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Abstract We adopt the principal idea from Plotkin’s Structural Operational Semantics
(SOS), in which computation by a system is to be understood using: (a) a signature of
configurations, I'; (b) a binary relation (— ) defined over I' x I'; and (c) a meta-interpreter
for general transition systems, defined at the level I and —. Using specific definitions for
configurations and transition rules, the meta-interpreter generates an operational explanation
of a system’s behaviour in the form of the stepwise computations (transitions) involved. This
setting is of special interest to inductive logic programming (ILP), given recent develop-
ments in meta-interpretive learning. We focus here on the specific application of obtaining
automatically Petri net models of biological system behaviour. Using a simple logic program
as a meta-interpreter with a meta-rule for guarded transitions we show that using defini-
tions of biologically-known transitions, proofs constructed by the meta-interpreter allow
us, just as in SOS, to explain system behaviour as stepwise transitions in Petri nets. In the
meta-interpretive learning setting, the proofs identify hypotheses that together with the meta-
interpreter and domain-knowledge logically entail the observed behaviour. Meta-interpretive
learning enables us to go beyond the explanations available in SOS, which are purely deduc-
tive, since the meta-interpreter is allowed abductive steps in the proof. This enables us to
“invent” transitions which have not been specified in domain-knowledge. We use this facility
to deal with noisy data by constructing first a hypothesis that includes abduced transitions,
followed by the use of a Viterbi-style computation to find the most likely sequence of tran-
sitions for a system with a specified initial and final state. Extensive experiments with some
well-known biological systems show that this approach can reliably identify the correct set of
transitions even with fairly high levels of noise and with moderate amount of missing values.
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1 Introduction

How should we describe a biological system (or, for that matter, any system)? In principle,
the mathematical language of differential equations, the differential calculus, and data about
initial conditions provide a uniform way to describe relations between variables of interest,
and how these change as a function of time, given the initial conditions. But, with biological
systems, the equations involved are often highly non-linear, making it difficult to obtain
analytical solutions. Inevitably therefore, simplifications of the equations result, and the
model progressively reflects less of the underlying biological process being studied. So, a
biologist has little choice but to resort to verbal or pictorial descriptions, often in the form of
annotated graphs, with much of the kinetics being lost in translation.

Is it possible to obtain the benefits of modeling system kinetics, while retaining the expres-
sivity of more qualitative representations? The use of Petri nets attempts to achieve this to
some extent. Comprising a bipartite graph representation, some computational rules, and data
consisting of (discrete) initial values of state variables, system-behaviour is a sequence of
states obtained by a repeated application of the computation rules. The basic Petri net model
has been extended in a number of ways that are of interest for biological networks [Koch
et al. (2011) provides an excellent summary].

These extensions incorporate timing (timed Petri nets), concentrations (continuous Petri
nets), stochasticity (stochastic Petri nets), multiple levels of organisation (hierarchical Petri
nets), activation and inhibition relations needed for signalling networks (Petri nets with
“read” and “inhibitor” arcs), and so on [see David and Alla (2010) for descriptions of these
aspects of Petri nets]. Mathematically, the power of Petri nets ranges from simple qualitative
producer-consumer models to that of ordinary differential equations. Computationally, the
range is from above regular languages to Turing machines (Peterson 1981).

Petri nets are one form of a more general computational view of systems. In this view, a
system is comprised of a program and data. The behaviour of the system is described by how
the program computes in stepwise fashion, and the possible state-transformations that result,
given the data. Readers familiar with the semantics of programming languages will recognise
this as the basis of the Stuctural Operational Semantics (SOS) introduced by Plotkin (1981),
although the idea relating a program’s semantics to the operations it can perform can be
found nearly twenty years earlier in McCarthy (1963). For our purposes, it is sufficient to
know that Petri nets are a kind of transition system, and the work in SOS gives us one way
of describing and understanding the behaviour of general transition systems (more on this
below). We will use this basic SOS idea as a springboard to address the main point of interest
for this paper: the automatic identification of models for biological systems from data. We
propose to achieve this by adopting some of the recent developments in Inductive Logic
Programming (ILP) on meta-interpretive learning. Specifically:

— We define a general transition system, much as it done in SOS, using: (a) a program;
(b) an interpreter for the program; and (c) data in the form of observed state-pairs. In
this paper, (a), (b) and (c) are all logic-programs. In meta-interpretive ILP terms, (a) and
(b) constitute background knowledge Bp and By (denoting domain-knowledge and the
meta-interpreter), and (c) are the positive examples E.

— We investigate empirically the identification of some well-known metabolic and sig-
nalling networks, using a meta-interpreter Bjs, domain knowledge Bp consisting of
Petri net transitions, and data E that range from being complete and correct through
varying amounts of incompleteness and incorrectness, by extending the meta-interpreter
and moving to probabilistic transition systems.
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The principal contribution of this paper is to system identification; in particular, we pro-
vide a logical formulation for the identification of transition systems from data by the use of
an ILP meta-interpreter. The second main contribution is to introduce into meta-interpretive
ILP a method for the identification of systems with discrete state spaces using a formal-
ism expressive enough to describe computations, namely Plotkin’s SOS. Furthermore, the
underlying formalism of transition systems is sufficiently general to capture the semantics
of non-deterministic and probabilistic representations, and is modular, enabling a form of
problem decomposition. The third contribution is to biology, where our approach enables
incremental identification in which learning can scale with the size of the system being
studied by the re-use of networks constructed previously as transitions at the next level of
abstraction.

The rest of the paper is organised as follows. In Sect. 2 we describe general transition
systems in the manner used by SOS, and an implementation of a meta-interpreter for such
a transition system using logic programs. This section also shows some simple examples
of “system identification” using the meta-interpreter along with specific programs and data.
Depending on the program, the system identified changes: we show examples of finite-state
automatons, Turing machines, and Petri nets. Section 3 describes the emerging area of meta-
interpretive ILP, and a small change to the meta-interpreter. This results in a specialised form
of meta-interpretive ILP for transition systems. This section also describes how hypotheses
obtained can be specialised to account for noisy data. Experiments without and with noise
are in Sect. 4. Section 5 describes how the work here is related to other work both on system-
identification in biology and more generally, and work in meta-interpretive ILP. Section 6
concludes the paper.

2 Transition systems

We adopt the principal idea from Plotkin’s Structural Operational Semantics (SOS) (Plotkin
1981), in which computations are modelled by a transition system or 7S. A TS is defined
formally as a structure (I', —) where:

— I is a set, denoting configurations; and
— — C T x I'is abinary relation.

The notation y — '’ is used to denote pairs y, ¥y’ € T that are in the binary relation —.
This is to be understood as “there is a transition between y and y’.” The definition of a T'S can
be extended to include a set of labels A, giving a labelled transition system, or LTS, defined
as a structure (I', —, A), where (T, i)) is a transition system for each a € A (Keller 1976).
An LTS allows us to associate additional meaning to the transitions (like names, actions,
operations and so on). For the biological applications addressed in this paper, we will assume
that all transitions will have labels, denoting known chemical reaction, or a specific action
(like phosphorylation), and so on: we may sometimes even use a ground first-order terms for
labels. It is useful also to distinguish further subsets I and T of T, to denote initial and final
configurations.

A computation that changes a system from configuration y to y’ is described by a sequence
of transitions. Mathematically, the pair (y, y’) is an element of the transitive- (correctly, the
reflexive-transitive) closure of —. Adapting the terminology in Plotkin (1981), we will call

a sequence of transitions (ay, ay, ..., a,) the trace for (y,y") if y € I,y € T) and
r S s B Bos, =y fors, s, ..., sp €.
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In Plotkin (1981), a distinction is made between transitions used to explain a system’s
behaviour internally and those needed to explain it externally, based on the observation that
not all the transitions needed for a computation may actually produce an observable effect.
This leads to a qualititative notion of explaining behaviour using transitions of the “correct
granularity”. No prescription is made on how to achieve this correct granularity—just that it
is inevitable that it would be needed. Much work has been done in the area to describe notions
of behavioural equivalence, in the usual mathematical sense (of being reflexive, symmetric
and transitive) leading naturally to the formalisation of simulation and bisimulation (Van
Glabbeek 2011). In the ILP setting of this paper, we side-step the granularity issue, assuming
this is resolved by the domain-knowledge provided. Also, we are not concerned, as yet, with
equivalence of transition systems. The system identification task we are concerned with in
this setting is as anticipated by Plotkin in the second half of his observation: “Often two or
more definitions of behavior (or having the same behavior) are possible for a given transition
system. Indeed on occasion one must turn the problem around and look for a transition system
which makes it possible to obtain the expected notion of behaviour.”

The main concern of this paper differs from that of providing operational semantics to
programs. In operational semantics the focus is usually on translating constructs in a program-
ming language (like loops, conditional statements, assignments and the like) to an abstract
machine. Abstract machines can be formulated as transition systems (Plotkin shows exam-
ples of a variety of different machines that can be seenas 7S’s and LT S’s), and computations
by the program are traces from specific initial states. SOS is thus concerned predominantly
with the abstract machine that acts as an interpreter for a programming language. However,
we are concerned instead with the interpreter for a general transition system that constructs
the trace semantics of behaviour.

2.1 An interpreter for transition systems

We will adopt the language of logic programs for transition systems, and develop an interpreter
that returns traces between pairs of states (y, y'). We will in fact develop a meta-interpreter:
an interpreter also written in the same language used for transition systems, here logic pro-
grams, since this will allow us to extend naturally to the ILP setting.

The reflexive-transitive closure of the binary relation in a transition system can be imple-
mented quite straightforwardly as a Prolog program:!

ts((S,8)).

ts((Si,sSf)):-
trans (T, S1i,S),
ts((s,sf)).

We will refer to this program, and definitions related to trans/3, as Bp (domain- or
background-knowledge). Given a configuration-pair (yy, yy), we would like the meta-
intepreter for Bp to logically entail a trace T' (if one exists) such that Bp U T = (yx, vy).
One way to obtain 7 is with a meta-interpreter that constructs refutation-proofs.

@, 2

I We use standard Prolog syntax: the is to be read as “if”’; variables are in upper-case, predicates and
function symbols (including constants) are in lower case; a term is a variable, constant, or a function symbol
applied to terms; a literal is a predicate symbol applied to terms. A clause is of the form Head :- Body,
where Head consists of 0 or 1 literal and Body is a conjunction of 0 or more literals. All variables in Head are
universally quantified, and those that appear only in Body are existentially quantified. not denotes a special
meta-predicate denoting “not provable”: not (P) is true if P is not provable.
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Trace((Ye,Vy), B, Bar):

Given: A pair of configurations ., yy; an object-level program Bp for ts/1 and
any predicates related to the definition of trans/3; and B/, a meta-interpreter
for BD.

Find: A conjunction of ground atoms 7" s.t. Bp UT = ts((7Vz,7vy))

1. Let =P be a partial refutation-proof for Bp U {« ts((vx,7y))} using B

2. Let P=3y(A1 ANAa A+~ AN Ag) and Thy = (A] AAS A -+ A Ay), where the A;
is A; with the y; replaced with appropriate Skolem constants

3. Return T,y

Fig. 1 Computation of a transition system’s trace from proofs obtained using a meta-interpreter

Definition 1 (SLD-refutation proof) An SLD-refutation proof for a goal G consists of a
sequence of triples ((G1, C1, 61), (G2, C2,62), ..., (1, Cy, 6,)) where G| = G, G; is a
goal, C; is a clause and 6; is a substitution.

Definition 2 (Partial refutation-proof) Let S be a refutation proof for a goal G. Let P =
Ay(A; A Ay A -+ A Ag) where (—3y;A;, Ci,6;) € S (1 <i < k). Then =P is a partial
refutation-proof for G (or simply, a partial proof for G).

We will say that the goals in the partial proof are obtained by marking goals in the SLD
refutation-proof.

Definition 3 (Mera-interpreter) Let Bp be a definite-clause logic program and G a definite
goal. Let P = Jy(A; A Ao A -+ A Ag) st. Bp U P U G = 0, where the A; are
atoms and y are variables in (A; A --- A Ag). Let By be a higher-order logic program s.t.
By U Bp = prove(G, —P) where prove(G, —P) is true if = P is a partial refutation-proof
for G. Then By, is a meta-interpreter for Bp.

Definition 4 (Transition system trace) Given an object-level program Bp for ts/1 (above)
and any predicates related to the definition of trans/3, we define a trace between a pair of
configurations yy , from a finite set of configurations I" as a conjunction of ground atoms T

st. BpUT E=ts((vx, vy))

We are now able to formulate a procedure for computing traces using the proofs returned by
a meta-interpreter (see Fig. 1).

We note that there may be more than one proof for a goal, and, correspondingly, more
than one trace. The computation in Fig. 1 is non-deterministic and does not specify which
of these traces is returned. It is straightforward to see that the procedure is correct. From
Definitions 2 and 4, P = Jy(A; AAz A--- A Ag) and Bp A P A {=ts((yx, ¥y))} = 0. That
is Bp U P [=ts((yx, vy)). Further, since A} |= A;,clearly BpU{A], A} --- , A}} = BpUP
= t5((¥x, vy)). We call the ground atoms T, a trace for the pair (yx, yy). We note that there
may be more than one trace for a pair of configurations.

Example 5 (SLD-refutation proof for a transition system) Let Bp be the program for ts/1,
and additionally contain:

trans(tl,sl,s2).
trans(t2,s2,s3).

Let T be a trace for (s1, s3), then B A T = ts((s1, s3)). An SLD-refutation proof consists
of a sequence of triples of the form (G;, C;, 6;), where G; is a goal, C; is a clause and 6; is
a substition. A SLD-refutation-proof for Bp U {<« ts((s1, s3))} is as follows:

@ Springer



1176 Mach Learn (2018) 107:1171-1206

(<= ts((s1,53))), (ts(Si, Sf) < trans(T, Si, S), ts(S, Sf)), {Si/s1, Sf/s3}))
((«—trans(T, s1, S),ts(S, s3)), (trans(t1,s1,52) <), ({T/t1, S/s2}))
((«—ts((s2,53))), (ts(Si, Sf) < trans(T, Si, S), ts(S, Sf)), ({Si/s2, Sf/s3}))
((«—trans(T, s2, S), ts(S, s3)), (trans(t2, 52, s3) <), {T /12, S/s3}))
((«=1s((s3,53))), (s(S, S) <), ({S/s3})

@, 0,9

Example 6 (Transition system trace) A marking of trans/3 goals derived in the SLD
refutation-proof in Example 5 would mark < trans(t1, s1, s2) and < trans(t2, s2, s3).
Let By be a meta-interpreter s.t. Byy A Bp = prove(<« ts((s1, s3)), =P) where =P =
—(trans(t1,s1, s2) Atrans(t2, s2, s3)). There are no variables in P, so no further Skolemi-
sationis needed. A trace for (s1, s3) is therefore T = (trans(t1, s1, s2) Atrans(t2, s2, s3)).

AN

Clearly, to compute traces in the manner shown, we need a meta-interpreter By;. We use
as starting point the simple meta-interpreter for pure Prolog in Sterling and Shapiro (1994):

prove (true) .
prove((A,B)) :- prove(A), prove(B).
prove(A) :- clause(A,B), prove(B).

We enhance it to return the derivation a pair of configurations (if it exists). Further, we would
like the meta-interpreter to be independent of the abstract automaton used to provide seman-
tics to the behaviour (different automata will result in changes to the set of configurations I
and the transition relation — ). This latter requirement is achieved by the use of meta-rules to
specify a generic pattern to transitions. The enhanced meta-interpreter is shown below (for
simplicity, we omit some ancillary definitions, and leave out checks for duplicates in proof):

prove (Goal,neg (Proof) ) : -
meta_prove([Goal]l, [],Proof).

meta_prove([],Proof, Proof) .

meta_prove ( [Goal|Goals], PO, P) : -
meta_rule(builtin,Goal), !,
call (Goal),
meta_prove (Goals,P0,P).

meta_prove ([Goal|Goals], PO, P) : -
meta_rule (Type, (Goal:-Body) ),
goals_to_list (Body, BodyL),
meta_prove (BodyL, P0,P1),
update_proof (P1,Goal, P2),
meta_prove (Goals,P2,P).

meta_rule(builtin,Head) :- built_in (Head) .
meta_rule (user, (Head:-Body) ) : - clause (Head, Body) .
meta_rule(trans/3, (trans(T,S1,S2) : -

pre(T,S1), succ(T,S1,582), post(T,S2))).

update_proof (Proof,Goal, [Goal | Proof]) : -
functor (Goal,Name,Arity),
proof_goal (Name/Arity), !.

update_proof (Proof,_,Proof).
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proof_goal specifies the goals that are to be marked in the SLD refutation-proof. We
augment B, with a definition for extracting traces from goals marked in proofs:

proof_to_trace(neg(Lits),6 Trace) :-
skolemise (Lits, Trace) .

(Some minor changes will be needed if there are meta-rules with names other than just
trans/3). The computation of a trace in Fig. 1) is now straightforward:
trace (ConfigPair, Trace) : -

prove (ts (ConfigPair),Proof), proof_to_trace(Proof, Trace).

The meta-rule for trans/3 encodes the template for all transitions consisting of a pre-
condition, a successor relation, and a post-condition. We show examples of several kinds of
automata that can be encoded as special cases.

Example 7 (Finite State Machine) The following example is from Plotkin (1981). We have
the following abstract machine:

.

N Y N
HMOBOO.
A___J
|

The machine is a special case of a transition system, with the following definitions for
configurations and transitions. Each configuration is a 2-tuple (State, InputString),
where State is one of p, g, r and InputString is a binary string. Transitions are
defined by the following pre, post and succ definitions:

pre(ptl, (p,_)) .
post (ptl, (p,_)).
post (ptl, (g,_)).

pre(pt2, (g,_)) .
post (pt2, (p,_)) .
post (pt2, (r,_)).

pre(pt3, (r,_)) .
post (pt3, (r,_)).

succ (ptl, (p, [0|L]), (q,L)) .
succ (ptl, (p, [1|L]), (p,L))

succ (pt2, (g, [0|L]), (g,L)
succ (pt2, (g, [0|L]), (r,L)
succ (pt2, (g, [1|L]), (p,L)

—_— — —

succ (pt3, (r, [_|L]), (r,L)) .
Then the query:

trace((p,[0,1,0,0,11),(xr,[1)),Trace)
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returns the following answer-substitution:

Trace = [
trans (pt3, (r, [1]1), (x, []1)),
trans (pt2, (g, [0,1]1), (r, [1]1)),
trans (ptl, (p, [0,0,11), (g, [0,1])),
trans (pt2, (q, [1,0,0,11), (p, [0,0,11)),
trans (ptl, (p,[0,1,0,0,1]1), (g, [1,0,0,17))

which is the behaviour of the FSM in Plotkin (1981).

Example 8 (Turing Machine) A pair of numbers M and N can be represented by a sequence
of M 1’s, a 0, and a sequence of N 1’s. The Adding Machine is to scan such a string, and print
a sequence of M+N 1’s and halt. A simple way to accomplish this is shift the string of M 1’s
one step right. Once finished a single string of M+N 1’s will result. As an example, consider
adding 1 and 1. Initially the tape has ...01010.... After shifting the 1 the tape halts with
...00110....

A 3-state machine is sufficient for this adder. The instruction table for the machine is:

Input State

tsl ts2 ts3
0 [0, 251, r] 1,253, 7] halt
1 [0, ts2, r] [1,2s2,r] halt

Each instruction-triple is [WriteSymbol, NextState, MoveT ape]. The Turing Machine
is a special case of a transition system in which each configuration is a 3-tuple denot-
ing (State, Tape,Head) where Head is the location of the reading head. It is
more efficient to represent configurations as the 2-tuple (State, TapeComponents)
where TapeComponents is a list consisting of 3 parts: LeftOfHead, Head,
RightOfHead.

pre(tml, (tsl, Tape)) :- current_symbol (Tape,0) .
post (tml, (tsl, Tape)) .

pre(tm2, (tsl, Tape)) :- current_symbol (Tape, 1) .
post (tm2, (ts2, Tape)) .

pre(tm3, (ts2,Tape) ) : - current_symbol (Tape,0) .
post (tm3, (ts3, Tape) ) .

pre(tm4, (ts2,Tape) ) : - current_symbol (Tape, 1) .
post (tm4, (ts2, Tape)) .

pre(tm5, (ts3, Tape)) .
post (tm5, (halt, Tape)) .

pre(tm6, (halt, Tape)) .
post (tm6, (halt, Tape)) .
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succ (tml, (tsl,CurrentTape), (tsl,NewTape)) : -
current_symbol (CurrentTape, 0) ,
write_symbol (0, CurrentTape, Tape) ,
move (r, Tape, NewTape) .

succ (tm2, (tsl,CurrentTape), (ts2,NewTape) ) : -
current_symbol (CurrentTape, 1),
write_symbol (0, CurrentTape, Tape) ,
move (r, Tape, NewTape) .

succ (tm3, (ts2,CurrentTape), (ts3,NewTape) ) : -
current_symbol (CurrentTape, 0),
write_symbol (1,CurrentTape, Tape),
move (r, Tape, NewTape) .

succ (tm4, (ts2,CurrentTape), (ts2,NewTape) ) : -
current_symbol (CurrentTape, 1),
write_symbol (1,CurrentTape, Tape),
move (r, Tape, NewTape) .

succ (tm5, (ts3, Tape), (halt, Tape)) .

succ (tm6, (halt,T), (halt,T)).

current_symbol ([Left, [S],Right],S).
write_symbol (S, [Left, [_],Right], [Left, [S],Right]).

move (1, [Left, [C],Right], [L1, [C1],R1]) :-
app (L1, [C1l],Left),
R1 = [C|Right].

move (r, [Left, [C],Right], [L1, [C1],R1]) :-
app (Left, [C],L1),
Right = [C1|R1].

Then the query:
trace(((tsl,[[],[0],[1,0,11]), (halt,_T)), Trace)

returns the answer-substitution:

Trace = [
trans
trans
trans
trans

]

tm5, (ts3,[[0,0,11, 111, 1]
tm3, (ts2,[[0,01,[0],[11]
tm2, (tsl, [[0],[1],[0,1]]
tml, (ts1,[[]1,[0],[1,0,1]

), (halt, [[0,0,1],[1],1
, (£s3,010,0,17,[11,111
, (ts2,[10,01,(001,[111)
), (esl, [[0],[11,([0,1]]

))

( ] 1]
( ) ),
( ) )
( ] )

)
which describes the behaviour of the adding machine.

Example 9 (Petri Net) A simple Petri net representing the reaction 2H> + Oy — 2H; 0O is
shown in (a) below. In (b) an “initial marking”, in which molecules of hydrogen and oxygen

are shown by tokens (small solid circles); and in (c), a “final marking”, which results in two
molecules of water, from the molecules of hydrogen and oxygen in (b).
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(a)

The Petri net is a special case of a transition system in which configurations are tuples
with the tokens with each kind of molecule (“place-vectors™), and the transition relation is
defined by:

pre(water, (Hydrogen-h2, Oxygen-o2,Water-h2o0)) : -
Hydrogen >= 2, Oxygen >= 1.

post (water, (Hydrogen-h2, Oxygen-o2,Water-h2o0)) : -
Water >= 2.

succ (water, Pre, Post) : -
Pre (H1-h2,01-02,Wl-h20),
Post = (H2-h2,02-02,W2-h20),
H2 is H1-2, 02 is 0l1-1, W2 is Wl + 2.

Then the query:
trace(((4-h2,2-02,0-h20), (2-h2,1-02,2-h20) ), Trace)
returns the answer-substitution:

Trace = [
trans (water, (4-h2,2-02,0-h20), (2-h2,1-02,2-h20))
1

which describes the behaviour of the equation 2H, + Oy — 2H, 0.

It is straightforward also to represent extended Petri nets. The Petri net representing the
first stage of a MAPK cascade is shown below. This is an extended Petri net with a “read arc”
(David and Alla 2010) from MAP4K (tokens in MAP4K need to be present for the reaction
to proceed, but do not get used up):

MAP4K MAP4K

MAP3K MAP3KP  MAP3K MAP3KP

(@ (b)

The transition relation for this kind of system can be represented as follows:

pre(read(mapdk), (MAP4K-mapdk, MAP3K-map3k, MAP3KP-map3kp) ) : -
NAP4K >= 1, MAP3K >= 1.
post (read (mapdk), (MAP4K-map4k, MAP3K-map3k, MAP3KP-map3kp) ) : -
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MAP4K >= 1, MAP3KP >= 1.

succ (read (map4k) , Pre, Post) : -
Pre (M4K1l-mapdk,M3K1l-map3k,M3KPl-map3kp) ,
Post (MAR2-mapdk, M3K2-map3k, M3KP2-map3kp) ,
M4K2 = M4K1, M3K2 is M3K1 - 1, M3KP2 is M3KP1l + 1.

Then the query:

trace(((1l-mapdk, l1-map3k, 0-map2kp), (1-mapdk, 0-map3k, 1-map3kp) ),
Trace)

returns the answer-substitution:

Trace = [
trans (read (map4dk) ,
(1-map4dk, 1-map3k, 0-map2kp) , (1-mapdk, 0-map3k, 1-map3kp) )
1

The representation in fact allows more flexibility than shown above. The transition can be
written more generally (we omit some utility definitions):

pre (phosphorylates (A,B),Config) : -
place(A), place(B), can_phosphorylate(A,B),
value (A,Config,Valad), value(B,Config,ValB),
ValA >= 1, ValB >= 1.
post (phosphorylates (A,B),Config) : -
place(A), place(B), phosphorylate(B,BP), place(BP),
value (A, Config,ValaA), value(BP,Config,ValBP),
ValA >= 1, ValBP >= 1.

succ (phosphorylates (A,B) ,Configl,Config2) : -
place(A), place(B), phosphorylate(B,BP), place(BP),
value (A,Configl,Vvalal), value(B,Configl,VvalBl),
value (BP,Configl,ValBPl),
value (A,Config2,vVala2), value(B,Config2,VvValB2),
value (BP,Config2,ValBP2)
ValaA2 = ValAl, ValB2 is ValBl - 1, ValBP2 is ValBP1l + 1.

’

place (mapdk) . place(map3k). place(map3kp) .
can_phosphorylate (map4dk, map3k)
phosphorylate (map3k, map3kp) .

The answer-substitution returned for the same query as before would now be:

Trace = [
trans (phosphorylates (map4k, map3k) ,
(1-mapdk, 1-map3k, 0-map2kp) , (1-mapdk, 0-map3k, 1-map3kp) )
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Here an advantage of the declarative representation used in ILP is evident, namely the ability
to incorporate higher-level domain knowledge (such as one molecule being able to phospho-
rylate another) into the definition of transitions.

We note that traces should ideally contain sufficient information to reconstruct the automa-
ton being interpreted. This is useful for reasons of understandability; it is evident from the
examples shown that traces are not as easy to understand as their pictorial counterparts. It
may correspondingly more helpful, when performing system identification, to extract dia-
grammatic representations from traces.

Remark 10 (Petrinets from traces) Suppose the trace contains anelement trans (t, s1, s2)
where t is a transition label, s1, s2 are configurations. We will assume that configurations
are place-vectors. For example, in the case of the “water” reaction trans (water, (4-h2,
2-02,0-h20), (2-h2,1-02,2-h20)), we have t = water, sl = (4-h2,
2-02,0-h20) ands2 = (2-h2,1-02,2-h20). Using the terminology in Durzinsky
etal. (2011c), letus define areaction vector r as the place-wise difference between s2 and s1.
Thatis,r = s2 - s1.Forthe example just shown,r = (-2-h2,-1-0,+2-h20).

It is evident that for every trans(t,sl,s2) in a trace, there is a unique (t,r)
tuple. With some abuse of notation, let Input(r)) = {p; : x; — pi € r s.t. x; < 0} and
Output(r) = {pi : xi — pi € r s.t. x; > 0}. It is straightforward to obtain a Petri net
diagram for transition t using Input(r) and Output(r). (This will not work for extended
Petri nets, but a method for obtaining diagrams can be devised provided that the transition
label contains sufficient information.)

3 Meta-interpretive system identification

The transition-system semantics described so far allows reachability between a pair of system
states to be treated as a logical consequence of the domain-knowledge Bp. However there is a
difficulty: in practice, Bp can be incomplete, or incorrect, or both. In such cases reachability
as logical consequence may fail. Some additional issues need clarification before we tackle
these practical problems.

Definition 11 (Deterministic transition systems) Let I be the set of possible system con-
figurations and A the set of transition labels. A transition system (I, —, A) is deterministic
if, for every configuration y,, whenever y, 4 yy and yx 5 Yz, ¥y = ¥z. That is, Lisa
partial function, where for each configuration y there is at most one configuration y’ such
that y = 3/ (Keller 1976).

Definition 12 (Non-deterministic transition systems) A transition system (I”, —, A) is non-
deterministic if for some configuration y, € I', there exist transitions y 4 yy and yyx 5 V2

and yy # y,. That s, 5% isarelation I' x A x I, for y,, Yy, vV € 'anda € A.

Definition 13 (Probabilistic transition system) A probabilistic transition system is defined as
the 4-tuple (I', —, A, ), where 7 is the conditional probability Pr(y’, aly) fory,y’ € I'
anda € A.

It is evident that for deterministic systems, Proof (and the corresponding trace) is unique.

Otherwise, there can be more than one proof for a pair of configurations. Also, in a proba-
bilistic transition system, a (conditional) probability distribution is defined over the transition
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relation. Informally, given a pair of transitions pp : y 5 yrand py @y 5 12, a choice of
transition is based on p; and p;.

It is also unlikely in practice that system-behaviour would consist of a transition between
a single pair of configurations. Instead, it is more likely to be specified by a sequence of
configurations. It is useful therefore to define the following additional functions.

Definition 14 (Sequences to conjunctions) Given a sequence of configurations s =
(v1,v2,v3, ..., vj), wedefine Conj(s) = (y1, v2) A (v2, ¥3) A= A (¥j-1, ¥))-

Definition 15 (Conjunctions to sequences) For a conjunction ¢ = (y1, y2) A (2, V3) A+ A
(yj-1, vj) we define Seq(c) = (Y1, 2, ¥3, .-+, Vj)-

We note that Seq is only partially-defined: not all conjunctions of configuration-pairs rep-
resent sequences. For example, the conjunction (yi, y2) A (¥3, y4) does not represent a
sequence.

With these definitions in place, we turn to addressing practical difficulties of incomplete-
ness and incorrectness. These involve extensions to both the meta-interpreter By, and the
object-level program Bp.

3.1 Extending the meta-interpreter

We now extend the meta-interpreter introduced in Sect. 2.1 to allow traces to be constructed
for data not entailed by By; U Bp. The principal mechanism that allows this is drawn from
the field of meta-interpretive ILP, which allows a meta-interpreter to abduce atoms to allow
a SLD refution-proof to proceed.” This is not dissimilar to the extension proposed to SLD-
resolution, to allow “skipping” of failing goals in a proof (Yamamoto 1997). The resulting
inference procedure (SOLD-resolution), identifies atoms to be abduced.

prove (Goal, Proof) : -
meta_prove([Goall, [],Proof).

meta_prove([],Proof, Proof).
meta_prove ([Goal|Goals],P0,P) :-
meta_rule(builtin,Goal), !,
call (Goal),
meta_prove (Goals,P0,P).
meta_prove ([Goal|Goals],P0,P) :-
meta_rule (Type, (Goal:-Body) ),
goals_to_list (Body, BodyL),
meta_prove (BodyL, PO, P1),
update_proof (P1,Goal,P2),
meta_prove (Goals,P2,P).
meta_prove ([Goal|Goals], PO, P) : -
abduce (Goal) ,
update_proof (P0O,Goal,Pl),

2 In principle, our use of the term abduction is consistent with that of Peirce (see, e.g., Psillos (2011)),
who introduced the term. It is more useful for our purpose to follow (Kakas et al. 1992), who formulate a
computational form of Peirce’s philosophical description, specifically for logic programs. In this formulation,
atoms are hypothesised from a class of abducibles, which may include existentially quantified variables. These
abduced atoms (A) allow derivation of of a sentence G from a theory T (thatis,7 U A = G,orT U A - G).
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meta_prove (Goals,Pl,P).

meta_rule(builtin,Head) :- built_in (Head) .

meta_rule(user, (Head:-Body) ) : - clause (Head, Body) .

meta_rule(trans/3, (trans(T,S1,S82):- pre(T,Sl),
succ(T,S1,82), post(T,S2))).

update_proof (Proof,Lit, [neg(Lit) |Proof]) :-
functor (Lit,Name, Arity),
proof_goal (Name/Arity), !.
update_proof (Proof,_,Proof).

abduce (Lit) : -
functor (Lit,Name,Arity),
abducible (Name/Arity) .

It is evident that as long as trans/ 3 is a known abducible, the meta-interpreter will always
abduce a trans/ 3 literal, thus allowing refutations to proceed, even if there are no transitions
between a pair of configutations.

Example 16 Let Bp be the program for ts/1, and additionally contain:
trans(tl,sl,s2).

Let T be a trace for (s1,s3), then Bp U T [ ts((sl,s3)). An SLD-refutation proof
for Bp U {<« ts((s1,s3))} will fail, since there is no known transition between s2 and
s3. The extended meta-interpreter By, however constructs an SLD-refutation proof for
Bp U {«ts((s1,s3))} as follows:

((«—ts((s1,53))), (ts(Si, Sf) < trans(T, Si, S), ts(S, Sf)), ({Si/s1, Sf/s3}))
(<= trans(T,s1,S),ts(S, s3)), (trans(t1,s1,52) <), ({T/t1, S/s2}))

(< ts((s2,53))), (ts(Si, Sf) « trans(T, Si, S), ts(S, Sf)), ({Si/s2, Sf/s3}))
((«< trans(T, s2, S), ts(S, s3)), (trans(T’,s2,8") <), {T/T’, S/S'}))
((<15((s3, 53))), (ts(S', S) <), ({S'/s3}))

@, 0,9

The abduction step by the interpreter is in Step 4. Now By A Bp | prove(<«
ts((s1,s3)), =P) where =P = —3T'(trans(t1, s1, s2) A trans(T’, s2, s3)). A trace for
(s1, s3) is obtained by replacing the existentially quantified variable with a Skolem constant,
giving the trace (trans(t1, s1, s2) A trans(sky, s2, s3)), where sk is a Skolem constant.

S e

The principal difficulty with abducing goals to compute proofs is this: how do we distin-
guish a genuine abduction (that is, one constructed to correct an incompleteness in Bp) from
a spurious one (that is, one constructed simply out of convenience to complete a proof)?
The problem is a long-standing one in the field of abductive reasoning, and Kakas et al.
(1992) describes a number of remedies, ranging from simple syntactic measures (minimal
abductions, for example) to more elaborate ones based on the use of integrity constraints that
would rule out spurious additions to the store of abduced explanations. The corresponding
concern in system identification is one of structure estimation. The meta-interpreter equipped
with abduction performs a simple form of structure enumeration: each trace for a conjunction
of configuration-pairs contains sufficient information to reconstruct an automaton capable
of deriving all configuration-pairs, given input data (see Remark 10). Some portions of this
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structure may be spurious, and the structure estimation problem is concerned with detecting
these.

Definition 17 (Spurious atoms) Given system behaviour expressed as a conjunction of
configuration-pairs ¢, let T be a trace obtained with a meta-interpreter By and domain-
knowledge Bp. Then spurious atoms refers to some set of abduced atoms A C T to be
discarded from T .

It is evident that discarding a set of elements A from a trace 7 may result in some
configuration-pairs in ¢ no longer being derivable from Bp A (T — A). This requires a
modification to our previous requirement that a system should derive the entire conjunction
¢ (Fig. 4). Instead we relax this to entailing some sub-conjunction ¢’ of ¢. The structure-
estimation task is to find a plausible set (T — A) given c.

How are we to detect (and avoid) spurious atoms? We propose incorporating mechanisms
at the object- and the meta-level. The former results in changes to the transition system, and
the latter to the meta-interpreter. The second change is smaller, and we present that first.

3.1.1 Bounded abduction

The simplest “fix” to the problem of spurious abduction is introduce a bound on the number
of abductive steps allowed by the meta-interpreter. This results in the following change (we
only show the change to the abductive step: the other definitions are unchanged, except for
the obvious inclusion of a bound, which does not change on iterations):

meta_prove ([Goal|Goals],Bound, PO, P) : -
Bound > 0,
abduce (Goal) ,
update_proof (P0O,Goal,Pl),
Boundl is Bound - 1,
meta_prove (Goals,Boundl,P1,P) .

(Clearly, prove now will need an additional argument: prove (Goal, Proof) will
become prove (Goal, Bound, Proof).)

This mechanism is crude, but does put a limit on the number of abductive steps in a proof.
In turn, the meta-interpreter is forced to find proofs that contain only a bounded number
of spurious atoms. From now on, we will call the meta-interpreter capable of performing
bounded abduction as an “extended meta-interpreter”.

3.1.2 Stochastic theorem proving

Anticipating the move to a probabilistic transition system, we also introduce the built-in
machinery needed for stochastic selection of a goal, based on a probability distribution. We
will take the distribution to be specified by weights on (for us, ground) instances of Goal
(with a uniform distribution taken as the default distribution):

sample (Goal) : -
findall (Wt-Goal, (prove (Goal, Proof) ,wt (Goal,Wt) ) ,6 WGoals),
WGoals \= T[],
normalise (WGoals, PGoals),
select (PGoals, Goal) .
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Here select/2 randomly selects Goal using a distribution over PGoals. The definition
for sample/1 requires the meta-interpreter (to prove Goal: correctly, the call should now
be with an abduction-bound of 0).

We anticipate that a probabilistic transition system will require the definition of a meta-rule
for a stochastic transition predicate strans/3:

meta_rule(strans/3, (strans(T,S1,S2) : -
sample (trans(T,S1,S2))).

3.2 Object-level modifications

We extend the transition system in two different ways. First, we restrict ourselves to depth-
bounded transition systems (not to be confused with the abduction-bound at the meta-level).
This means that computational explanations of system-behaviour are now sequences of tran-
sitions of bounded length.

3.2.1 Depth-bounded transition system

The system thus cannot seek long explanations simply by inventing spurious atoms.?> The
definition of the transition system now becomes:

ts((Si,Sf),D):-
D=1,
trans(T,Si,Sf) .
ts((Si,Sf),D):-
D> 1,
trans(T,Si,S),
Dl is D - 1,
ts((S,Sf),D1).

3.2.2 Probabilistic transitions

The second modification is to move to a probabilistic transition system. The motivation here
is that spurious induction is likely to result in transitions with low probability. Using the
stochastic transition predicate just introduced, the change is minor:

ts((Si,Sf),D):-
D=1,
strans (T, Si, Sf) .
ts((si,sSf),D):-
D>1,
strans(T,Si,S),
Dl is D - 1,
ts((s,8f),D1).
From now on, we will refer to the depth-bounded probabilistic transition system as the

“extended object-level program”. For reasons that will become apparent soon, traces will
now be conjunctions of strans/3 facts.*

3 In fact, this restriction applies to more than just the problem of spurious atoms. The bound prevents
unbounded explanations, even without any abductive steps.

4 This does not require any further changes to the meta-interpreter: all that is needed is the procedure in Fig. 1,
using strans/3 goals marked in SLD-refutation proofs, rather than trans/3 goals.
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ConjTrace(c, Bp, Bm):

Given: A conjunction ¢ = s1 Asa A---Asj_1 (j > 1) where each s; = (74, 7it+1)
(vi,; € I') an extended object-level program Bp for ts/1 and any predicates
related to the definition of trans/3; and an extended meta-interpreter Bas for
Bp

Find: A conjunction of ground atoms 7" s.t. Bp UT /\Z;l1 ts(si)

1. For each s; in c:
(a) 7; = {T; : T; = Trace(s;, Bp, Bm)}
2. Let T=T1 xTa x---xT;4
3. Let (Tl,TQ,. .. ,ijl) €T and T=T,UTs ~~~Tj71
4. Return T'

Fig. 2 Non-deterministic computation of traces for a conjunction of configuration pairs. Here Trace is the
procedure in Fig. 1

Example 18 (Probabilistic system trace) The probabilistic system trace for the behaviour in
Example 16 is T = (strans(t1, s, s2) A strans(sk;, s2,s3)) Using a set representation,
T = {strans(t1, s1, s2), strans(sky, s2, s3)}. With Bp containing definitions as usual for
ts/1,Bp U T =ts((sl,s3)).

Assuming that the By and Bp provided refer to the extended versions (with pre-set abduction-
and depth-bounds), it is straightforward to obtain probabilistic traces of conjuctions of
configuration-pairs (see Fig. 2).

Each element of 7 in Fig. 2 is a tuple (71, 12, ..., Tj_1), where T; is a trace for each
si € Conj(s). It follows by construction that 7 = | J; T; is a trace for Conj(s). We note
that for deterministic systems, each 7; is a singleton set, and 7 contains a single tuple. In
general though, 7 can contain several tuples, each of which gives a trace for the sequence s.
We are now able to return to the function ConjTrace in Fig. 2. Assuming that the By, and
Bp provided refer to the extended versions (with pre-set abduction- and depth-bounds), it is
straightforward to implement ConjTrace along the lines of:

conjtrace([]1,[1).
conjtrace([ConfigPair|Pairs], Trace) :-
trace(ConfigPair, TO),
conjtrace (Pairs,T),
conjoin (TO0, T, Trace) .

(The non-deterministic aspect of ConjT race is naturally accounted for by the backtracking
mechanism of Prolog.) Traces of probabilistic system behaviour give us one way of estimating
parameters (probabilities over transitions) of transition systems, which we look at next.

3.3 System identification as meta-interpretive learning

Given a configuration y, a probabilistic transition system selects a transition ¢ and config-
uration y’ by sampling from a distribution 7. In this paper, we will estimate conditional
probabilities for a transition using as data traces of the probabilistic system for a conjunction
of configuration-pairs (Fig. 3).

The procedure in Fig. 3 makes some simplifying assumptions. First, transitions in the
procedure do not contain labels. This is easily rectified by extending the matrix P to include
labelled transitions. Secondly, each trace returned in 7 actually results in a separate estimate
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ProbEst(c, Bp, By) :

Given: A conjunction of configuration-pairs ¢; an extended object-level program
Bp for ts/1 and any predicates related to the definition of trans/3; and an
extended meta-interpreter By, for Bp

Find: A transition probability matrix

1. Let 7 = {T : ConjTrace(c, Bp, Bm)}
2. For all transitions (v,v') in ¢
(@) Let T = Ugp,er Ti
(b) let T, ,» = {s: s = sample(trans(a,v,7") where a € A and s € T’}
(c) Let Ty = {s: s = sample(trans(a,~y,x) where a € A,z € I' and s € T'}
(d) Py = |T%“/’|/|Tw|

3. Return P

Fig. 3 Estimating conditional probabilities of transitions from conjunctions of configuration-pairs. Here
ConjTrace is the procedure in Fig. 2. That procedure is non-deterministic, and 7 is all answers computed by
the procedure for a sequence s. We assume a finite set of configurations I" and a finite set of labels A. Py,

denotes the entry Pr(y’|y) in the transition probability matrix

SysId(S, Start, Finish, Bp, By ):

Given: A set of sequences of configurations S = {s1,52,...,8,} where s; =
(Vi1, Y42, --.); a start configuration Start; a terminal configuration Finish;
an object-level program Bp for ts/1 and any predicates related to the defini-
tion of trans/3; and a meta-interpreter By, for Bp

Find: The highest probability sequence of transitions from Start to Finish

1. Let ¢ = A, Conj(si)

2. Let P = ProbEst(c, Bp, Bur)

3. Let s = Viterbi(P, Start, Finish)
4. Return s

Fig. 4 A procedure for system identification using multiple sequences of configurations. ProbEst is the
function in Fig. 3 that estimates the entries of of the transition probability matrix (that is, P(y’|y) for all
transitions y — y’ that occur in ¢). Viterbi returns the sequence of configurations from Start to Finish with
the highest probability

for Pr(y’ly), and correctly, the probability P, ,» € [L, U] where L and U are the minimum
and maximum values of the probability estimates. In Fig. 3, a point-estimate for this proba-
bility is obtained by simply taking the union of all the traces in 7. This effectively treats all
ground atoms in all traces as being independent of each other.

The point-estimate of the transition probability allow us to define a form of system identi-
fication as the the highest-probability transition-sequence between any pair of configurations
(that is, the “system” is the transition sequence identified by the Viterbi algorithm: see Fig. 4).

‘We now return to Plotkin’s observation of having to look for a transition system that makes
it possible to obtain an expected behaviour. The procedure proposed in Fig. 4 provides one
way to address Plotkin’s requirement.

4 Application: transition system identification of biological networks

Networks are ubiquitous in Biology. They are used to represent biological relationships
ranging across all levels of organisation: for example, relationships between organisms, and
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between an organism and its environment; the flow of energy and matter in an ecosystem;
the pathway of carbon atoms through an ecosystem from producers of organic compounds to
consumers that release carbon by respiration; the nitrogen cycle that links the environment to
proteins and compounds that form the bodies of living things; the stimulus-response mecha-
nisms in constituting nervous pathways; the regulation and control of endocrine glands; the
events related to the division and replication of cells; and intra- and inter-cellular interactions
between chemicals.

Computationally, substantial research effort has been, and continues to be invested in
developing models of biological networks (Junker and Schreiber 2008). Much of this research
has been directed at representation and reasoning, with a focus on models that not only
determine the underlying relationships amongst entities, but are also capable of simulating
the dynamics of the system. The basic Petri net (PN) structure and its extensions have found
widespread use in this regard: Wagler (2011) provides an excellent summary of their use in
representing metabolic, signalling and genetic regulatory networks. Most of this work has
been concerned with hand-crafted Petri net models, with Durzinsky et al. (2011c) being a
notable exception that has looked at automatic identification of Petri nets from data.

In this section we assess the utility of meta-interpretive system identification for biological
systems. We will focus on identifying Petri net models, although, as will be seen below,
the logical setting allows us to provide extensive amounts of domain-knowledge (if this is
available).

4.1 Aims

We would like to assess the use of the procedure described in Fig. 4 as a tool for identifying
transition systems in biology. The principal question we aim to address is this: Can meta-
interpretive system identification correctly identify a model for a biological system, given
observational data?. We seek to address this in the form of four empirical studies based on
data quality, where the observational data can be either Noisy or Missing with respect to the
target networks, as follows:

Noisy ?
No Yes
No Study 1 Study 2

Missing ?

Yes Study 3 Study 4

There is, of course, the question of data quantity as well. We defer this for the present, but
return to it in Sect. 4.5.

4.2 Materials

All experiments use the following target networks (Petri net models of these networks are in
“Appendix A)”:
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Network Type Biological feature(s)

Glycolysis Metabolic Long chain of reactions, in which a substrate is modified
step-by-step into a product

MAPK cascade Signalling (a) Chain of phosphorylation reactions, each triggered

Yeast pheromone

by the presence of a protein earlier in the sequence; (b)
sequential signalling results in a cascade

Signalling/gene regulation  (a) Signalling cycle involving transmembrane receptors

activating a MAPK cascade; (b) cycle shut down using a
negative feedback loop; and (c) concurrent reactions

These networks impose several requirements on a program for identification of models from

data:

Network PN type Modelling requirements

Glycolysis Pure PNs Models with lots of transitions and places (10 or more of
each)

MAPK cascade Extended PNs (a) Models with activators for signalling (“read” arcs);
(b) models with specific ordering of signals

Yeast pheromone Extended, hierarchical (a) Re-use of multiple models; (b) models with feedback

and (c) deterministic behaviour from models with con-
current transitions

Each network will provide a different problem for our system identification approach. More
details of these networks as problems are now described.

4.2.1 Problems

Glycolysis

MAPK
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The glycolysis pathway was the first metabolic pathway to be discovered. It
is a classic case of a series of metabolic reactions in which products of one
reaction form the substrates (reactants) for the next reaction. The glycol-
ysis pathway is comprised of 10 such reactions. The reactions breakdown
(metabolize) each molecule of glucose into two molecules of pyruvate.
The sequence proceeds in three stages: primary (3 reactions), splitting (2
reactions) and phosphorylation (5 reactions). Altogether, 15 metabolites
are involved. The pathway is one of the central metabolic pathways in
living organisms: it provides an essential part of the energy required for
the functioning of a cell, and is used in several metabolic processes.

The MAPK pathway is a protein-based sequence of events that translate a
signal at the cell-surface to the nucleus. The pathway commences when a
protein or a hormone binds to a receptor protein that is usually bound to the
cell-membrane. This triggers a sequence of events that stops with the DNA
expressing one or more genes that alter cell function. At any one step of the
cascade, phosphor groups are attached to proteins. This phosphorylated
form of the protein then forms a “switch” for commencing the next step.
A total of 5 reactions involve 9 molecules. MAPK is a central signalling
pathway that is used in all cell-tissues to communicate extra-cellular events
to the cell nucleus. Itis used to regulate a variety of responses, like hormone
action, cell-cycle progression and cell-differentiation. Itis also of immense
clinical value, since a defect in the pathway often leads to uncontrolled
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growth. Proteins in the pathway are thus natural targets for anti-cancer
drugs.

Yeast pheromone Receptors at the cell-surface receive an extra-cellular signal and transmit
this signal, by use of a series of proteins and enzymes to the nucleus, in
turn triggering the expression of a gene or a set of genes that cause the cell
to respond to the external signal. The intra-cellular mechanisms by which
yeast (S. cerevisice) responds to an external mating signal (a pheromone) is
one of the best understood signal transmission mechanisms in eukaryotes.
Using a combination of genetics, biochemistry, and theoretical biology, the
following are now known either completely, or substantially: the proteins,
and enzymes involved; the order in which events take place; the protein-
protein interactions, enzyme-catalyzed reactions and feedback links; and
the rates at which many of the reactions occur. The resulting network is
complex with 19 molecules in 6 reactions, but it re-uses several compo-
nents found in signalling pathways of all eukaryotes. Specifically, many
of the proteins found in the pathway have homologs in humans, and the
G protein cycle and MAPK pathways are conserved in both yeast and
humans.

4.3 Domain knowledge

Domain knowledge can be usefully thought of in two parts: the first specifying transitions for
the meta-interpreter; and the second specifying constraints relevant to the problems described
above. The meta-interpreter requires definitions for the following relations: Pre(t, ¢), which
is true if transition ¢ satisfies pre-conditions in configuration c¢; Post(t, ¢), which is true
if ¢ satisfies the post-conditions in configuration ¢ for a transition ¢ to be applicable in
configuration c; and Succ(t, c1, c2), that specifies the successor relation between transitions
and configurations. For transition systems based on Petri nets, we will assume that a meta-
interpreter transition ¢ will correspond to some Petri net transition. There is a potential source
of confusion here between transitions of the meta-interpreter, and transitions of a Petri net.
To avoid this, we will refer to the latter as PN-transitions, although we will continue to use ¢
to refer to both kinds of transitions. For transition systems based on Petri nets, pre- and post-
conditions on a PN-transition ¢ are defined in terms of input and output places, i.e., places
with directed arcs respectively into and out of t. That is, the pre-condition for PN-transition
t is that all input places for  must have a token; and the post-condition is that all output
places for t must have a token (David and Alla 2010). For biological networks represented
as Petri net, these pre- and post-conditions will simply enforce the basic stoichiometric
requirements associated with the corresponding PN-transition. Succ for PNs is a constrained
form of the general successor relation for Petri nets defined in Durzinsky et al. (2011c¢) (the
constraints arise from requiring that places that are not inputs or outputs for a transition ¢
remain unchanged in successor states). A partial description of Pre, Post and Succ used in
this paper is in “Appendix B”.

Problem-specific domain knowledge used here is in the form of specifications of (possibly)
relevant PN-transitions. These can be as simple as specifying input and output places, or can
encode significantly more biological detail. “Appendix B” shows the different levels of details
for the problems studied here. A summary is as follows:

Glycolysis PN-transitions are known reactions along with their inputs and outputs.
The transitions are named using the catalyst that enables the corresponding
reaction.
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Table 1 General form of the data

provided for system identification Place States
(top), and an example from the 0 1 2 n
MAPK problem (bottom)
P1 51,0 51,1 51,2 51,k
P2 52,0 52,1 52,2 52,k
Pl 51,0 S11 51,2 S1k
Place Time and states
t=0 t=1 t=2 t=3 t=4 t=>5
50 51 52 53 54 S5
map4k 1 1 1 1 1 1
map3k 1 0 0 0 0 0
map3kp 0 1 1 1 1 1
map2k 1 1 0 0 0 0
map2kp 0 0 1 0 0 0
map2kpp 0 0 0 1 1 1
mapk 1 1 1 1 0 0
mapkp 0 0 0 0 1 0
mapkpp 0 0 0 0 0 1

MAPK PN-transitions now include biological knowledge of known phosphoryla-
tion reactions. In Petri net terms, this allows us to construct extended PNs
(that is, transitions with “read” arcs).
Yeast pheromone The pheromone response pathway uses some standard signalling build-
ing blocks: a G-protein cycle for transmission from the receptor; a
MAPK cascade; G-protein formation from sub-units; and pathways for
the formation of scaffolds that hold proteins in place. PN-transitions as
domain-knowledge allows the re-use of some known sub-nets.

4.3.1 Data

Data are taken to be the result of one or more experiments, each capable of generating a
sequence of states.’ Each state is a marking in Petri net terminology: see Table 1.

For all experiments in this paper, place-values will be Boolean, with a token-value 1 denoting
that adequate quantity of the the corresponding place is present, and 0 denoting that an
adequate quantity is not present. This results in a qualitative variant of usual Petri nets, in
which tokens are allowed to have non-negative integer values.

4.3.2 Algorithms and machines

Simulated data for experiments with noise are obtained using the probabilistic environment
provided within the PRISM system (Sato and Kameya 1997) (the details are in Sect. 4.4). The

5 Datasets can be downloaded from: http://www.cse.unsw.edu.au/~mike/PetriData.tar.
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meta-interpreter, the meta-learner used the interpreter, including computation of probabilities
for traces, and the program used for computing successors in Petri nets are available from
the authors as Prolog programs.

The experiments were conducted on an Intel Core i7 laptop computer, using VMware
virtual machine running Fedora 13, with an allocation of 2 GB for the virtual machine. The
Prolog compiler used was Yap, version 6.2.2.°

4.4 Method

We categorise the amount of noise in the data into 4 categories: none, low, medium and
high (the quantitative meaning of these qualitative values is clarified below). Similarly we
categories the amount of missing data into none, low, medium, and high. Based on the
amount of noisy and missing data (namely incomplete and incorrect data), we distinguish
between the following case studies.

Complete, Correct:
Missing = none; Noise = none
Complete, Incorrect:
Missing = none; Noise = low, medium, high
Incomplete, Correct:
Missing = low, medium, high; Noise = none
Incomplete, Incorrect:
Missing = low, medium, high; Noise = low, medium, high

Our method is straightforward. For each problem, in broad outline, the steps followed are
these:

1. Let T denote the target (correct) sequence of states (configurations) for the problem with
an initial state S and a final state F’

2. Repeat R times:

3. For Missing = none, low, medium, high

(a) For Noise = none,low, medium, high
i. Generate a data sample consisting of N configuration sequences using

T,Missing, Noise

ii. Provide the data sample to the meta-interpreter and obtain sample estimates of
state-transition probabilities from traces obtained from the meta-interpreter

iii. Obtain the highest-probability sequence of states 7* between S and F using the
probability estimates obtained from the data

iv. Compare T and T*

The following details are relevant:

— For all problems, we will take the initial state S to be one with all places having the value
0. The final state F' is problem-specific.

— For all problems, R is 10 (this is the number of repetitions of the experiments, to account
for sampling variations).

— We follow the transition noise model described in Srinivasan et al. (2016). That is, low,
medium and high levels of noise are defined in terms of the probability with which
a probabilistic transition generates the output-state of the corresponding deterministic

6 http://www.dcc.fc.up.pt/~vsc/Yap/.
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transition. Here, low noise means that this probability is 90%; medium noise means that
the probability is 75%; and high noise means that the probability is 50% (put another
way, a low value denotes 10% noise, medium denotes 25% noise and high denotes 50%
noise).

— Probabilities for missing values are similarly defined. A low value means that there is a
90% probability of state being present, medium means a probability of 75% and high,
a probability of 50%. will denote 25% and high will denote 50%. For simplicity, initial
and final states are never missing. Data that have no missing values and no noise are
characterised by Missing = none and Noise = none.

— When identifying the system with missing values, it may become necessary to identify
intermediate states. This will require providing the transition system with depth-bounds
greater than 1. We will consider depth-bounds of 1 and 2 for experiments with missing
values. For all other cases, the depth-bound is 1.

— For all problems, the size of the data sample N is 100. That is, we provide 100 discrete
time-sequences of data. (We will comment later on lower values of N).

— We compare efficacy of system identification based on a state-by-state comparison of 7'
and T*. The accuracy of identification is the number of states in T correctly identified in
place by T*. We will be concerned with average accuracy (or error) over the R repetitions.

4.5 Results

For each of the four cases described in the previous section, we present the results that show
the average accuracy of system identification. The results are tabulated in Tables 2 and 3. A
summary of these tables is this: (a) Systems are identified reliably when data are complete and
noise free; (b) Provided data are not missing, reliable identification is possible even with high
noise levels; (c) Provided data are not noisy, reliable identification is possible upto moderate
levels of missing data; and (d) When data are noisy and missing, reliable identification is
possible at low levels of noise and missing data, if the depth-bound is greater than 1.

It is instructive to examine the extent to which these basic findings are affected by exper-
imental design choices. Specifically, we would like to know: (a) Will poor results improve
if more data were provided; and (b) Will good results degrade if less data were provided.
Tables 4 and 5 provide some relevant evidence. The tabulations suggest some refinements
to our previous findings, namely: (a) with imperfect data, we can expect accuracy of system
identification to increase if data are increased, and to fall if they are decreased; and (b) when
the data are complete and correct, correct system identification possible with very low sam-
ple sizes [here, we obtain the correct system with a single data instance: this is consistent
with other results in the area of meta-interpretive ILP, where complex hypotheses can be
constructed, often with a single instance (Muggleton et al. 2014b)].

5 Discussion and related work

Computational approaches are increasingly being viewed as critical for knowledge discovery
in the natural sciences (Kell 2012). On one hand this may be addressed by using “big data” to
reduce the space of possible solutions (Hey et al. 2009). On the other hand, if data is limited,
as, for example, is typical for short time-series gene expression experiments, learning can be
constrained by relevant domain knowledge (Subramanian et al. 2005). The latter setting is
the one addressed in our work. The view that formalisms used to characterise the semantics
of computation can have a central role in understanding systems biology is not new (Regev
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Table 2 System identification results (part 1)

Problem Accuracy (%)

(a) Complete and correct data

Glycolysis 100.0 (0.0)
MAPK 100.0 (0.0)
Yeast 100.0 (0.0)
Problem Accuracy
L M H

(b) Noisy data (no missing data)

Glycolysis 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
MAPK 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
Yeast 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
Problem Accuracy
Depth=1 Depth=2
L M H L M H

(c) Missing data (no noise)
Glycolysis 100.0 (0.0) 39.2 (3.8) 22.5(3.8) 100.0 (0.0) 100.0 (0.0) 82.5(26.7)
MAPK 52.9(6.5) 51.4(7.0) 42.86 (0.0) 100.0 (0.0) 100.0 (0.0) 82.9(26.2)
Yeast 65.0 (22.9) 37.5(0.0) 37.6 (0.0) 100.0 (0.0) 62.5 (0.0) 37.5(0.0)

L, M, H denote “low”, “medium” and “high” levels of noise or missing values. “Depth” denotes the depth-
bound provided for the transition-system and meta-interpreter (where this is not shown, the value is 1) . The
entries are mean values obtained over 10 repetitions and the numbers in parentheses are standard deviations

Table 3 System identification results (part 2)

Problem Accuracy
Depth=1 Depth=2
L M H L M H

(a) Missing data (low noise)
Glycolysis 100.0 (0.0) 40.0 (5.0) 20.0 (4.1) 100.0 (0.0) 100.0 (0.0) 31.7 (8.2)

MAPK 50.0 (7.1) 42.9 (0.0) 42.9 (0.0) 100.0 (0.0) 100.0 (0.0) 42.9 (0.0)

Yeast 96.3 (11.3) 37.5(0.0) 37.5(0.0) 100.0 (0.0) 62.5 (0.0) 38.8 (3.8)
(b) Missing data (medium noise)

Glycolysis 25.0 (0.0) 25.0 (0.0) 16.7 (0.0) 25.0 (0.0) 25.0 (0.0) 16.7 (0.0)

MAPK 57.1 (0.0) 51.4 (7.0) 42.9 (0.0) 100.0 (0.0) 100.0 (0.0) 42.0 (0.0)

Yeast 70.0 (20.3) 36.2 (3.78) 37.5(0.0) 100.0 (0.0) 48.7 (10.4) 37.5(0.0)
(c) Missing data (high noise)

Glycolysis 16.7 (0.0) 16.7 (0.0) 16.7 (0.0) 16.7 (0.0) 16.7 (0.0) 16.7 (0.0)

MAPK 44.3 (10.0) 40.0 (8.6) 40.0 (5.7) 100.0 (0.0) 100.0 (0.0) 40.0 (5.7)

Yeast 46.2 (9.8) 36.2 (8.7) 31.2(6.2) 87.5(19.4) 43.7 (10.1) 32.5(6.1)

L, M, H denotes low, medium and high levels of missing values, Depth is the depth-bound, and the entries are
mean values obtained over 10 repetitions. The numbers in parentheses are standard deviations
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Table 4 Increasing sample size
N. The accuracies shown are for
noise-free data with high levels of N =100 N =200
missing data and depth=2

Problem Accuracy (%)

Glycolysis 82.5(26.7) 100.0 (0.0)
MAPK 82.9 (26.2) 100.0 (0.0)
Yeast 37.5(0.0) 37.5(0.0)

Table 5 Decreasing sample size N. The accuracies shown are for noisy data with no missing values (a) and
for complete and correct data (b)

Problem Accuracy (%)
Noise=L Noise=M Noise=H
N =100 N =10 N =100 N =10 N =100 N =10

(a)
Glycolysis 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)  90.0 (14.8) 100.0 (0.0)  40.8 (16.0)

MAPK 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 95.7 (12.8) 100.0 (0.0) 54.3(17.8)
Yeast 100.0 (0.0) 100.0 (0.0) 100.0 (0.0 98.7 (3.7) 100.0 (0.0) 50.0 (14.8)
Problem Accuracy (%)
N =100 N =10 N=1
(b)
Glycolysis 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
MAPK 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
Yeast 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

and Shapiro 2002). Petri nets have probably been the most widely used such formalism
for modelling in systems biology (Koch et al. 2011). Typically, though, such models are
hand-crafted from biological knowledge. Although the problem of identification, or reverse
engineering, in systems biology has been the subject of many studies [a recent review is
in Villaverde and Banga (2014)] the work of Durzinsky et al. (2008) appears to be the first
published method for the reconstruction of Petri net models of biological systems from time
series data, where a combinatorial method is used to generate the set of all pure Petri nets
consistent with discrete time-series data; subsequently this was broadened to handle extended
Petri nets, with read and inhibitory arcs (Durzinsky et al. 2011b). In Durzinsky et al. (2011a)
their Petri net reconstruction algorithm was reformulated using Answer Set Programming
[ASP—see Baral (2003) for an overview]. ASP is an approach to logic programming that
has a number of useful features for systems biology modelling, including true negation
[as well as default negation or negation as failure (Gelfond 2008)]; efficient solvers; and a
number of declarative built-in language constructs for choice and optimization. They note
some advantages of ASP for this work: that it allows a declarative reformulation of their
previous implementation; the possibility of addition of declarative biological knowledge as
constraints; and, since the ASP system used is based on a constraint solvers, the approach was
as efficient as a previous special-purpose implementation. Essentially, the method searches
for models that conform to a graph of system states, termed the experiment graph, where
models are constrained by clauses specifying the network reconstruction algorithm.

There have been several approaches to the identification of Petri nets from data in the area
of business process mining. Typical approaches Aalst et al. (2010) use a transition system as
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an intermediate representation then apply region theory (Ehrenfeucht and Rozenberg 1990) to
generate a Petri net. However, this type of approach in practice can suffer from both over- and
under-fitting and may not be able to handle noisy data and incompleteness (Aalst et al. 2010).
More recently work using first-order logic representations has been applied. In Bellodi et al.
(2016) a two-stage aproach to workflow mining starts by extracting first-order constraints
from process logs, then applies Markov logic to learn parameters of a statistical relational
model. This improves predictive accuracy on real-world datasets. An enriched representation
of events for process mining in first-order logic is presented in Ferrilli (2016) but no results
from learning were given.

Abductive logic programming to learn to complete metabolic networks (Reiser et al. 2001)
was the basis of the Robot Scientist project (King et al. 2004). This was extended to combine
abduction and induction in tasks where general rules assist in prediction (Tamaddoni-Nezhad
et al. 2006) where the problem is modelled by a causal network.

Inoue (2011) formulated Boolean networks as (normal) logic programs, and Inoue et al.
(2014) showed how this semantics enabled a method of learning from state transition pairs,
where each state is an interpretation. However, this does not identify probabilistic transitions.
In Inoue et al. (2013) meta-level abduction is applied to learn biological networks represented
as causal graphs. Although these are not dynamic models like Petri nets they do capture
inhibitory and activatory effects.

The XHAIL system also uses ASP for representation and reasoning in a method that
combines abduction with inductive search to revise biological networks (Ray et al. 2010). In
this work two domain-specific meta-rules are used to characterise reactions as assertable or
retractable. A more recent version was used to revise a model of the yeast metabolic network
from the Robot Scientist project with over 1000 reactions (Bragaglia and Ray 2015). The task
for XHAIL in these studies is to abduce rules to correctly complete the metabolic network
graph, rather than the task of system identification addressed in this paper. That is, XHAIL
learns a rule for each product of a reaction, whereas in our approach what is learned for each
reaction is a single transition representing the change in state for all the reactants (essentially,
a transition is vector-valued). Unlike the approach presented in this paper, to the best of
our knowledge XHAIL is unable to include previously learned sub-networks as individual
transitions in order to learn a hierarchical model. XHAIL’s representation does allow learning
to use both classical and default negation, which our approach does not. Both approaches
can handle uncertainty by computing over weights defined for data, although XHAIL does
not use probabilistic sampling.

Clearly, there is a close link between meta-interpretive system identification as we have
described it, and recent research on meta-interpretive ILP (MILP) (Muggleton et al. 2014b).
In this paper our approach is in some sense a development of the meta-interpretive learn-
ing approach to grammar learning (Muggleton et al. 2014b). Although this does not use
probabilistic inference, the MILP approach MetaBayes does, combining meta-interpretive
learning with Bayesian inference (Muggleton et al. 2014a). However, in comparison with
our approach, where probabilistic sampling is defined at the object level in terms of a prob-
abilistic transition system, in MetaBayes it is at the meta-level, essentially by converting the
meta-interpreter to a stochastic logic program that is executed to generate clause refinements
stochastically.

We now list some important points of similarity and difference between our approach and
MILP in general. First, although both MILP and the work here use a meta-interpreter, the
motivations are different. For MILP, the meta-interpreter is intended to be a general-purpose
mechanism for providing higher-order templates for learning first-order logic programs. Here,
the meta-interpreter is necessary for generating the operational semantics of general transition
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systems. Since transition systems can be written as logic programs (as seen in the paper), it
follows that the meta-interpreter used by a MILP system can, in principle, also be used for
system identification. It is therefore unsurprising that the inspiration for the meta-interpreter
here lies in the one described in Muggleton et al. (2014b) (however, see next).

Second, to the best of our knowledge, meta-interpreters used by MILP engines have not
employed a specific abduction bound, or have been instrumented in the manner described
here to allow a data-driven estimation of probabilities over proofs by sampling at the object-
level. These features are necessary for practical system identification, in cases where data on
system behaviour can be incorrect or incomplete, or both (see Sect. 4).

Third, the main ideas proposed in this paper are of more importance than our imple-
mentation. These ideas are: (a) the use of Plotkin’s Structural Operational Semantics (SOS)
as a general setting for system identification; (b) the use of a depth-bounded, probabilis-
tic transition system as a modified form of the transition-systems studied in SOS; (c) an
abduction-bounded MILP-style meta-interpreter for systems in (b); and (d) data-driven esti-
mation of the most likely sequence of transitions between an initial and a final configuration of
the system. All of (b)—(d) can be implemented within a probabilistic logic programming sys-
tem like PRISM (Sato and Kameya 1997), or its generalisations like Problog (De Raedt 2007).
For our purpose, an implementation using standard Prolog programs has been sufficient.

We conclude with answers to some questions that may arise from the experiments
described above. First, concerning the representation:

Are we retricted to qualitative values? In all experiments, Boolean values were used to
indicate the presence or absence of a sufficient quantity of a chemical. Is this a requirement
of the representation? Clearly not, as shown early in the paper (Example 9), in which tokens
are integer-valued. We would however expect the transition relation to become increasingly
non-deterministic as the cardinality of values allowed increases This can, in turn, lead to
multiple proofs, not all of which may make sense, biologically speaking. The most effective
antidote for this is again more domain-knowledge.

Are we restricted to Petri nets? Again, early examples in the paper show how we are able
to represent a variety of automata (including Turing machines) with the representation of
transition systems. In fact, with the extension to probabilistic transition systems, we should,
in principle also be able to represent different kinds of probabilistic automata. The system
identification procedure we use, for example, is in effect extracting a model from the transition
probability matrix of a Markov model. Our specific choice of Petri nets here is motivated by
its ability to represent a wide variety of biological networks (see Koch et al. 2011).

Are we restricted to logic programs? In principle, no. The procedures in Figs. 1, 2, 3 and
4 provide a complete specification of the approach we have used. The implementation as
a logic program is especially natural, given the built-in facilities for theorem-proving and
backtracking.

Next, concerning the usefulness to Biology:

Will the approach scale-up? The experiments here are on real, but modest-sized networks.
They have been chosen to highlight some specific features of biological networks, namely:
routine metabolic reactions, catalysed reactions, cascades, feedback loops and pathway re-
use. We have also seen how domain-knowledge can be naturally included at the object-level,
as part of the definition of the transition relation. The experimental results here suggest that
construction of large networks is likely to proceed hierarchically (the Yeast network for
example, contains several smaller sub-networks, abstracted to the level of a transition), and
with strong domain knowledge to constrain proofs by the meta-interpreter.

What about “real” biology? A criticism of the paper is this: all experiments are reconstruc-
tions of networks from simulated data. How useful is this? There are in fact two separate
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questions here: (a) Broadly speaking, how useful to biologists are re-constructive experiments
of the kind reported here?; and (b) Specifically, will the approach work with real experimental
data? Standard practice in computational biology to verify that an identification algorithm
works as expected is to use controlled experiments where algorithms are applied to recon-
struct known networks from simulated data. Quantitative evaluations of the reconstruction
performance of such algorithms are a necessary step to assess the algorithm’s utility. But
clearly, the results of such experiments may not be sufficient to guarantee that the technique
will work with experimental data, which can often be noisy, missing or both. In this paper
experiments have included such problems with the data, and the results act as a guide of
what can be expected when the approach is used in practice. The question of whether the
method can be used to identify biologically meaningful networks from experimental data on
real systems can only be answered in conjunction with biologists. This we leave for future
research.

6 Concluding remarks

System identification pre-supposes an understanding of what constitutes a system. When
identifying mathematical models of a system, it is normally accepted that this means finding
a set of ordinary, or partial differential equations, that can be used to simulate the dynamic
behaviour of a system. But what of other kinds of system models? Here the situation is
less clear, with special-purpose identification methods proposed for each kind of model. In
this paper, we revisit a general model of system semantics proposed by Plotkin that can
act as a template for a variety of different kinds of computational models. The Structural
Operational Semantics (SOS) model proposed in Plotkin (1981) allows us to specify system
behaviour by defining transition systems. By changing definitions, we are able to model
system behaviour as the operation of different kinds of automata. In this paper, we show: (1)
how transition systems used in SOS can be implemented as meta-interpreted logic programs;
(2) how research in meta-interpretive ILP (MILP) can be used to extend the meta-interpreter
for transition systems to allow for abduction of transitions; (3) how a probability estimates
can be obtained to justify the preference of some transition sequences over others. Finally,
and most importantly, we show using a comprehensive set of experiments how the approach
developed can be used to identify Petri-net models of well-known biological systems from
data of varying quality and quantity. Taken together, we believe the work makes a substantial
case for the meta-interpretive induction of computational systems from data.

In principle, it should be possible to replicate the results that we have shown here with
any logic programming system extended with probabilities (in our experience, it was only
a technical glitch and efficiency concerns that prevented the use of PRISM, for example).
To that extent, the specific implementation that we have described is unimportant. What is
important though is that it is possible to learn non-trivial computational models from data.
We believe that the meta-interpretive approach offers the possibility of going much further
than what we have described here. It may be possible, for example, to provide templates for
the structured induction of transition models. By this we mean the specification of transitions
that recursively consist of a hierarchy of sub-networks. This kind of specification would bring
the work much closer to the forefront of MILP research that has been looking at templates
for learning recursive definitions.

On the application front, to the best of our knowledge, this is the first paper that has
presented significant empirical evidence for a single approach that can deal with the problem
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of learning Petri net models of biological systems from data of varying quality and quantity.
The ease with which we were able to identify systems—sometimes even with substantial data
deficiencies—is both surprising and promising. It is of interest to see if the approach continues
to identify systems correctly with larger networks with greater complexity than the ones we
have looked at here. We expect the greatest difficulties to arise from biological experiments
yielding only a small amount of data. In such cases, the role of biological theory becomes
increasingly important, translating into domain-knowledge for system identification.

One issue that remains to be addressed is that of identification within systems of modular
components and their parameters. This is a complex problem since any suitable representation
must capture both hierarchical dependencies as well as concurrency in modular interactions
(Pedersen and Plotkin 2010).

A Target networks
B Domain knowledge
B.1 Transition specification

pre(T,S) : -
ground(S),
model (M) ,
transition (M, T, Input,_),
\+ violates_stoichiometry (Input,S).

post (T, S) : -
ground (S),
model (M) ,
transition(M,T,_,Output),
\+ violates_stoichiometry (Output, S) .

succ(T,Si,Sj):- reachable(T,Si,Sj).

violates_stoichiometry (Places, State) : -
mem (Place, Places),
(Place = neg(P) ->
val (P, State,X), X \= 0;
val (Place, State, X),
X =< 0).
% reachable/3 is an implementation of the specification of
legal
% transitions in a Petri net described in Durzinsky et al.

B.2 Problem-specific information

The specification of problem-specific knowledge demonstrates several aspects: (a) a simple
declarative specification of named transitions (Glycolysis); (b) a specification in which named
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transition can be arbitrary terms (MAPK); and (c) a specification in which inputs and outputs
can involve arbitratry computation (Yeast) (Figs. 5, 6, 7).

Glycolysis
model (gly) .

place(gly,glu). place(gly,atp). place(gly,adp).
place(gly,g6bp). place(gly, f6p). place(gly, fl6bp).
place(gly,dhap). place(gly,g3p). place(gly,nad).
place(gly, '13bpg’) . place(gly,nadh). place(gly, '3pg’) .
place(gly, '2prg’). place(gly,pep). place(gly,pv).

% needed for constrained generation of successors by
reachable/3
% allowed_values (Model, Place,Values)

Q

% allowed_changes (Model, Place,Values)
allowed_values(gly,_,[0,1]1).
allowed_changes (gly,_,[-1,0,11).

Glu WD —( ) e

ATP ADP

[ ] [
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DHAP ) G3P
\\ r's -’

/,Q ATP
\Q O\
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3PG S
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Fig. 5 Network model of the glycolysis pathway. The conversion of DHAP to G3P is taken to be in one-
direction only (the reverse is shown by a dashed line, and not identified)
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MAP4K
MAP3K MAP3KP
MAP2K
: | MAP2KPP
MAP2KP
MAPK MAPKP MAPPP

Fig. 6 Network model of the MAPK cascade. Arcs drawn with double arrows indicate “read arcs” (see
Example 9)

BARL STE2 Guarded Transitions:
t0: Enzyme mediated hormone degradation
t1: Receptor activation
t2: G-protein cycle
t3: MAPK cascade
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Fig. 7 Network model of yeast pheromone network. Filled (black) transitions denote sub-networks. Dashed
lines as in Fig. 5
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% Named PN-transitions
% transition (Model,Name, Input,Output)
transition (gly,hexokinase, [glu,atp]l, [g6p,adpl) .
transition(gly,phos_gluc_isomerase, [g6pl, [f6p]) .
transition (gly,phos_fruc_kinase, [f6p,atpl, [f16bp,adp]) .
transition(gly,aldolase, [f16bp], [dhap, g3p]l).
transition(gly, triose_phos, [dhapl, [g3p]) .
transition(gly,glyceraldehyde, [g3p,nad], ['13bpg’,nadhl]) .

(

(

(

(

transition(gly,phos_kinase, ['13bpg’,adp], ['3pg’,atp]).
transition(gly,phos_mutase, ['3pg’], ['2pg’]).
transition(gly,enolase, ['2pg’], [pepl) .

transition(gly,pv_kinase, [pep], [pv]) .

MAPK
model (mapk) .

place (mapk,mapdk) . place (mapk,map3k). place(mapk,map3kp) .
place (mapk,map2k) . place (mapk,map2kp) . place (mapk,map2kpp) .
place (mapk,mapk) . place (mapk,mapkp) . place (mapk,mapkpp) .

allowed_values (mapk,_, [0,1]).
allowed_changes (mapk,_, [-1,0,1]).

transition (mapk, phosphorylates (map4dk,map3k), [mapdk,map3k],
[map4k, map3kp]) .

transition (mapk, phosphorylates (map3kp,map2k), [map3kp,map2k],
[map3kp,map2kpl) .

transition (mapk, phosphorylates (map3kp,map2kp) , [map3kp,map2kp],
[map3kp, map2kpp] ) .

transition (mapk, phosphorylates (map2kpp,mapk) , [map2kpp, mapk],
[map2kpp, mapkp]) .

transition (mapk, phosphorylates (map2kpp, mapkp) , [map2kpp, mapkp] ,
[map2kpp, mapkpp] ) .

Yeast pheromone
model (pheromone) .

place (pheromone, barl) .

place (pheromone, alpha) .

place (pheromone, alpha (minus)) .

place (pheromone, ste2) .

place (pheromone, [alpha,ste2]) .

place (pheromone, [g_alpha,g_beta,g_gammal]) .
place (pheromone,g_alpha) .

place (pheromone, [g_beta,g_gammal) .

place (pheromone, [ste5,stell, ste7, fus3]).
place (pheromone, ste20) .
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place (pheromone, fus3 (pp)) .
place (pheromone, stel2) .

allowed_values (pheromone,_, [0,1]).
allowed_changes (pheromone,_, [-1,0,1]) .

pheromone (alpha). receptor(ste2).

g_protein(g_alpha). g _protein(g_beta). g _protein(g_gamma) .
mapdk (ste20). map3k(stell). map2k(ste7). mapk (fus3).
scaffold(steb) .

complex (Complex) : -
model (Net) ,
place (Net, Complex) ,
Complex = [_,_|_1.

transition (pheromone, receptor_activation, [P,GPCR], [[P,GPCR]]) : -
pheromone (P) ,
receptor (GPCR) .

transition (pheromone,g_protein_cycle, [R,GC1l], [GP,GC2]) : -
active_receptor (R),
g_protein_complex (GC1l),
g_protein (GP),
g_protein_complex (GC2),
GCl = [GP|GC2].

transition (pheromone,mapk_ cascade, [Ras,Complex,GC], [KPP,GC]) : -
mapk_complex (Complex),

map4k (Ras) ,
g_protein_complex (GC),
mapk (K) ,

KPP =.. [K,pp].

transition (pheromone, pheromone_degradation, [Alpha,barl], [AM]) : -
pheromone (Alpha) ,
AM =..[Alpha,minus].

active_receptor ([Pheromone, GPCR]) : -
pheromone (Pheromone) ,
receptor (GPCR) .

g_protein_complex (Complex) : -
complex (Complex) ,
check_g_protein_complex (Complex) .

check_g_protein_complex([Gl,G2]):-

1

g_protein(Gl), g_protein(G2).
check_g_protein_complex([Gl,G2|Rest]):—

g_protein(Gl),
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check_g_protein_complex([G2 |Rest] ).

mapk_complex (Complex) : -
complex (Complex) ,
check_mapk_complex (Complex) .

check_mapk_complex (Complex) : -
del (K1,Complex,Rest), mapk (K1),
del (K2,Rest,Restl), map2k(K2),
del (K3,Restl,_), map3k(K3).
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