of Bayesian moment matching (BMM)

As shown in Fig. 5, we first extend COUPLE to its Bayesian version.® Specifically, we
introduce a Normal prior N (A, |, 0,2) for each score A, = 1,2, ..., L and a Dirichlet
prior Dir(n,,|e,) for each uncertainty vector n,,, w = 1,2,..., W.

Benefiting from the stagewise learning strategy, we can decompose a crowdsourced
preference p into a series of sequential stages, and update one stage instead of the entire
preference each time. Generally, the likelihood function for a general stage i of preference p

is P (f{ = pO|a, nw) (See Eq. (3)). Accordingly, the posterior can be represented as follows,

6 Here, we clarify that the Bayesian version of COUPLE is different from Thurstonian model (Maydeu-
Olivares 1999). Although COUPLE and Thurstonian model all adopt the single ground-truth assumption, the
hyperparameters aiz estimated by COUPLE are completely independent of workers, while Thurstonian model
will learn a worker-specific variance O’izw for each worker w.
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P (% = O m,) T, NGyliar, 07) Dir ()

p (5( - p(i)) ®

P (hn, X =p?) =

The main issue with Eq. (5) is that the posterior P (k, Ny X = p(i)) is hard to compute.

To keep the computation tractable, we project the posterior into the same form with the
prior (product of a Dirichlet with normals), by matching a set of sufficient moments of the
approximate posterior with the exact posterior (See Fig. 5):

1. Matching the moments between ¢(n,) and P (nw|)~( = p(i)>. As n,, subjects to
Dirichlet distribution, the approximate posterior g(n,,) needs to satisfy the moment

constraints: [ 1, (1) dn,y = [ iy P (n,|X = p0) dn,, and [ 1l 2qn,,) dn,y =

USRI 2 (nw|)~( = p(i)) dn,,t = 1,2,..., K. Fortunately, we can solve the con-
straints with closed-form integrations (Rashwan et al. 2016), obtaining the posterior
parameters (ot,,)"“" accordingly.

2. Matching the moments between g(A) and P (le( = p(i)). As A subjects to Nor-
mal distribution, a set of sufficient moment constraints is: g = f Ag(A)dr =
[AP (m? - p<l‘>) dhand T = [ — WK — wTgh)dh = [ — WK —
WP (uf( - p(i)) da.

However, due to the non-conjugacy between the likelihood” P (f( = p(i)IX) (Eq. 3)

and normal prior ]_[rL=l N (O rs orz), the posterior P (Mf( = p(i)) is too complex. There-
fore, the posterior parameters (u"¢*, £"¢") cannot be computed analytically, because the
integrations in the moment constraints are intractable.

4.2 Generalized Bayesian moment matching (GBMM)

In cases with a non-conjugate likelihood with a normal prior, we have followed the strategy
introduced by Weng and Lin (2011). Weng and Lin (2011) proposed an efficient Bayesian
approximation method based on Stein’s Lemma (Woodroofe et al. 1989) to estimate the
posterior parameters analytically.

Lemma 2 (Corollary 2 in Weng and Lin (2011)) Let Z = (Z4, Z», .. ., Z1)T be a random
vector, where each entry is independent and Z, ~ N(0,1), r = 1,2, ..., L. Suppose that
f(Z) is the likelihood function and almost twice differentiable. Then, the mean and the
variance of the posterior distribution can be approximated as

V()
ElZ]=E , 6
' [ ) } (©
2
E[Zqu]=1pq+E[v f(z)] S pa=1...L (6b)
@,

where 1,4, = 1 if p = q and 0 otherwise, and [.]pq indicates the (p, q) component of a
matrix. O

Tp (5( = p(”ll) = EDir(nylaw) [P (5( =, "w)}
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In cases with a general normal prior, we instantiate Lemma 2 with COUPLE, and introduce
Proposition 1 to deal with more general situations.

Proposition1 Let Z = (Z1,2Z,...,Z1)7, where Z, = =% ~ N(@,1), r =

ity
1,2, ..., L. Assume [(Z) is the likelihood P (f( = p(i) |).) and almost twice differentiable.

Upon the completion of stage i, the posterior parameters (W', (52)"") of score i, can
be estimated as:

3(Z)/0Z,
M:’ww =y +orE [%] , (7a)
9%1(Z)/9%Z, 3(2)/0Z,7?
2\new __ 2 _
(0/)"" = o, <1+E[Z(Z) ] E[ 2 } . (7b)

wherer =1,2,..., L.

Proof sketch Substituting Z, in Lemma 6a with general form A, = u, + o, * Z, and replace
the likelihood function, will result in Proposition 7a after simplifying. Similarly, we can result
in Proposition 7b with the same procedure. O

According to the Bayesian approximation method introduced in Proposition 1, the pos-
terior parameters (u"¢", ") of the approximate posterior ¢(A) can be estimated by a
differential operation instead of an integral operation. Therefore, our GBMM can handle
complex situations where the likelihood function is only required to be almost twice differ-
entiable.

4.3 Posterior update

Given a crowdsourced k-ary preference p, we first decouple the complex likelihood into
independent stages according to the stagewise learning strategy, and then update the hyper-
parameters in stages. In a general stage i, we first update the hyperparameters o, , then update
the hyperparameters (s, 6'2).

4.3.1 Quality update for hyperparameters oy,

To update the hyperparameters «,,, we first integrate out A to obtain the intermediate likeli-
hood® P (ff = pwl%) = Enxapo) [P (5( =pDP, ﬂw)] = >V (o, x Ry), where
R = EN(MIL’G2)[€)L”U+171>/Zl:n:i ¢*»"]. Note that in a Bayesian framework, we do not
directly conduct the renormalization on 7,,, but rather choose a tailor-designed prior distri-

bution, which yields the same effect. Further, R; can be calculated by its 2nd-order Taylor
approximation at u. See the Appendix for more detailed explanations.

Let R = P ()N( = p(i)> = EDir(y,law) [P ()N( = p(i)|nw)] be the normalization con-
stant, then the posterior distribution of 5,, can be represented as:
P(X=pOm,) Dirarylen) P (X =pOln, ) Dir,lew)

P (f( - p(n) R

P (”wp2 = p(i)) =

(®)

8 “Intermediate likelihood” denotes the corresponding likelihood respect to a single stage instead of the whole
preference or the whole dataset.
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Note that we only need to calculate the moments of the first (k—i+1) entries of «,,, because
the intermediate likelihood P (f( = pW) |nw> only depends on the first (k — i + 1) entries of

Nw. According to Sect. 4.1, the sufficient moments (E[n’,], E[(n’,)*])° for hyperparameter
!, can be calculated analytically (Bishop 2006) as follows:

Eln',] =/nf,JP (nwlff = p(”) dn,

(Z(k l+l)(Rv % a]l;) + Rt)

(Z(k i+1) 3]_'_1) (Z(k t+1) ) ©a)
E10)%) = [ @2 P (malX = o) d,
o (@l + 1) (Z“‘ DR, x @ )+2R,)
(9b)

(Z(k i+1) ,’j,+2) (Z(k i+, )(Z(k i+, )

Then, we update the hyperparameter !, of the Dirichlet distribution Dir (1, |ay,) as follow:

(Elni,1 — E[(n,)?]) Eln’,)]
t \new __ w w w
) = i = (B, )? (10)

wherer € {1,2,...,k—i+1}.

4.3.2 Score update for hyperparameters (i, )

To update the hyperparameters (@, a2), we first integrate out 5,, to obtain the intermediate

Keli — En v = o) _ e ﬂ<’>>
likelihood 1(4) = Epiry, e | P (X = 0PN m,,)] = T
that only the moments of the scores, which are involved in the intermediate llkehhood L(A),

will change during each stage update. Let z = z;.;, where z = )\?T’L ~ N(0,1). According
to Eq. (7a), we can directly calculate the posterior parameter (i ,)"“" as follows:

. Note

al D e

=0 Ho0 T Gp(’) ( v R A

an
where r € {i,i +1,...,k}, ¥ = Z’,; oo™ and W = Z am=itl 0. We set
z = 0, so that A is replaced by u. Such an approximation is reasonable as we expect that the
posterior density of A to be concentrated on u (Weng and Lin 2011). According to Eq. (7b),
we can directly estimate the posterior parameter (crj(,))”ew as follows:

8l(z)/8zp(r) 2
=0 1(z) z=0

~ o2 1+ o2 oy D s 00 (W — ol 7D xo)
~ ap(,) max + ap(,) 2

M(2)/9z )
p(") Z(Z)

(,up(r))new ~ K o) +o

321(z)/9%z

2 \new 2 p

) ~ 1+ —
(O’p(,)) Gp(,) @

9 See “Appendix” for detailed derivation.
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IZNG) IZNG)
e'r —e'r
—%) ,K), (12)
where r € {i,i + 1, ..., k} and « is a positive value to ensure a positive variance.

4.4 The OnlineGBMM algorithm

The OnlineGBMM for COUPLE model (Fig. 6) is summarized in Algorithm1 according to
the above analysis. Itis notable that the quality update and score update can both be completed
with analytic solutions (Egs. (10), (11), (12)). As a result of the efficient posterior updating
procedure, OnlineGBMM allows COUPLE to inherently handle streaming preferences in
real-time. Note that in Algorithm 1 we have introduced a reverse update strategy during the
preference updates.

Algorithm 1 Online Generalized Bayesian Moment Matching (OnlineGBMM) for COUPLE

Initialization: Prior distribution parameters {u, 62, {ory }Z)Vzl }.
Real-time Input: a k-ary preference p along with worker index w.
for stage =k —1,2,..., 1 do
Quality Update: ay, by Eq. (10).
Score Update: p, a? by Eq. (11), (12).
end
Real-time Output:Ranking objects by sorting the obtained p.

Remark 3 Reverse Update Strategy: Looking at Fig. 4, in stage 1, we have k potential
candidates for the local winner for each k-ary preference, so the top k entries of the hyperpa-
rameter &, need to be updated; with the updates of stages, in stage i, we have only (k —i +1)
potential candidates, therefore, only the top (k — i + 1) entries of e, need to be updated.
This means fewer entries of a,, will be updated in later stages as there are fewer candidates.
To better propagate the update information, we propose the reverse update strategy, which
update from the highest stage k — 1 to the lowest stage 1. That is, the top two entries of oy,
are updated in stage kK — 1. In stage i, (k — i + 1) entries need to be updated, so that the
updating information from higher stages propagates to the fresh updated entries through the
renormalization trick. In stage 1, all k objects compete to become the local winner, and the
top k entries of a,, will be updated. Although the fresh active entry aﬁ is only updated once
during the preference updates, it assembles the update information from all former stages
through renormalizing.

In Table 2, we compare the computational cost of COUPLE with three state-of-art online
ranking models: (1) online Bradley—Terry (OnlineBT) (Weng and Lin 2011). (2) online
Plackett—Luce (OnlinePL) (Weng and Lin 2011). (3) CrowdBT (Chen et al. 2013). First,
we break each k-ary preference for the BT-based models into C,g all possible pairwise pref-
erences, then aggregate each pairwise preference independently. As all the methods are
implemented with online learning, we only consider the computational cost of updating one
k-ary preference. Note that we have not reported the computational cost for PeerGrader,'’
because it relies on SGD to estimate the model parameters and needs to process the whole
dataset several times to converge. Therefore, as Bayesian methods only need to process the

10 http://peergrading.org/.

@ Springer


http://peergrading.org/

Mach Learn (2018) 107:1333-1361 1351

Table 2 Computational cost of COUPLE and other models

Split number Score updated Quality updated Computational cost
OnlinePL 0 2k 0 2kt
COUPLE 0 CZ+k—1 4C2 +5(k — 1) (5C2 +6(k — ),
OnlineBT c? 2%2 0 CHy +4CHn
CrowdBT c? 2x2 7 Citi + 11C3n

We assume that #] is the cost of extracting a pairwise preference from a k-ary preference, and #; is the cost of
completing an update in Algorithm 1. The empirical verification of our analysis is presented in Fig. 8, Sect. 5.5

dataset once, SGD is inferior to the Bayesian online updating methods in terms of efficiency.
Fig. 8 provides empirical verification of this comparison for reference.

It is obvious in Table 2 that, of all the methods, CrowdBT has the largest computation cost
to update one k-ary preference, while OnlinePL has the lowest computation cost. We further
compared the time cost of COUPLE and other models on one real dataset (Sect. 5.5), and
the empirical results are consistent with our analysis in Table 2.

5 Experiments

In this section, we evaluate the reliability of COUPLE on four large-scale synthetic datasets,
followed by experiments in two real-world applications—ordinal peer grading and online
image-rating—to further verify the reliability of COUPLE in real-world situations.

5.1 Experiment setup

Datasets We generated synthetic datasets similar to the method described in CrowdBT (Chen
etal. 2013). Assume that we have an object set 2 = {O1, O, ..., O} with the ground-truth
preference. Each task, composed of a subset selected randomly from €2, was corrupted by W
crowd workers with different uncertainly vectors {ﬂw},‘:,V:] following a Dirichlet distribution
Dir(n,,lap). We controlled the quality of dataset by choosing the proper hyperparameters
ao while retaining diversity among crowd workers.

To verify the reliability of COUPLE in ordinal peer grading, we used two PeerGrading
datasets (PO = Poster, FR = Final Report) introduced by Raman and Joachims (2014). They
were collected as part of a senior-undergraduate and masters-level class. There are 42 assign-
ments (objects), 148 students (crowd workers) and 7 TAs participated in the PO dataset. The
FR dataset contains 44 assignments (objects), 153 students (crowd workers) and 9 TAs. More
information can be found in the “Appendix”. This size of class is appropriate, since it is large
enough for collecting a substantial number of peer grades, meanwhile, it allows TA gradings
to serve as the ground truth.

To further demonstrate the superiority of COUPLE in online image-rating, we built a facial
image dataset (the BabyFace dataset) based on images of children’s facial microexpressions
with 18 levels from happy to angry. According to our crowdsourced k-ary preference setting,
we divided 18 microexpressions into 816 distinct subsets, with each subset including three
different microexpressions.!! We submitted them to Amazon Mechanical Turk and collected
the preferences from 105 crowd workers. We only considered workers who have at least 60

T We fixed the size of subsets for the convenience of comparing computational cost.
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annotations, which yielded a collection of 3074 crowdsourced preferences annotated by 41
crowd workers. Further, we asked seven people to provide a credible unanimous (global)
preference of the 18 microexpressions.

Baselines and metrics We compared COUPLE with three online rank aggregation models
and two ordinal peer grading methods: (1) online Bradley—Terry (OnlineBT) (Weng and Lin
2011); (2) online Plackett—Luce (OnlinePL) (Weng and Lin 2011); (3) CrowdBT (Chen et al.
2013); and (4) PeerGrader (Raman and Joachims 2014). We adapted the Wilcoxon—-Mann—
Z[,j 1(r; >rj)A1()\i>)\j)

Zi‘j 1(r;>rj)
r; > rj represents the ground-truth preference between object i and object j with ; as the
estimated score for object i.

Parameter initialization We assigned a standard normal prior N (0, 1) for A; Vi €
{1,2,..., L} in all experiments. Inspired by Chen et al. (2013), we initialized each hyper-
parameter «,, of the uncertainty vector 5, Yw € {1,2,..., W} with 10 gold tasks with
known ground-truth preferences in synthetic simulations. This method was also applied to
the hyperparameter (o, By) of worker quality n,, Yw € {1,2,..., W} in CrowdBT. The
parameter initialization for the BabyFace dataset was consistent with the method used for
the synthetic simulations.

There is no access to the gold preferences for the PeerGrading datasets, as the average
number of preferences annotated by each worker is too small (six for PO and two for FR).
Fortunately, Raman and Joachims (2014) demonstrated that most students are high-quality
(expert) workers with the PO and FR datasets. According to our analysis in Sect. 3.2.2,
1!, decreases exponentially with i for an expert worker w. Therefore, we assume &,y =
ap x [a 'a™%...a K], where ayp > O and a > 1, resulting in E[n}u] = m,
where a large a denotes that worker w has a higher degree of confident when making decision.

In terms of the hyperparameter (o, B) for CrowdBT, we have E[n,] = awof]:ﬂw for
worker w. That is to say, a large o, represents highly accurate preferences annotated by
worker w. For a fair comparison, we set ag = 10, a = 6 in COUPLE and oy, = 5, By = 1
Yw € {1, 2, ..., W} in CrowdBT, namely E[n}u] ~ 0.83 and E[n, ] ~ 0.83 for all workers
in COUPLE and CrowdBT, respectively. This parameter initialization is consistent with our
assumption that most students are expert workers in PeerGrading datasets (PO and FR).

Whitney statistics (Yan et al. 2003) to evaluate the accuracy , where

5.2 Empirical results on large-scale synthetic datasets

First, we investigated the reliability of COUPLE on large-scale synthetic datasets. According
to the analysis in Sect. 3.2.2, the hyperparameter ag was set to (5, 1, 0.1, 0.01), (5,4, 1, 0.1),
(5,4,3,3)and (2, 5, 4, 1) to simulate datasets from expert, amateur, spammer and malicious
workers, respectively. COUPLE can be applied to large k. We set k < 4 for better controlling
the characteristics of synthetic datasets. We set L = 1000, W = 500, and assigned each
worker T = 900 tasks. The number of generated preferences reaches W x T = 4.5 x 10°. In
addition, we ran the Algorithm 1 with a random sample sequence; the results are presented in
Fig. 7. Note that PeerGrader takes too much time to produce a result (Fig. 8), so its accuracy
on large-scale synthetic datasets could not be recorded.

Figure 7 shows that: (1) On all settings, COUPLE delivered a performance superior to
other baselines; (2) On amateur, spammer and malicious settings, the advantage of COUPLE
over CrowdBT became noticeable gradually, since COUPLE is able to correct mis-ordered
objects in noisy preferences with a certain probability while CrowdBT discards noisy prefer-
ences directly; (3) It is clear that all PL-based models showed minor improvements over the
corresponding BT-based models, since BT-based models must break each k-ary preference
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Fig.7 To verify the reliability of COUPLE preliminarily, we provide the accuracy (%) with varying percentage
of samples on large-scale synthetic datasets

Computation Cost (s)

100 +
31.8632

Time (s)

Fig. 8 To verify the complexity analysis in Table 2, we collect the time cost of the four models when we
conduct the experiment on the BabyFace dataset. The time cost is represented by the mean with the standard
deviation. As PeerGrader is SGD-based algorithms, we set the iteration number to one and collect the time
cost for fair comparison. Empirical results were implemented in Matlab (2015b) with an Intel i5 processor
(2.30 GHz) and 8 GB random-access memory (RAM)

into pairwise preferences before aggregation, which may introduce some biases; and (4) The
accuracy of COUPLE reached stability at 20% of the samples on all settings. Therefore,
COUPLE is able to produce reliable results by aggregating incomplete dataset.

5.3 Empirical results in ordinal peer grading

In this section, we explored the reliability of COUPLE on PeerGrading datasets (PO and
FR). First, we duplicated the real datasets ten times to reduce the adverse effects of other
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Table 3 To verify the reliability of COUPLE in ordinal peer grading, we provide the accuracy (%) on two
ordinal peer grading datasets, namely PO and FR datasets

Dataset COUPLE CrowdBT OnlinePL OnlineBT PeerGrader
PO 81.05 +0.99 78.03 £ 0.88 77.66 + 1.89 73.64 +£2.99 78.73
FR 78.73 £0.58 77.75+£0.32 76.68 +0.87 71.94 £0.91 70.35

Accuracy is represented by a mean with standard deviation. As PeerGrader is SGD-based algorithms, we
iterated PeerGrader until convergence and only measured the accuracy only once

Table 4 Six workers with lowest work quality identified by COUPLE, CrowdBT, or PeerGrader on PO and
FR datasets, respectively

Dataset COUPLE CrowdBT PeerGrader
Poster (PO) 4,75,86,103, 111, 124 30, 103, 118, 124, 157, 169 12,52,79,103, 112, 124
Final report (FR) 30, 57, 82,87, 125, 131 1,57,125, 131, 134, 141 2,20, 30, 57,87, 125

random factors and to ensure all models converge. Then, we ran the experiment 10? times to
collect the results shown in Table 3.

Table 3 demonstrates that: (1) COUPLE showed obvious advantages over other baselines
in terms of reliability; (2) COUPLE and CrowdBT consistently outperformed OnlinePL and
OnlineBT, since they both consider worker quality; (3) The PL-based methods were more
reliable than the BT-based methods because crowdsourced (noisy) preferences might magnify
the effect of statistical inconsistencies, even though a full rank-breaking method was used;
and (4) PeerGrader was more accurate than OnlinePL and OnlineBT on the PO dataset, and
even higher than CrowdBT. However, on the FR dataset, the PeerGrader’s accuracy was
inferior to OnlinePL and OnlineBT. Because PeerGrader focuses on the random noise, it
cannot accurately model the annotation noise introduced by humans. Hence, it is reasonable
that PeerGrader may fail in some real-world applications.

Noisy worker detection According to our definition, COUPLE introduces an uncertainty
vector 1, for each worker w, where E ['7110] =al/ Z,K: 1 ol represents the probability that
worker w selected the ground truth in each stage. Whereas CrowdBT introduces work quality
nw, which denotes the accuracy of the preferences annotated by worker w, where E[n,] =
aff:ﬁw . Furthermore, PeerGrader also introduces a variable 7,,, denoting the reliability of
each crowd worker w (higher is better). Hereafter, we leverage these three values as indicators
to detect noisy workers. Table 4 lists the six lowest-quality workers detected by COUPLE,
CrowdBT, and PeerGrader.

Itis worth noting that it is impossible to assess the reliability of the noisy workers identified
by the three models because no ground truths for these workers are available.

Next, we conducted a series of experiments to verify the efficacy of COUPLE, CrowdBT
and PeerGrader in terms of noisy worker detection. For the PO dataset, we first removed
the preferences annotated by six noisy workers with the lowest indicator value detected by
COUPLE, CrowdBT and PeerGrader. Then, we ran the five models on the cleaned PO dataset
again. This process was repeated for FR dataset. We repeated the experiment 103 times and
collected the results shown in Table 5. All parameters were consistent with the previous
experiments on the PO and FR datasets.

In comparing to results for PO dataset in Table 3 to the cleaned PO datasets in Table 5,
we can make the following observations: (1) The accuracy of COUPLE stabilized, but the
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Table S To verify the efficacy of COUPLE and CrowdBT on noisy worker detection, we provide the accuracy
(%) on cleaned PO and FR datasets

Cleaned dataset COUPLE CrowdBT OnlinePL OnlineBT PeerGrader
PO (COUPLE) 81.29+£0.53 79.77 £0.40 78.59 £0.97 77.18 £0.86 79.96
PO (CrowdBT) 81.10+0.79 78.72 £0.73 78.10 £ 1.29 76.38 £0.98 80.49
PO (PeerGrader) 81.69 + 0.65 81.82+0.9 81.58 £0.75 81.29 +0.64 79.44
FR (COUPLE) 78.83 £0.39 78.60 £ 0.21 78.23 £0.46 74.38 £0.42 70.50
FR (CrowdBT) 78.76 £ 0.41 78.06 £ 0.30 77.34 £0.54 73.00 £ 0.44 70.94

FR (PeerGrader) 76.51 £0.27 76.03 £0.31 76.18 £0.72 72.38 £0.35 68.73

The accuracy is represented by a mean with standard deviation. “PO (COUPLE)” denotes the cleaned PO
dataset processed by COUPLE. This definition applies to other similar notations

Table 6 To verify the reliability of COUPLE in the real-world challenges, we provide the accuracy (%) on
the BabyFace dataset

Dataset COUPLE CrowdBT OnlinePL OnlineBT PeerGrader

BabyFace 92494035 90.33+0.33 88.24+0.03 88.24+3.48x 1073  92.16
Cleaned BabyFace 9230 £0.08 92.064+0.61 92.80+0.05 92.10£1.20x 1073 92.14

To verify the efficacy of COUPLE and other methods on noisy worker detection, we provide the accuracy (%)
on the cleaned BabyFace dataset. The accuracy is represented by the mean with the standard deviation. As
PeerGrader is SGD-based algorithms, we iterate PeerGrader until convergence and collect the accuracy only
once

accuracy of CrowdBT increased. This means that COUPLE is more reliable than CrowdBT
for noisy preferences; (2) The standard deviations of the online models were lower because
of the improved quality of the cleaned datasets; (3) The accuracy for CrowdBT, OnlinePL,
and OnlineBT with the PO (COUPLE) dataset was higher than that with the PO (CrowdBT)
dataset, respectively. This demonstrates that COUPLE is more reliable than CrowdBT for
noisy worker detection; (4) Similar to the observations for the original PO dataset, PeerGrader
achieved higher or comparable accuracy to CrowdBT on all cleaned PO datasets. However,
PeerGrader’s accuracy was inferior to OnlinePL and OnlineBT on all cleaned FR datasets.
This observation further verifies our analysis in Sect. 3.3 that the series of methods introduced
by Raman and Joachims (2014) cannot model the nature of human annotation noise well,
and, therefore, those methods are likely to fail in real-world applications.

5.4 Empirical results in online image-rating

We further explored the reliability of COUPLE on the BabyFace dataset. Following the
experiment on the PeerGrading datasets, we first duplicated the BabyFace dataset five times
to reduce the adverse effects of random unknown factors. Then, we repeated the experiment
103 times and measured the accuracy of all models in terms of mean and standard deviation,
as shown in Table 6.

From the accuracy of the five models on the BabyFace dataset (the second line in Table 6),
we observe that: (1) Although COUPLE delivered comparable accuracy to PeerGrader on the
BabyFace dataset, COUPLE is more efficient because it relies on Bayesian analytical updating
rules, while PeerGrader relies on gradient information for updates. (2) COUPLE, CrowdBT,
and PeerGrader outperformed OnlinePL and OnlineBT, which demonstrates the superiority
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Table7 Six workers with lowest work quality identified by COUPLE, CrowdBT, or PeerGrader on BabyFace
datasets

Dataset COUPLE CrowdBT PeerGrader

BabyFace 1,2,5,12,13,17 1,2,5,12,13,17 1,2,5,12,13, 17

of the three models in term of modelling worker quality. Since OnlinePL. and OnlineBT
do not model the quality of crowd workers, their accuracies were easily affected by noisy
preferences; and (3) it is interesting to note that the standard derivation of OnlineBT was
smaller. Since BT-based methods resort to full rank-breaking to split each k-ary preference
into C,% pairwise preferences, OnlineBT generates more preferences and is more stable on
small datasets. However, CrowdBT does not enjoy the benefit of rank-breaking; therefore,
we conjecture that the noisy preferences would magnify the effect of statistical inconsistency,
even with a consistent rank-breaking method.

Noisy worker detection Following the procedure in Sect. 5.3, we leveraged the uncertainty
vector 17,, (COUPLE), worker quality 7,, (CrowdBT) and worker reliability 7,, (PeerGrader
as indicators to identify the noisy workers in BabyFace dataset. The six lowest-quality work-
ers, detected by COUPLE, CrowdBT, or PeerGrader, are presented in Table 7.

Itis quite interesting that COUPLE, CrowdBT and PeerGrader detected the same six noisy
workers for the BabyFace dataset. Similar to the setup on the PeerGrading datasets, we first
removed the preferences annotated by these six noisy workers. Then, we ran the five models
on the cleaned BabyFace dataset again. We repeated the experiment 103 times and collected
the results (in the bottom line of Table 6).

In comparing the results with the BabyFace dataset in Table 6, we make the follow-
ing observations: (1) The accuracy of COUPLE stabilized at around 92.30%, which means
that COUPLE is reliable for preferences provided by noisy workers; (2) The accuracy of
OnlinePL, OnlineBT improved significantly on the cleaned BabyFace dataset. It means that
the three models indeed detected the actual noisy (low-quality) workers in the dataset. They
can be used to clean the noisy dataset by removing the preferences from the detected noisy
workers; (3) The standard deviations of all online methods decreased as the quality of the
dataset improved; and (4) it is notable that the accuracy of CrowdBT also improved on the
cleaned BabyFace dataset. It is because CrowdBT tries to reduce the impact of low-quality
preferences from crowd workers, while COUPLE aims to recover the ground the truth from
noisy preferences. Therefore, COUPLE distils more useful information from the noisy pref-
erences, resulting in higher accuracy with noisy rank aggregation.

5.5 Computation cost

The BabyFace dataset is a satisfactory candidate for verifying the complexity analysis, as
shown in Table 2. Since the length of the preferences in the BabyFace dataset is fixed to three,
according to Table 2, the computation cost of processing each preference remains constant
for COUPLE and other baselines. Hence, the time cost of all online models increase linearly
with the number of samples, which means that the proportional relations between the time
cost of four models should be consistent with that in Table 2. We duplicated the BabyFace
dataset five times and repeated the experiment 10% times to measure the time cost in terms
of mean and standard deviation for all models, as shown in Fig. 8.

The theoretical analysis in Table 2 is consistent with our observations in Fig. 8: (1) The
computation cost of CrowdBT was much higher than that of other models, because CrowdBT
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needs to break each k-ary preferences into C,f pairwise comparisons before aggregation; (2)
The proportion of the time cost between COUPLE and OnlinePL was about 2.8, which is close
to the theoretical result 17 : 6 in Table 2 when k£ = 3. Similar observations can be made of
the other pairs; (3) The computation cost of COUPLE was higher than those of OnlinePL and
OnlineBT because we introduce an uncertainly vector to model the worker quality. However,
COUPLE was more reliable than all other baselines at the acceptable expense of greater
computational cost; and (4) The time cost for PeerGrader was much higher than the online
updating methods, because online methods update with simple Bayesian analytical updating
rules, while PeerGrader uses SGD to solve the batch objective.

6 Conclusion

In this paper, we outline a method to reliably aggregate large-scale noisy preferences
annotated by crowd workers into one global preference using a reliable crowdsourced
Plackett—Luce model, called (COUPLE) combined with an efficient Bayesian learning tech-
nique. To ensure reliability, an uncertainty vector in COUPLE recovers the ground truth
from each worker’s noisy preferences with a certain level of probability. An online Bayesian
moment matching technique ensures that COUPLE scales naturally to large-scale prefer-
ences. Empirical results show that COUPLE combined with the OnlineGBMM algorithm
delivers substantially more reliable results than current approaches. In the future, we intend
to extend this research in several ways. With active learning, different policies for COUPLE
could be designed to select samples more wisely, so as to maximize the gain against some
criteria. Additionally, a theoretical analysis of OnlineGBMM'’s convergence rate and the
approximation accuracy of GBMM would allow COUPLE to be applied to more complex
situations.
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LP150100671 and DP180100106.

Appendix

Detailed derivation for Section 4

Renormalization in the Bayesian framework

. rok o
Suppose 7, = (k. n%,....n5) T and Py(n,) = Dir(n,le,) = %Hle

. i . . 1
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v=1"Tw

Ji=
1,2, ..., k, then we have

r (Zf:l a:l)) ﬁ (—i (0‘{17—1)
Tk (i) nw)
[Tici T () i

and @y = (a!, o2, ..., 0T,

ity ~ Dir(if,|ey) =

where 7, = (7', 7%, ..., 19"

@ Springer



1358 Mach Learn (2018) 107:1333-1361

Second-order Taylor approximation

Suppose R; = Enape?) |:ZL d - ] where A = (A1, A2, ..., Az)7T, then the second-order
, o

Taylor approximation of R; at u can be represented as follows:
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Then we do the following normalized nonnegative transformation to R;,
max(R;, K
Zi=1 max(R;, k2)

where k> is a small positive value to ensure a positive R;.

Data distribution evidence
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Table 8 Statistics for the poster
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Statistics for the PeerGrading datasets

—

=

Table 8 summarizes some of the key statistics of the Poster (PO) and Final Report (FR)
datasets. More information can be found in Raman and Joachims (2014).

Data preprocessing

All gradings are done on 10-point (cardinal) Likert scale, where 10 denotes “perfect”, 8
“good”, 5 “borderline”, 3 “deficient’and 1 “unsatisfactory”. For instance, preference p,, :
05(9.0) > 03(7.0) > 0,(1.0) denotes preference p,, was annotated by crowd worker w.
However, students are not trained graders so they may be grading on different scales. In
particular, different students may have different preconceptions of what constitutes a score
8 if they come from different universities. Therefore, we only use the ordinal information
provided by each grader. In addition, as ties are not considered in COUPLE and CrowdBT,
the preferences containing ties (equal scores) are splitted into independent preferences. To

Table 9 Number of k-ary preferences in the PO and FR datasets

k-ary preferences 2-ary 3-ary 4-ary S-ary 6-ary 7-ary Total number
Poster (PO) 165 348 309 85 4 1 912
Final report (FR) 153 146 17 0 0 0 316
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be specific, preference p,, : Os > 03 = O4 > O3 breaks into two preferences pi 4, :
05> 03> Ozand py 4 : Os5 > O4 > O;. Detailed information about the two post-processed
datasets appears in Table 9.

Poster (PO) dataset contains 912 distinct preferences, , and most have a length of 3 or 4.
The Final Report (FR) dataset is much smaller (316), and almost 95% of data are 2-ary and
3-ary preferences. Overall, PO and FR are consistent with the definition of crowdsourced
k-ary preferences.
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