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Abstract Probabilistic automata models play an important role in the formal design and
analysis of hard- and software systems. In this area of applications, one is often interested in
formal model-checking procedures for verifying critical system properties. Since adequate
system models are often difficult to design manually, we are interested in learning models
from observed system behaviors. To this end we adopt techniques for learning finite prob-
abilistic automata, notably the Alergia algorithm. In this paper we show how to extend
the basic algorithm to also learn automata models for both reactive and timed systems. A
key question of our investigation is to what extent one can expect a learned model to be a
good approximation for the kind of probabilistic properties one wants to verify by model
checking. We establish theoretical convergence properties for the learning algorithm as well
as for probability estimates of system properties expressed in linear time temporal logic and
linear continuous stochastic logic. We empirically compare the learning algorithm with sta-
tistical model checking and demonstrate the feasibility of the approach for practical system
verification.

Keywords Probabilistic model checking · Probabilistic automata learning · Linear time
temporal logic

1 Introduction

Grammatical inference (GI) (Higuera 2010), also known as grammar induction or gram-
mar learning, is concerned with learning language specifications in the form of grammars
or automata from data consisting of strings over some alphabet. Starting with Angluin’s
seminal work (Angluin 1987), methods have been developed for learning deterministic, non-
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deterministic and probabilistic grammars and automata. The learning techniques in GI have
been applied inmany areas, such as speech recognition, software development, pattern recog-
nition, and computational biology. In this paper we adapt the learning techniques in the GI
area to learn models for model checking.

Model Checking is a verification technique for determining whether a system model com-
plies with a specification provided in a formal language (Baier and Katoen 2008). In the
simplest case, system models are given by finite non-deterministic or probabilistic automata,
but model-checking techniques have also been developed for more sophisticated system
models, e.g., timed automata (Laroussinie et al. 1995; Bouyer et al. 2011, 2008). Powerful
software tools that are available for model checking include UPPAAL (Behrmann et al. 2011)
and PRISM (Kwiatkowska et al. 2011).

Traditionally, models used in model-checking are manually constructed, either in the
development phase as system designs, or for existing hard- or software systems from known
specifications and documentation. This procedure can be both time-consuming and error-
prone, especially for systems lacking updated and detailed documentation, such as legacy
software, 3rd party components, and black-box systems. These difficulties are generally
considered a hindrance for adopting otherwise powerful model checking techniques, and
have led to an increased interest in methods for data-driven model learning (or specification
mining) for formal verification (Ammons et al. 2002; Sen et al. 2004a;Mao et al. 2011, 2012).

In this paperwe investigatemethods for learning deterministic probabilistic finite automata
(DPFA) from data consisting of previously observed system behaviors, i.e., sample execu-
tions. The probabilistic models considered in this paper include labeled Markov decision
processes (MDPs) and continuous-time labeled Markov chains (CTMCs), where the former
model class also covers labeled Markov chains (LMCs) as a special case. Labeled Markov
decision processes can be used to model reactive systems, where input actions are cho-
sen non-deterministically and the resulting output for a given input action is determined
probabilistically. Nondeterminism can model the free and unpredictable choices from an
environment or the concurrency between components in a system. MDPs and by extension
LMCs are discrete-time models, where each transition takes a universal discrete time unit.
CTMCs, on the other hand, are real-time models, where the time delays between transitions
are determined probabilistically. We show how methods for learning deterministic prob-
abilistic finite automata (DPFA) (Carrasco and Oncina 1994, 1999; Higuera 2010) can be
adapted for learning the above three model classes and pose the results within a model check-
ing context. We give consistency results for the learning algorithms, and we analyze both
theoretically and experimentally how the convergence of the learned models relates to the
convergence of system properties expressed in linear time logics.

We also compare the accuracy of model checking learned models with the accuracy of
a statistical model checking approach, where probabilities of query properties are directly
estimated from the empirical frequencies in the data. Our results here demonstrate a smooth-
ing effect of model learning which can prevent overfitting, but may in some cases also lead
to less accurate results compared to statistical model checking. Our results also indicate a
significant advantage of model learning over statistical model checking for the amortized
time complexity over multiple queries.

1.1 Related work

Work on learning finite automata models can first be divided into two broad categories: active
learning following Angluin’s L∗ algorithm (Angluin 1987), and passive learning based on a
state-merging procedure.
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Active learning is based on the assumption that there exists a teacher or an oracle that
answers membership and equivalence queries. Originally developed by Angluin (1987) for
learning deterministic finite automata, L∗ has been generalized in many different ways that
also include extensions to learning automata models with inputs and outputs, as well as
probabilistic automata: in Bollig et al. (2010), L∗ is exploited to learn communicating finite-
statemachines by using a given set of positive and negativemessage sequence charts to answer
themembership and equivalence queries. InNiese (2003),L∗ is adapted to learn deterministic
Mealymachines. This work is further extended to learn deterministic I/O automata by placing
a transducer between the teacher and the Mealy machine learner (Aarts and Vaandrager
2010). In Grinchtein et al. (2005, 2006), L∗ is adapted to learn deterministic event-recording
automata which is a subclass of real-time automata.

To learn probabilistic automata models, modified versions of L∗ have been proposed
in which a membership query now asks for the probability of a given word in the target
model (Tzeng 1992; de Higuera and Oncina 2004; Feng et al. 2011). In Komuravelli et al.
(2012), L∗ combined with a stochastic state-space partitioning algorithm makes it possible
to learn nondeterministic labeled probabilistic transition systems from tree samples. Exact
oracles for (classical or probabilistic) membership and equivalence queries are usually not
available in practice and have to be approximated. For deterministic finite automata this has
been implemented using a conformance testing sub-routine (Raffelt and Steffen 2006).

Passive learning methods that only require data consisting of observed system behaviors
have been developed for probabilistic automata models (Carrasco and Oncina 1994; Ron
et al. 1996). These approaches are based on iteratively merging candidate states. Different
approaches differ with respect to the strategy according to which candidate states are gen-
erated, and the criteria used for deciding whether to merge states. In algorithms following
the paradigm of the Alergia algorithm (Carrasco and Oncina 1994), first a maximal, tree-
shaped automaton is constructed, and iteratively reduced by recursive merge operations. The
learning paradigm introduced by Ron et al. (1996), on the other hand, starts with a minimal
automaton and successively refines it by expanding existing states with new candidate states.
More important than these architectural differences, however, are differences in the criteria
used for state merging. The most common approach is to use a statistical test for the equiva-
lence of the distributions defined at the nodes (Carrasco and Oncina 1994; de la Higuera and
Thollard 2000). For basic probabilistic automata only tests for the equivalence of binomial
distributions are required, for which the use of the Hoeffding test is usually suggested. For
timed automatamodels, this has been extended inSen et al. (2004a) to also test the equivalence
of two exponential distributions defining the delay times at the states. Thollard et al. (2000)
provide the minimum divergence inference algorithm to control state merging: two nodes
should be merged if the loss of the likelihood can be compensated by the reduced complexity
of the resulting model. Ron et al. (1998) base the state merging decision on the existence of a
distinguishing string, i.e. a string for which the difference of probability at the two candidate
states exceeds a certain threshold. The state merging algorithms have been extended to learn
stochastic transducers (Oncina et al. 1993) and timed automata (Verwer 2010).

In a number of papers the convergence properties of learning algorithms have been studied.
Carrasco and Oncina (1994), de la Higuera and Thollard (2000) and Sen et al. (2004a) give
learning in the limit results, i.e., the unknown automaton is correctly identified in the limit
of large sample sizes. Quantitative bounds on the speed of convergence in the form of PAC
learnability results are given in Ron et al. (1996), Clark and Thollard (2004) and Castro and
Gavaldà (2008).

The use of grammatical inference techniques for model construction in a verification
context has been proposed in several papers (Cobleigh et al. 2003; Giannakopoulou and
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Păsăreanu 2005; Leucker 2007; Singh et al. 2010; Feng et al. 2011). These papers focus on
active learning using variants ofL∗, and onlyFeng et al. (2011) consider the probabilistic case.

Statistical model checking (SMC) (Sen et al. 2004b; Legay et al. 2010) or approximate
model-checking (Hérault et al. 2004) has a similar objective asmodel learning for verification.
Instead of constructing a model from sample executions, one directly checks the empirical
probabilities of properties in the data. Since the sample executions can only be finite strings,
this approach is limited with respect to checking probabilities for unbounded properties.

1.2 Contribution and outline

Ourwork follows theAlergia paradigm and is closely linked to previouswork (Carrasco and
Oncina 1994; Sen et al. 2004a). We here do not introduce any major algorithmic novelties,
but give an integrated account of learning system models that can also represent input/output
behaviors and time delays. The novel aspect of this paper is a theoretical and experimental
analysis of the feasibility of using the learned model for formal verification of temporal
logic properties. We present theoretical results that based on the convergence properties for
Alergia-like algorithms establish the convergence also of probability estimates for system
properties of interest. An extensive empirical evaluation provides insight into the workings
of the algorithm and demonstrates the feasibility of the learning approach for verification
applications in practice. The evaluation also includes a detailed comparison of the learning
approach with statistical model checking, considering both accuracy results and the time and
space complexity for performing model checking. Finally, we provide a new detailed proof
of the fundamental convergence results. While generally following the lines of argument
pioneered in Carrasco and Oncina (1994), de la Higuera and Thollard (2000) and Sen et al.
(2004a), our new proof contains the following improvements: it is cast in a very general
framework, and accommodates in a uniform manner different classes of automata models,
including input/output and timed automata. It is presented in a modular form that clearly
identifies separate conditions for the algorithmic structure of the state merging procedure,
for the statistical tests used for state-merging decisons, and for the data-generating process.
The structure of the proof thereby facilitates the application of the convergence result to new
learning scenarios. Since this general convergence analysis is somewhat independent from
the rest of this paper, it is placed in a self-contained “Appendix”.

The paper is structured as follows: Sect. 2 presents background material. Section 3
describes the adapted Alergia algorithm for learning system models, and Sect. 4 analyzes
the consistency and convergence properties of the learning algorithm. Section 5 provides
empirical results on the behavior of the learning algorithm and demonstrates the use of the
algorithm in a model checking context. The last section concludes the paper and outlines
directions for future research. The “Appendix” contains our general convergence analysis.
This paper is an extended version of Mao et al. (2011, 2012). Compared to these earlier
conference publications, this paper significantly expands the theoretical analysis of the con-
sistency aspects. It also includes a much more comprehensive experimental evaluation, in
which the comparison against statistical model checking is added as a new dimension.

2 Preliminaries

2.1 Strings

We start by introducing the notion of strings that will be used throughout the paper.
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– Given a finite alphabet Σ , we use Σ∗ and Σω to denote the set of all finite and infinite
strings over Σ , respectively.

– Given a infinite string s = σ0σ1 . . . ∈ Σω starting with the symbol σ0, s[ j . . .] =
σ jσ j+1σ j+2 . . . is the suffix of s starting with the ( j + 1)st symbol σ j and σ0σ1 . . . σ j ∈
Σ∗ is the prefix of s.

– Given an input alphabetΣ in and an output alphabetΣout, an infinite I/O string is denoted
asπ = σ0α1σ1 . . . ∈ Σout×(Σ in×Σout)ω, and σ0α1σ1 . . . αnσn ∈ Σout×(Σ in×Σout)∗
is the prefix of s with 2n + 1 alternating I/O symbols.

– Given a finite string s = σ0σ1 . . . σn , we use prefix(s) = {σ0 . . . σ j |0 ≤ j ≤ n} to
denote the set of all prefixes of string s. For a finite I/O string π = σ0α1σ1 . . . αnσn ,
prefix(π) = {σ0α1σ1 . . . α jσ j |0 ≤ j ≤ n}. Given a set of finite strings S, prefix(S)

denotes all prefixes of strings in S.
– A timed string ρ = σ0t0σ1t1 . . . includes the time delay ti ∈ R>0 between the observation

of two consecutive symbols σi and σi+1 in the string. Given a timed string ρ, ρ[n] = σn
is the (n + 1)th symbol of ρ, ρ[n . . .] = σntnσn+1tn+1 . . . is the suffix starting from the
(n + 1)th symbol, ρ〈n〉 = tn is the time spent between observing the symbols σn and
σn+1, and ρ@t is the suffix starting at time t ∈ R>0, i.e., ρ@t = ρ[n . . .], where n is the
smallest index such that

∑n
i=0 ρ 〈i〉 ≥ t . The skeleton of ρ, denoted S(ρ), is the string

σ0σ1 . . . ∈ Σω.

2.2 Stochastic system models

We begin with the definition of the basic (D)MC model, which quantifies transitions with
probabilities. We next extend (D)MCs to DMDPs by introducing input actions, where each
input action on a state defines a probability distribution over successor states. In both DMCs
and DMDPs, the time spent in each state is given by a universal discrete time unit. We lift
this assumption in DCTMCs by modeling the transition times using a probabilistic model.

Definition 1 (MC) A labeled Markov chain (MC) is a tupleMc = 〈Q,Σout, I, δ, L〉, where
– Q is a finite set of states,
– Σout is a finite alphabet,
– I : Q → [0, 1] is an initial probability distribution over Q such that

∑
q∈Q I(q) = 1,

– δ : Q × Q → [0, 1] is the transition probability function such that for all q ∈ Q,∑
q ′∈Q δ(q, q ′) = 1, and

– L : Q → Σout is a labeling function.

Definition 2 (DMC) A labeled Markov chain is deterministic (DMC), if

– there exists a start state qs ∈ Q with I(qs) = 1, and
– for all q ∈ Q and σ ∈ Σout: there exists at most one q ′ ∈ Q with L(q ′) = σ for which

δ(q, q ′) > 0.

Since the possible successor states in a DMC are uniquely labeled, we sometimes abuse
notation and write δ(q, σ ) for δ(q, q ′) where L(q ′) = σ .

Each state in the Mc represents a configuration of the system being modeled, and each
transition represents the movement from one system configuration to another (quantified by
a probability). An (infinite) path in Mc is a string of states: h = q0q1 . . . ∈ Qω where
qi ∈ Q and δ(qi , qi+1) > 0, for all i ∈ N. The trace for h, denoted trace(h), is a sequence
of state labels s = σ0σ1 . . . ∈ (Σout)ω, where σi = L(qi ) for all i ∈ N. Given a finite
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path h = q0q1 . . . qn , the cylinder set of h, denoted Cyl (q0q1 . . . qn), is defined as the set of
infinite paths with the prefix h. The probability of the cylinder set is given by

PMc (Cyl (q0q1 . . . qn)) = I(q0) ·
n∏

i=1

δ(qi−1, qi ).

For any trace s in a DMC, there exists at most one path h such that trace(h) = s, hence the
definition above readily extends to cylinder sets for strings. If the MC is non-deterministic,
there may exist more than one path with trace s in which case the probability of Cyl (s) is
given by

PMc (Cyl (s)) =
∑

h:trace(h)=s

PMc (Cyl (h)).

The probabilities assigned to cylinder sets induce a unique probability distribution on
(Σout)ω (equipped with the σ -algebra generated by the cylinder sets) (Baier and Katoen
2008). We denote this distribution also with PMc . Moreover, we denote by PMc,q the dis-
tribution obtained by (re)defining q ∈ Q as the unique start state.

Note that our definition of (D)MCs differs from other versions of probabilistic automata,
such as Rabin (1963) and Segala (1996): we assume states to be labeled, whereas the more
common automaton model puts the labels on the transitions. Both types of models are equiv-
alent, but a translation of a transition-labeled automaton to a state-labeled automaton may
increase the number of states by a factor of |Σout |. Despite the increase in model size, we
still adopt (D)MCs as systemmodels due to the model checking tools and algorithms already
developed for this model class.

The MC is a purely probabilistic model, i.e., in a certain state, the probability of reaching
a specific state in the next step is known. Deterministic labeled Markov decision processes
(DMDPs) extend DMCswith non-determinism, which can be used to model reactive systems
where input actions are chosen non-deterministically and the resulting output for a given input
action is determined probabilistically.

Definition 3 (DMDP) A deterministic labeled Markov decision process (DMDP) is a tuple
Mp = 〈Q,Σ in,Σout, qs, δ, L〉, where
– Q, I, and L are the same as for DMCs,
– Σ in is a finite alphabet of input actions,
– Σout is a finite alphabet of output symbols,
– the transition probability function is defined as δ : Q × Σ in × Q → [0, 1], such that for

all q ∈ Q and all α ∈ Σ in,
∑

q ′∈Q δ(q, α, q ′) = 1, and

– for all q ∈ Q, α ∈ Σ in, and σ ∈ Σout, there exists at most one q ′ ∈ Q with L(q ′) =
σ ∈ Σout and δ(q, α, q ′) > 0.

The last condition in the definition above togetherwith the existence of a unique initial state
qs makes the behavior of the model deterministic conditioned on the (non-deterministically
chosen) input actions. Analogously to DMCs, we will sometimes abuse notation and write
δ(q, α, σ ) instead of δ(q, α, q ′) where L(q ′) = σ . A path in a DMDP Mp is an alternating
sequence of states qi ∈ Q and input symbols αi ∈ Σ in, denoted as q0α1q1α2q2 . . .. The
trace of a path in a DMDP is defined analogously to the notion of trace in MCs. That is, the
trace of a path q0α1q1α2q2 . . . is an alternating sequence of input symbols and state labels
π = σ0α1σ1α2σ2 . . . ∈ Σout × (Σ in × Σout)ω, where σi = L(qi ). To reason about the
probability of a set of paths in the DMDP, a scheduler (also known as an adversary or a
strategy) is introduced to resolve the non-deterministic choices on the input actions.
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Fig. 1 a A DMDP Mp . b The DMC Mc
S1

induced by the scheduler S1. c The DMC Mc
S2

induced by

the scheduler S2

Definition 4 (Scheduler) LetMp be a DMDP and Q+ be the set of state sequences of non-
zero length. A scheduler for Mp is a function S : Q+ × Σ in → [0, 1] such that for all
q = q0q1 . . . qn ∈ Q+,

∑
α∈Σ in S(q, α) = 1. A scheduler is said to be deterministic if for

all q ∈ Q+ there exists an α ∈ Σ in for which S(q, α) = 1.

The scheduler specifies an action for each state based on the path history for that state. It
is said to be fair if in any state q all input actions can be chosen with non-zero probability.
If a scheduler S only depends on the current state we say that S is memoryless. An Mp

together with a scheduler S induce a probability distribution defined by the cylinder set of
all finite path fragments in Mp . For a cylinder set Cyl (q0α1q1 . . . αnqn) the probability is
defined as

PMp,S(Cyl (q0α1q1 . . . αnqn)) = I(q0) ·
n∏

i=1

S(q0 . . . qi−1, αi )δ(qi−1, αi , qi ).

Similarly to DMCs, the probability distribution defined above induces a probability distri-
bution over cylinder sets of I/O strings, and hence a distribution over infinite I/O sequences.

Example 1 The graphicalmodel of a three-stateDMDPMp is shown inFig. 1a,whereΣ in =
{α, β} and Σout = {A, B}. From the initial state qs (double circled) labeled with symbol
A, the actions α and β are chosen nondeterministically. Consider now the two memoryless
schedulers S1 and S2 given by S1(q) = β, and S2(q) = α if q = qs and S2(q) = β

otherwise. The schedulers induce the DMCs in Fig. 1b, c, where for the string s = AAAA
we have PMc

S1
(AAAA) = 1, and PMc

S2
(AAAA) = 4/9.

Both DMCs and DMDPs are discrete-time models, i.e., each transition takes a universal
discrete time unit. The labeled deterministic continuous-time Markov chain (DCTMC) is a
time-extension of the DMC, which models the amount of time the system stays in a specific
state before making a transition to one of its successor states (Sen et al. 2004a; Chen et al.
2009).

Definition 5 (DCTMC) A deterministic labeled continuous-time Markov chain (DCTMC)
is a tuple Mt = 〈Q,Σout, qs, δ, R, L , 〉, where:
– Q,Σout, qs, δ, L are defined as for DMCs;
– R : Q → R≥0 is the exit rate function.

In a DCTMC, the probability of making a transition from state q to one of its successor
states q ′ within t time units is given by δ(q, q ′) · (1 − e−R(q)·t ), where (1 − e−R(q)·t ) is the
cumulative distribution of an exponential function with rate parameter R(q).
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(a) (b)
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1

1

0.9 3.02.0

{A} {B}{A} {A} {A} {B}

Fig. 2 a A DLMC Mc and b a structurally identical DCTMC Mt modeling the amount of time between
state transitions

Example 2 Consider the DMCMc and the DCTMCMt shown in Fig. 2. Both models have
three states with initial state qs (double circled) andΣout = {A, B}. From qs , the probability
of taking one of its two transitions are 1/3 and 2/3, respectively. Compared withMc in (a),
the DCTMC Mt in (b) has exit-rates associated with the states, e.g., 0.9 on qs . In Mt , the
probability of leaving the initial state and moving to state q2 within t time units is calculated
as 2/3 · (1 − e0.9·t ).

A timed path h in a DCTMC is an alternating sequence of states and time stamps
q0t0q1t1q2 . . ., where ti ∈ R>0 denotes the amount of time spent in state qi before going to
qi+1. By adopting the notation for timed strings we let h[n] = qn and h〈n〉 = tn .

Let Cyl (q0, I0, . . . , qk−1, Ik, qk) denote the cylinder set containing all paths with h〈i〉 ∈
Ii and h[i] = qi , for i < k. The probability of Cyl (q0, I0, . . . , qk−1, Ik, qk) is then defined
inductively as follows (for k ≥ 1) (Baier et al. 2003):

PMt (Cyl (q0, I0, . . . , qk−1, Ik, qk))

= PMt (Cyl (q0, I0, . . . , qk−1)) · δ(qk−1, qk) · (e−R(qk−1) inf(Ik ) − e−R(qk−1) sup(Ik )).

Following the definition of cylinder sets for DMCs, we can directly extend the definition
above to probability distributions over cylinder sets for timed strings.

2.3 Specification languages

As will be detailed in Sect. 3, the proposed learning algorithms assume that data appears in
the form of sequences of linearly ordered observations of the system in question.When learn-
ing system models, we therefore only look for models that preserve linear-time properties,
which include safety properties (something bad will never happen) and liveness properties
(something good will always happen).

Linear-time temporal logic (LTL) (Pnueli 1977) is a logical formalism used for specifying
system properties from a linear time perspective. The property specified by an LTL formula
does not only depend on the current state, but can also relate to future states. The basic
ingredients of an LTL formula are atomic propositions (state labels σ ∈ Σout), the Boolean
connectors conjunction (∧) and negation (¬), and two basic temporal modalities © (next)
and U (until) (Baier and Katoen 2008).

Definition 6 (LTL) Linear-time temporal logic (LTL) over Σout is defined by the following
syntax

ϕ::=true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2, where a ∈ Σout.

Definition 7 (LTL Semantics) Let ϕ be an LTL formula over Σout. For s = σ0σ1 . . . ∈
(Σout)ω, the LTL semantics of ϕ are as follows:

– s |� true
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– s |� a iff a = σ0
– s |� ϕ1 ∧ ϕ2 iff s |� ϕ1 and s |� ϕ2

– s |� ¬ ϕ iff s � ϕ

– s |� © ϕ iff s[1 . . .] |� ϕ

– s |� ϕ1Uϕ2 iff ∃ j ≥ 0. s[ j . . .] |� ϕ2 and s[i . . .] |� ϕ1, for all 0 ≤ i < j

For better readability, we also use the derived temporal operators � (always) and ♦
(eventually) given by ♦ϕ = (trueUϕ) (the model will eventually satisfy property ϕ) and
�ϕ = ¬(♦¬ϕ) (property ϕ always holds).

Model checking an MCMc wrt. a LTL formula ϕ means to compute the total probability
of the traces in Mc which satisfy ϕ, i.e., PMc ({s | s |� ϕ, s ∈ (Σout)ω}).
Example 3 The LTL formula AUB requires that a state q labeled with B will eventually be
reached, and all states visited before q should all be labeled with A. For the DMC Mc in
Fig. 2a, only paths starting with qsq2 satisfy the LTL formula. Model checking Mc wrt.
AUB therefore amounts to computing the probability of all paths starting with qsq2, i.e.,
PMc (Cyl(qsq2)) = 2/3. The LTL formula ♦�A, read as eventually forever A, requires that
after a certain point only states labeledwith Awill be visited. Paths starting fromq1 satisfy�A
and paths eventually reaching q1 satisfy ♦�A. Model checkingMc wrt. ♦�A can therefore
be similarly reduced to the calculation of the probability PMc ( ∪

i∈[0,∞)
Cyl(qs(q2qs)i q1)) =

1/3 + 2/3 · 1/3 + (2/3)2 · 1/3 + · · · = 1.

The quantitative analysis of aDMDPMp against a specificationϕ amounts to establishing
the lower and upper bounds that can be guaranteed when ranging over all possible schedulers.
This corresponds to computing

Pmax
Mp (ϕ) = sup

S
PMp,S(ϕ) and Pmin

Mp (ϕ) = inf
S

PMp,S(ϕ),

where the infimum and supremum are taken over all possible schedulers for Mp .
Continuous stochastic logic (CSL) (Baier et al. 2003) is a general branching-time temporal

logic proposed for CTMCs that allows for a recursive combination of state and path formulas.
However, as discussed in the beginning of the section, we only consider linear time properties
of systemmodels andwe therefore define a linear sub-class of CSL, called sub-CSL, in which
at most one temporal operator is allowed.

Definition 8 (sub-CSL) A sub-CSL formula ϕ is defined as follows:

ϕ::=Φ | Φ1UIΦ2 | ♦IΦ | �IΦ,

whereΦ is a propositional logic formula defined asΦ::=true | a | Φ1∧Φ2 | ¬Φ a ∈ Σout,
and I is an interval in Q≥0.

Definition 9 (Semantics for sub-CSL) Let ϕ be a sub-CSL formula overΣout. The semantics
of ϕ over a timed trace ρ = σ0t0σ1t1 . . . over Σout is as follows

– ρ |� Φ1UIΦ2, iff ∃t ∈ I. (ρ@t |� Φ2 ∧ ∀t ′ < t, ρ@t ′ |� Φ1)

– ρ |� ♦IΦ, iff ∃t ∈ I. (ρ@t |� Φ)

– ρ |� �IΦ, iff ∀t ∈ I. (ρ@t |� Φ)

The semantics for the Boolean connectives are defined as for LTL.

Model checking a CTMC Mt wrt. a sub-CSL formula ϕ amounts to computing the
probability of the timed traces which satisfy ϕ, i.e., PMt (ϕ) = PMt ({ρ | ρ |� ϕ}).
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Example 4 The sub-CSL formula ϕ = A U[1.5,2.3] B requires that a state q labeled with B
will be reachedwithin the time interval [1.5, 2.3] and that all states visited before q are labeled
with A. For instance, the path qs 1.8 q2, generated by the DCTMC Mt in Fig. 2b, satisfies
ϕ. Model checking Mt against ϕ amounts to calculating PMt (Cyl(qs, [1.5, 2.3], q2)) =
2/3 · (e−0.9×1.5 − e−0.9×2.3) ≈ 0.0444.

3 Learning stochastic models

In what follows we consider methods for automatically learning stochastic system models,
as defined in Sect. 2, from data. The proposed algorithms are based on the Alergia algo-
rithm (Carrasco and Oncina 1994; Higuera 2010) and adapted to a verification context. The
Alergia algorithm starts with the construction of a frequency prefix tree acceptor (FPTA),
which serves as a representation of the data. The basic idea of the learning algorithm is to
approximate the generating model bymerging together nodes in the FPTAwhich correspond
to the same state in the generating model. Two nodes are merged after they pass a compatibil-
ity test based on the statistical information associated with the nodes. Both the compatibility
test and the state merge are conducted recursively over all successor nodes.

In this section, we first present the original FPTA for strings, which only contain output
symbols, and then extend it to handle I/O strings and timed strings. Afterwards, we discuss
the general procedure of the Alergia algorithm. At the end, we customize the compatibility
tests and merge operations for learning different types of system models.

3.1 Data representation

An FPTA T represents a set of strings S over Σout in a tree structure, where each node is
labeled by a symbol σ ∈ Σout and each path from the root to a node qs corresponds to a
string s ∈ prefix(S). Since a string s uniquely identifies a node in T and vice versa, we
will sometimes use the symbol qs for states and s for strings interchangeably. Each node
qs is associated with a transition frequency function f (qs, σ ), which encodes the number
of strings with prefix sσ in S; we define f (s, ·) = ∑

σ∈Σout f (s, σ ). The successor state of
qs given σ is denoted succ(s, σ ) = sσ , and the set of all successor states of qs is denoted
succs(s). By normalizing the transition frequency functions f (s, σ ) by f (s, ·) we obtain
the transition probability functions δ(s, σ ). Figure 3a shows an FPTA constructed from
observation sequences generated by the DMC in Fig. 2b. The root of the tree is labeled with
the symbol A and associated with the frequencies f (A, B) = 15 and f (A, A) = 7. The
frequency functions indicate that in the dataset there are 15 strings with prefix AB, 7 strings
with prefix AA and there are 22 strings with prefix A, i.e., f (A, ·) = 22.

The I/O frequency prefix tree acceptor (IOFPTA) is an extension of the FPTA for repre-
senting a set of I/O strings Sio. In addition to the output symbols σ ∈ Σout attached to the
nodes, each edge is labeled with an input action α ∈ Σ in. Similar to FPTAs, a string from
the root to a node qπ corresponds to an I/O string π ∈ prefix(Sio). A transition frequency
function f (π, α, σ ) is associated with the node qπ , to encode the number of strings with the
prefix πασ in Sio. As for FPTAs, we let f (π, α, ·) = ∑

σ∈Σout f (π, α, σ ).
By normalizing the transition frequency functions we obtain the transition probability

functions δ(π, α, σ ) for the IOFPTA. Figure 3b shows an IOFPTA constructed from I/O
strings obtained from the DMDP in Fig. 1a.

A timed frequency prefix tree acceptor (TFPTA) represents a set of timed strings St . A
TFPTA is structurally identical to an FPTA and can be obtained from the skeleton of St .
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Fig. 3 Examples of frequency prefix tree acceptors

Thus, the path from the root to a node qs in an TFPTA corresponds to a prefix of the skeleton
of a timed string in St , i.e., s ∈ prefix(S(St )). The transition frequency function associated
with a node qs is defined as for FPTAs by only considering the skeleton of St . In addition to
the transition frequency function, each node qs is also associated with an average empirical
exit time t̂(s) (which is approximately the inverse of the exit-rate):

t̂(s) = 1

f (s, ·) ·
∑

ρ∈X ρ〈|s|〉,

where X = {ρ | s ∈ prefix(S(ρ)), ρ ∈ St } and |s| is the number of symbols in the string s.
Figure 3c illustrates an TFPTA constructed from strings sampled from the DCTMC in Fig. 2.
Each node in the tree is associated with an average exit time, i.e., the time spent in the state
before observing the next symbol. With the symbol A occurring 22 times as prefix of a string,
we get an average exit time of 1.2 time units for the root node and the estimation of the exit
rate is therefore 1

1.2 ≈ 0.83.

3.2 Alergia

In this section we first sketch the main flow of the Alergia algorithm for learning DMCs as
a modified version of the algorithm presented in Carrasco and Oncina (1994) and Higuera
(2010). Afterwards we adapt the general learning algorithm to the different stochastic system
models considered in this paper.

The Alergia algorithm is initialized by creating two identical FPTAs T and A as repre-
sentations of the dataset S (line 2 of Algorithm 1). The FPTA T is kept as a data representation
from which relevant statistics are retrieved during the execution of the algorithm. The FPTA
A is iteratively transformed bymerging nodes that have passed a statistical compatibility test.
Observe that an FPTA (with normalized transition functions) is a DMC, and so is any model
obtained by iteratively merging nodes. Similar properties hold for IOFPTAs and TFPTAs.

All compatibility tests are based on T to ensure the statistical validity of the compati-
bility tests that are performed. In some accounts of the Alergia algorithm it is suggested
to join samples associated with different nodes of the original FPTA when the nodes are
merged (Carrasco and Oncina 1994), and to base subsequent tests on these joined sam-
ples. While intuitively beneficial, since more data becomes available for testing, this latter
approach invalidates some statistical arguments for the overall consistency of the algorithm:
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if S1 and S2 are two sets of samples that each are drawn by independent sampling from the
same distribution, then the union S1 ∪ S2 no longer is a set of independent samples, if the
union is performed conditional on the fact that S1 and S2 have passed a statistical test of
compatibility. Since the assumption of independent sampling underlies all statistical tests
we are using, such a join, therefore, makes a theoretical analysis of the resulting procedure
very challenging. In order to maintain a strong match between the algorithmic solution, and
the theoretical analysis we can provide, we generally do not join the associated samples
when merging nodes. However, we have also conducted a few experiments comparing the
performance of the algorithm with and without joining of the samples. It turned out that the
differences in the constructed models and the runtime were only minor (cf. Sect. 5.1).

Following the terminology of Higuera (2010), Algorithm 1 maintains two sets of nodes:
RED nodes, which have already been determined as representative nodes andwill be included
in the final output model, and BLUE nodes which are scheduled for testing. Initially, RED
contains only the initial node qsA while BLUE contains the immediate successor nodes of the
initial node. When performing the outer loop of the algorithm, the lexicographically minimal
node qb in BLUE will be chosen. If there exists a node qr in RED which is compatible with
qb, then qb and its successor nodes are merged to qr and the corresponding successor nodes
of qr , respectively (line 10). If qb is not compatible with any state in RED, it will be included
in RED (line 15). At the end of each iteration, BLUE will be updated with the immediate
successor nodes of RED that are not contained inRED (line 17). Aftermerging all compatible
nodes in the tree, the frequencies in A are normalized (line 18 of Algorithm 1).

In order to adapt theAlergia algorithm to the different model classes presented in Sect. 2,
we only need to tailor the compatibility test (line 9) and the merge operator (line 10) to each
specific model class. In the following section, the required model-specific compatibility tests
and merge operators are presented.

Algorithm 1 Alergia
Input: : A set S of strings and a parameter ε > 0.
Output: : A probabilistic model A.
1: T ← FPTA(S)

2: A ← T
3: RED ← {qsA}
4: BLUE ← {q | q ∈ succs(qr ), qr ∈ RED}
5: while BLUE �= ∅ do
6: qb ← lexicographically minimal q ∈ BLUE
7: merged ← false
8: for qr ∈ RED & !merged /* qr in lexicographic order */ do
9: if Compatibility(T, qr , qb, ε) then
10: Merge(A, qr , qb)
11: merged ← true
12: end if
13: end for
14: if !merged then
15: RED ← RED ∪ {qb}
16: end if
17: BLUE ← {q | q /∈ RED, q ∈ succs(qr ), qr ∈ RED}
18: end while

A ← Normalize(A);
19: return A
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3.3 Local compatibility test and merge

Formally, two nodes qr and qb in an FPTA T are said to be ε-compatible (ε > 0), if the
following properties are satisfied:

1. L(qr ) = L(qb),
2. LocalCompatible(qr , qb, ε) is TRUE, and
3. the successor nodes of qr and qb are pair-wise ε-compatible.

Algorithm 2 Compatibility test
Input: : FPTA T , nodes qr and qb , and ε > 0
Output: : true if qr and qb are compatible
1: if L(qr ) �= L(qb) then
2: return false
3: end if
4: if !LocalCompatible(qr , qb, ε) then
5: return false
6: end if
7: for all σ ∈ Σout do
8: q ′

r ← succ(qr , σ )

9: q ′
b ← succ(qb, σ )

10: if !Compatibility(T, q ′
r , q

′
b, ε) then

11: return false
12: end if
13: end for
14: return true

Algorithm 2 illustrates the compatibility test. Condition (1) requires the two nodes to have
the same label (line 1). Condition (2) is model-specific and defines the local compatibility
test for qr and qb (line 4). The last condition requires the compatibility to be recursively
satisfied for every pair of successor nodes of qr and qb (line 10). Note that only pairs of
successor nodes reached by the same output symbol (as well as the same input symbol in the
IOFPTA case) are tested. For example, q ′

r and q ′
b are being tested only if q ′

r = succ(qr , σ )

and q ′
b = succ(qb, σ ) (in an IOFPTA, q ′

r and q
′
b are determined as q ′

r = succ(qr , α, σ ) and
q ′
b = succ(qb, α, σ )).
The compatibility test depends on a parameter ε that controls the severity of theLocalCom-

patible tests, which are defined so that smaller values of ε will make LocalCompatible return
false less often. In most cases, ε directly translates to the significance level of a statistical
test that is the core of the LocalCompatible test.

In the following sections, we start by specifying the local compatibility test and merge
procedure for FPTAs, and afterwards extend the specifications to IOFPTAs and TFPTAs.
For FPTAs and IOFPTAs, the local compatibility test depends only on the local transition
frequency functions, whereas for TFPTAs we also need to take the estimated exit rates into
account. Analogous considerations apply for the merge procedure.

3.3.1 Local compatibility test and merge in FPTAs

Given two nodes qr and qb in an FPTA, their local compatibility requires that the difference
between the next symbol distributions defined at two nodes is bounded. Specifically, we
check for local compatibility (Line 4 in Algorithm 2) by employing the Hoeffding test (see
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Fig. 4 Merge node qb (shadowed) to node qr (shadowed and double circled) in the FPTA. a The transition
from q ′ to qb is redirected to qr . bNode qb and its two outgoing transitions are folded to qr and the frequencies
are updated: f (qr , B) = f (qr , B) + f (qb, B) = 25 and f (qr ,C) = f (qr ,C) + f (qb,C) = 11. c The
resulting FPTA obtained after recursively folding the successor nodes of qr and qb

Algorithm 3) realized by the call Hoeffding( f (qr , σ ), f (qr , ·), f (qb, σ ), f (qb, ·), ε), for
all σ ∈ Σout. Line 4 of Algorithm 3 is a statistical test for the identity of the transition
probabilities at the states qr and qb to their σ -successors (Carrasco and Oncina 1999). The
actual statistical level of significance of this test is given by 2ε rather than ε itself.However, for
the asymptotic consistency analysis thatwewill be concernedwith inSect. 4 and “Consistency
of Alergia-style Learning” of Appendix the constant factor 2 is immaterial, and we will a
little loosely refer to ε as the significance level of the Hoeffding compatibility test. Also
observe that the feasible range of the ε parameter is (0, 2]. At ε = 2 line 4 will always return
false.

Algorithm 3 Hoeffding
Input: : f1, n1, f2, n2, ε ∈ (0, 2]
Output: : true if f1/n1 and f2/n2 are sufficiently close
1: if n1 == 0 or n2 == 0 then
2: return true
3: end if
4: return | f1

n1
− f2

n2
| < (

√
1
n1

+
√

1
n2

) ·
√

1
2 ln 2

ε

If two nodes qr and qb are compatible, qb is merged to qr . The merge procedure (line 10
of Algorithm 1) follows the same steps as described in Higuera (2010). Firstly, the (unique)
transition leading to qb from its predecessor node q ′ ( f A(q ′, qb) > 0) is re-directed to qr
by setting f A(q ′, qr ) ← f A(q ′, qb) and f A(q ′, qb) = 0. Secondly, the successor nodes
of qb are recursively folded to the corresponding successor nodes of qr and the associated
frequencies are updated. The complete merge procedure is illustrated in Fig. 4.

3.3.2 Local compatibility test and merge in IOFPTAs

In an IOFPTA, the transition frequency function on node q , f (qr , α, q ′), is also con-
ditioned on the input action α. Thus, in order to adapt the local compatibility test to
IOFPTAs, we compare the transition probability distribution defined for each input action.
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Specifically, given two nodes qr and qb, the Hoeffding test, realized by the procedure call
Hoeffding( f (qr , α, σ ), f (qr , α, ·), f (qb, α, σ ), f (qb, α, ·), ε), is conducted for allσ ∈ Σout

conditioned on α ∈ Σ in. Similarly, the test is performed iteratively for all input actions at
two given nodes.

The merge procedure for two compatible nodes in IOFPTA is similar to the one in FPTAs.
An example is shown in Fig. 5. Observe that the frequencies are aggregated along the different
input actions.

3.3.3 Local compatibility test and merge in TFPTAs

The nodes in a TFPTA are associated with transition frequency functions and exit-rates
encoding the local transition times. We therefore define two nodes qr and qb in a TFPTA to
be compatible if the transition probability distributions over their successor nodes as well
as their exit-rates are compatible. The compatibility of transition distributions for two nodes
are, as for MCs, tested by the Hoeffding test (Algorithm 3). The compatibility test of the
exit rates follows the procedure described in Sen et al. (2004a), which is essentially the F-
test originally introduced in Cox (1953). The test is based on the ratio t̂r/t̂b of the average
empirical time delays at qr and qb. The precise test criterion is given in Algorithm 4.

Algorithm 4 F-test
Input: : t̂r , nr , t̂b, nb, ε ∈ (0, 1]
Output: : true if t̂r and t̂b are sufficiently close
1: if nr ≤ 1 or nb ≤ 2 then
2: return true
3: end if
4: μ = nb

nb−1

5: σ =
√

(nb)2(nr+nb−1)
nr (nb−1)2(nb−2)

6: γ1 = μ − σ√
ε
, γ2 = μ + σ√

ε

7: return t̂r
t̂b

∈ [
γ1, γ2

]
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4 Consistency and convergence analysis

In this section we investigate theoretical convergence results for Alergia learning. These
results consist of two components: first, we establish that in the large sample limit the learning
algorithmwill correctly identify the structure of a data generatingmodel (modulo equivalence
of the states). This component is related to previous convergence results (Carrasco andOncina
1999; de la Higuera and Thollard 2000; Sen et al. 2004a), and we provide the main technical
results in “Consistency of Alergia-style Learning” of Appendix. The second component is
to establish that identification of the structure together with convergence of the estimates for
the probabilistic parameters of the models (transition probabilities and exit rates) guarantees
convergence of the probabilities for model properties expressed in our formal specification
languages.

Our analysis, thus, focuses on exact identification in the limit, and thereby differs from
probably approximately correct (PAC) learning results, such as presented in Ron et al. (1996)
and Clark and Thollard (2004). PAC learning results are stronger than identification in the
limit results in that they provide bounds on the sample complexity required to learn a good
approximation of the true model. However, a PAC learnability analysis first requires the
specification of a suitable metric to measure the quality of approximation. Existing PAC
learning approaches for probabilistic automata are based on a semantics for the automata
as defining a probability distribution over Σ∗. In that case, the Kullback-Leibler divergence
between the distributions defined by the true and the approximate model is a canonical
measure of approximation error.

Being interested in the probability of LTL properties, we, on the other hand, have to see
automata as defining distributions on Σω. The Kullback–Leibler divergence between the
distributions defined on Σω is not a suitable measure for approximation quality, since it will
almost always be infinite (even in the case where the approximate model is structurally iden-
tical to the true one, and differs with respect to transition probabilities only by an arbitrarily
small ε > 0). Within the verification literature, various versions of the bisimulation distance
are a popular measure for approximate equivalence between systemmodels (Desharnais et al.
1999; Breugel and Worrell 2005). However, it turns out that these metrics suffer from the
same problem as the Kullback-Leibler distance, and fail to measure approximation quality
as a smooth function of ε-errors in the estimates of transition probabilities. These and other
candidate measures for approximate equivalence of automata defining distributions on Σω

are investigated in detail in Jaeger et al. (2014). A number of counterexamples and impos-
sibility results derived in Jaeger et al. (2014) indicate that there exist fundamental obstacles
to defining measures for approximation error that simultaneously satisfy the two desiderata:
(a) to provide a basis on which PAC learnability results could be derived, and (b) small
approximation errors between models should also entail bounds on the differences between
the probabilities of LTL properties in the models (a desideratum called “LTL continuity” in
Jaeger et al. (2014)).

For the analysis of the identification of the structure, we now begin by formally defining
the relevant equivalence relation of states. In the following, for any automaton M and state
q of M, we denote with (M, q) the automaton obtained by (re-)defining q as the start state
of M.

Definition 10 Let M be a DLMC or DCTMC. States q, q ′ of M are equivalent, written
q ∼ q ′, if P(M,q) = P(M,q ′). States q, q ′ of a DMDPM are equivalent, if for all schedulers
S of (M, q) there exists a scheduler S′ of (M, q ′), such that P(M,q),S = P(M,q ′),S′ , and
vice-versa.
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When q ∼ q ′, then also δ(q, α, σ ) ∼ δ(q ′, α, σ ) for all (α, σ ) ∈ Σ in × Σout. Therefore,
δ is also well-defined on (Q/ ∼) × Σ in × (Q/ ∼), and we thereby obtain the quotient
automaton M/ ∼ whose states are the ∼-equivalence classes of M.

Next, we formally define the structure of an automaton.

Definition 11 Let M be a DLMC, DMDP, or DCTMC. The structure of M is defined as
M̂ := 〈Q,Σ in,Σout, qs, δ̂, L〉, where δ̂ ⊆ Q × Σ in × Q is the transition relation defined
by (q, α, q ′) ∈ δ̂ ⇔ δ(q, α, q ′) > 0.

For DLMCs and DCTMCs the Σ in component should be regarded as vacuous in the
preceding definition.

The first component of the convergence result will be the identification in the limit of
M̂/∼. Before we can state that result, however, we have to consider the question of how
training data for the learner is assumed to be generated. Since our automaton models are
generative models for infinite sequences, one cannot simply assume that the training data
consists of sampled runs of an automaton. All we can observe (and all that Alergia will
accept) are finite initial segments of such runs. Thus, in the data-generation process, one
has to assume that there is an external process that decides at what point the generation of a
sequence is terminated. Furthermore, in the case of DMDP learning, an external scheduler is
required to generate inputs. Both these external components must satisfy certain conditions,
so that the generated data is rich enough to contain sufficientlymany sampled transitions from
all states and under all inputs. At the same time, the significance level ε for Alergia must
be chosen so that certain correctness guarantees for the compatibility tests performed during
the execution of the algorithm are obtained. The sampling mechanism for finite sequences
and the choice of significance levels for the compatibility tests are interrelated. The details
of this relationship are elaborated in “Appendix”. For the present section, we only consider
the case where data is generated as follows:

– The length of the observed sequence is randomly determined by a geometric distribution
with parameter λ. This is equivalent to generating strings with an automaton where at
each state the generating process terminates with probability λ.

– Inputs are generated by a scheduler that always chooses inputs uniformly at random.

We refer to this procedure as geometric sampling. It defines a probability distribution Ps on
(Σ∗)ω, where depending on the underlying automaton, Σ is Σout (for DLMCs), Σ in ×Σout

(for DMDPs), or Σout × R>0 (for DCTMCs).

Theorem 1 Let M be a DLMC or DMDP. Let S ∈ (Σ∗)ω be generated by geometric
sampling. Let εN = 1/Nr for some r > 2, and let MN be the model learned by Alergia
from the first N strings in S using significance level εN in the compatibility tests. Then

Ps(M̂N = M̂/∼ for almost all N ) = 1. (1)

LetM be a DCTMC, and S as above. There exist values εN with 1/N ≤ εN ≤ 1/
√
N, such

that for MN the model learned by Alergia from the first N strings in S using significance
level εN :

lim
N→∞ Ps(M̂N = M̂/∼) = 1. (2)

(2) also holds when M is a DLMC or DMDP, and εN = 1/Nr for some r ≥ 1.

The Theorem is a consequence of Theorem 4 and Lemmas 3 and 4 in “Consistency of
Alergia-style Learning” of Appendix. The second part of the Theorem does not provide a
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complete description of the required sequence of significance levels εN , because the exact
εN values (obtained in the proof of Lemma 4) are defined in terms of the expected values of
the size of the IOFPTA constructed from a sample of size N , and we can only bound this
expected value, but do not have a closed-form expression as a function of N .

The reasonwe obtain somewhat stronger convergence guarantees forDLMCs andDMDPs
than for DCTMCs lies in the fact that we have stronger results on the power of the Hoeffding
test, than the F-test (cf. “Statistical Tests” of Appendix). It is an open problemwhether almost
sure convergence actually also holds for DCTMCs with the currently used F-test, or whether
it could be obtained with a different, more powerful test for the compatibility of exponential
distributions.

We are now ready to turn to the second component of our consistency analysis: ulti-
mately, we are interested in whether the probabilities of properties expressed in the formal
specification languages LTL and sub-CSL computed on the learned models converge to the
probabilities defined by the true model. By Theorem 1 we know that the learned model will
eventually have the correct structure, and the laws of large numbers also guarantee that the
estimates of the transition probability and exit rate parameters will converge to the correct
values. This, however, in general will not be enough to guarantee the convergence of the prob-
abilities of complex system properties. As the following two Theorems show, however, we
do obtain such a guarantee for properties expressed in LTL and sub-CSL. Since the sub-CSL
case here is simpler, we consider it first.

Theorem 2 Let M be a DCTMC. Let MN as in Theorem 1. For all sub-CSL properties ϕ,
and all δ > 0 then:

lim
N→∞ Ps(| PMN (ϕ) − PM(ϕ) |> δ) = 0.

Proof By Theorem 1 we have that the probability that MN and M/∼ have different struc-
tures is negligible in the limit. Conditional on MN and M/ ∼ having the same structure,
we also have by the law of large numbers that the parameters of MN converge to the para-
meters of M/ ∼. It is therefore sufficient to show that then also PMN (ϕ) converges to
PM/∼(ϕ) = PM(ϕ).

All properties ϕ expressible in sub-CSL are finite-horizon in the sense that there exists a
fixed time limit t , such that whether a timed trace ρ = σ0t0σ1t1 . . . satisfies ϕ only depends
on the prefix ρ[0 : k], where k is such that t0 + · · · + tk > t . For a purely propositional
formula Φ this is t = 0, and for a formula containing a temporal operator with subscript I ,
t is the upper bound I u of I . The set of traces satisfying ϕ, therefore, can be represented
as a countable disjoint union of sets of paths that are slightly generalized forms of cylinder
sets. For example, the set of paths satisfying Φ1UIΦ2 is the union over all paths of the form
q0t0 . . . qk−1tk−1qktk where q0, . . . , qk−1 satisfy Φ1, qk satisfies Φ2, and t0 + · · · + tk ∈ I .
The probabilities of such slightly generalized cylinder sets are a continuous function of the
transition probability and exit rate parameters ofMN , and therefore the convergence of these
parameters guarantees the convergence of the probabilities of the generalized cylinder sets,
and thereby the convergence of the probability of ϕ. ��

We now state the corresponding results for LTL and DMDPs, which subsumes the case
of LTL and DLMCs

Theorem 3 Let M be a DMDP, and MN as in Theorem 1 using significance levels εN =
1/Nr . If r > 2, then for all LTL properties ϕ:

Ps( lim
N→∞ Pmax

MN
(ϕ) = Pmax

M (ϕ)) = Ps( lim
N→∞ Pmin

MN
(ϕ) = Pmin

M (ϕ)) = 1. (3)

123



Mach Learn (2016) 105:255–299 273

If r ≥ 1, then for all δ > 0:

lim
N→∞ Ps(| Pmax

MN
(ϕ) − Pmax

M (ϕ) |> δ) = lim
N→∞ Ps(| Pmin

MN
(ϕ) − Pmin

M (ϕ) |> δ) = 0 (4)

The following is a slightly generalized version of the proof that was given for DLMCs in
Mao et al. (2011).

Proof Using the automata-theoretic approach to verification (Vardi 1985; Courcoubetis and
Yannakakis 1995; Vardi 1999; Baier and Katoen 2008, Section 10.6.4), the probabilities
Pmax
MN

(ϕ) and Pmax
M (ϕ) can be identified with maximum reachability probabilities in the

respective products ofMN andMwith a Rabin automaton B representing φ. The maximum
here is with respect to all possiblememoryless schedulers on the productMDPs. SinceM and
M/∼ are equivalent with respect to LTL properties, one can consider the product of M/∼
with B instead,which then byTheorem1 for the case r > 2will for almost all N have the same
structure as the product of MN with B. Maximum reachability probabilities in the product
MDPs are a continuous function of the transition probability parameters on the interior of
the parameter space, i.e., for sequences of parameters pN → p where p �= 0, 1. Since MN

and M/ ∼ agree on all 0/1-valued parameters, and for all others the parameters of MN

converge to those of M/∼, one also obtains Pmax
MN

(ϕ) → Pmax
M (ϕ). The argument for Pmin

is analogous by considering minimum reachability instead of maximum reachability. The
proof for the case r ≥ 1 is identical, using the weaker convergence guarantee of Theorem 1
for this case. ��

Theorem 3 makes a strictly stronger statement for the choice of significance levels εN =
1/Nr with r > 2. However, all statements are strictly asymptotic, and these very small εN -
valuesmay lead to significantly under-estimate the size of the generatingmodelwhen learning
from a given limited dataset. In practice, therefore, one may prefer the weaker guarantees
obtained for εN = 1/N in exchange for a lower risk of learning an over-simplified model.

An important observation is that Theorems 2 and 3 are pointwise for each ϕ, and not
uniform for the whole languages sub-CSL and LTL, respectively. Thus, it is not the case that
in the limit we will learn a model that simultaneously approximates the probabilities of all
properties φ to within a fixed error bound δ. In other words, the sample size N required to
obtain a good approximation can be different for different φ. This is inevitable, due to the
fact that both the languages sub-CSL and LTL contain formulas of unbounded complexity.

To illustrate this point, consider an LMCmodelM for a sequence of coin tosses: themodel
has two states labeled H and T , respectively, and transition probabilities of 1/2 between all
the states. Let MN be a learned approximation of M. The transition probabilities in MN

will deviate slightly from the true values 1/2. For example, assume that the transitions inMN

have value 1/2+ δ for the transitions leading into H , and 1/2− δ for the transitions leading
into T . Then one can construct LTL formulas φ, such that | PM(φ)− PMN (φ) | is arbitrarily
close to 1. To do so, observe that according to M the relative frequency of the symbol H in
long execution traces converges to 1/2, whereas according to MN it converges to 1/2 + δ.
For any k > 0 we can express with an LTL formula φk that the frequency of H in the first
k steps is at least 1/2 + δ/2 by just enumerating all sequences of length k that satisfy this
condition. Then, as k → ∞, PM(φk) → 0 and PMN (φk) → 1.

5 Experiments

In order to validate the proposed algorithm we have conducted two case studies on learning
stochastic system models. Since a DMC can be seen as a DMDP having only a single input
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action, we only report results for DMDPs and DCTMCs. For each case study, we gener-
ated observation sequences (I/O strings and timed strings) from known system models, and
compared the generating models and the learned models based on relevant system properties
expressed by PLTL formulas. All experiments were performed on a standard laptop with a
2.4GHz CPU.

5.1 Experiments with MDPs

For analyzing the behavior of the learning algorithm with respect to MDPs we consider a
modified version of the slot machine model given by Jansen (2002). Our model represents a
slot machine with three reels that are marked with two different symbols “bar” and “apple”,
as well as a separate initial symbol “blank”. Starting with an initial configuration in which
all reels show the “blank” symbol, the player can for a given number r of rounds select
and spin one of the reels. A wheel that has been spun will randomly display either “bar” or
“apple”, where the probability of obtaining a “bar” is 0.7 in the first round, and gradually
decreases as 0.7(r −k+1)/r for the kth round. The player receives a reward of 10 if the final
configuration of the reels shows 3 bars, and a reward of 2 if the final configuration shows 2
bars. Instead of spinning a reel, the player can also choose to push a ’stop’ button. In that case,
with probability 0.5 the game will end, and the player receives the prize corresponding to the
current configuration of the reels. With probability 0.5, the player will earn 2 extra rounds.
Thus, choosing the ’stop’ option can be beneficial when the current configuration already
gives a reward (but at the risk that it will change into something less favorable when instead of
terminating the game is extended by 2 rounds), or when with the remaining available rounds
the current configuration is unlikely to change into a reward configuration (then at the risk
that the game ends immediately with the current poor configuration).

This model is formalized as a DMDP whose states are defined by the configuration of the
reels, the number of spins already performed sp (up to the maximum of r ), and a Boolean
end variable indicating whether the game is terminated. The granting of 2 extra spins is
(approximately) implemented by decreasing by 2 the sp counter, down to a minimum of 0
(otherwise this would lead to an infinite state space). Input actions are spini (i = 1, 2, 3)
and stop. The output alphabet is Σout = {blank, bar, apple}3 ∪ {Pr0,Pr2,Pr10,end}. States
with sp < r are labeled with the symbol from {blank, bar, apple}3 representing the current
reel configuration. When the number of available spins has been exhausted, then the next
input (regardless of which input is chosen) leads to a state displaying the prize won as one
of {Pr0,Pr2,Pr10}. Finally, one additional input leads to a terminal state labeled with end.
States labeled with {Pr0,Pr2,Pr10} have an associated reward of 0, 2, and 10, respectively.
We have implemented this DMDP in PRISM (Kwiatkowska et al. 2011), and experimented
with two versions of the model given by r = 3, and r = 5. These models have 103 (r = 3)
and 161 (r = 5) reachable states, respectively.

The model generates traces that with probability 1 are finite, in the sense that after finitely
many steps the trace ends in an infinite sequence of end symbols. However, there is no fixed
bound on the number of initial non-end symbols. We sample observation sequences from
the models using a uniform random selection of input actions at each point. Sampling of
one sequence is terminated when the end symbol appears. The length distribution of strings
sampled in thismanner is dominated by a geometric distributionwith parameter λ = 0.25·0.5
(the probability that the random scheduler chooses the stop input, and the game terminates on
that input). The convergence in probability (2) of Theorem 1 then also is ensured under this
sampling regime (the consistency properties of the Hoeffding test in relation to the expected
sample string lengths as described by Definitions 20 and 21 (iii) are unaffected when the
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length distribution of sampled strings is reduced; the data support condition of Definition 21
(ii) still is true for all ’relevant’ states of the IOFPTA, i.e., all states that are not just copies
of the unique end state).

In the following, we characterize the size of data sets in terms of the total number N of
observation symbols, rather than the number of sequences (as a better measure of the ’raw
size’ of the data). For sufficiently large samples, the ratio between the number of sequences
and the number of symbols is very nearly constant, so that letting εN = c/N also satisfies the
conditions to obtain (4) in Theorem 3 when N is the number of symbols. In our experiments
we set c = 10.000, because that leads to ε20.000 = 0.5 for our smallest datasize N = 20.000.
Since the use of this εN sequence only is motivated by the theoretical convergence in the limit
guarantees, and these guarantees do not provide any optimality guarantees for the limited
sample sizes we consider, we also consider the alternative sequence where εN = 0.5, for all
N . This also serves the purpose of investigating the robustness of the learning results with
respect to the choice of the εN .

We evaluate the learned models based on how well they approximate properties of the
generating model. We consider properties of the form Pmax(φ) for different LTL formulas φ,
and use the following accuracymeasure for the evaluation: when p and p̄ are the probabilities
in the true and learned models, respectively, then we use the Kullback-Leibler distance

K L(p, p̄) = p log
p

p̄
+ (1 − p) log

1 − p

1 − p̄
(5)

to measure the error of p̄. The error, then, depends on the ratio p/ p̄ rather than the difference
p− p̄. The inclusion of the term (1− p) log 1−p

1− p̄ evaluates the estimate of Pmax(φ) also as an

estimate for the dual Pmin(¬φ) = 1− Pmax(φ). K L(p, p̄) is infinite when p �= p̄ ∈ {0, 1},
i.e. when the learned value p̄ represents an incorrect assumption of deterministic behavior.
On the other hand p̄ �= p ∈ {0, 1}, i.e., incorrectly modeling deterministic behavior as
probabilistic, incurs only a finite K L error. This asymmetric view is reasonable in many
situations, because estimating 0,1-values by non-extreme probabilities usually means erring
on the safe side, whereas incorrectly inferring 0,1-values can lead to incorrect assumptions
of critical safety properties, for example.

We compare the models learned by IOalergiawith the models given by the initially con-
structed I/O frequency prefix tree acceptors (with the frequencies normalized to probabilities,
so that the IOFPTA is itself a valid DMDP). These initial tree-models are just a somewhat
compact representation of the original data, and model checking performed on the trees can
be seen as statistical model checking for DMDPs. Based on the tree-model representation of
the data, we can use the model checking functionality of the PRISM tool to also perform sta-
tistical model checking. However, it turned out that the PRISM model checking algorithms,
which are optimized for models specified in a modular, structured way, do not perform so
well on the tree models, which are given by an unstructured state-level representation. Thus,
even though PRISM is known to be able to operate on models of tens of millions of states,
we were only able to run PRISM on tree models of up to around 60,000 states.

Figure 6 shows how for the r = 3 and r = 5models the number of states in the constructed
IOFPTAs and learned models develops as a function of the data size. The plots are in log-log
scale, with the number of data symbols (divided by 1000) on the x-axis, and the number
of states of the trees and learned models on the left, respectively right, y-axes. The red
lines (box symbols) show a linear growth of the IOFPTA in log-log space. These lines have
a near-perfect fit with the functions 550N 0.65 (r = 3), and 550N 0.8 (r = 5). These fits
experimentally verify the sub-linear growth of IOFPTAs, which is theoretically obtained
from Lemma 2 (Appendix).
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Fig. 6 Growth of tree and model size. Top r = 3, bottom r = 5

When learning with fixed ε = 0.5, the learned model sizes also show an approximately
linear behavior in log-log space, which translates to a growth of (approximately) the orders
N 0.27 (r = 3), and N 0.4 (r = 5). Learning with εN = 10, 000/N at first under-estimates
the true model size. The models learned for the largest N values are very close in size to
the generating model. However, the experimental range for N would need to be extended
considerably further in order to ascertain that here we already see the asymptotic convergence
to the true model.

We evaluate the accuracy of the learned model based on a test suite of 61 LTL properties.
The complete list of properties is given in “MDPTest Properties” of Appendix. Asmentioned
above, using PRISM model checking on the IOFPTAs as a surrogate for statistical model
checking does not scale to very large tree models. Therefore, the results here are limited to
a maximum of N = 1m for r = 3, and N = 320k for r = 5 (at these tree sizes, a model-
checking run for all 61 properties took several hours, vs. a few seconds for model checking
the model learned from the IOFPTA).

We first consider for howmany of the test properties an error K L(p, p̄) = ∞ is obtained,
i.e., the learned value p̄ is an erroneous deterministic 0/1-value. These numbers are given in
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Table 1 Number of test
properties with K L(p, p̄) = ∞ r = 20k 40k 80k 160k 320k 640k 1m

3 12;4 9;0 7;0 6;0 3;0 2;0 2;0

5 14;8 11;0 10;0 6;0 2;0 ?;0 ?;0
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Fig. 7 KL errors

Table 1. An entry k; l in this table means that for k test properties the IOFPTA gave an infinite
K L-value, and for l properties this was the case for the learned model. It emerges a clear
picture that the learned model is much less likely to return erroneous deterministic values.
This is a natural consequence of a model-smoothing effect resulting from the state-merging
process, and illustrates that model learning can alleviate overfitting problems occurring in
statistical model-checking. The most problematic queries for IOFPTA-model checking were
the low-probability queries 56–61, where the true probabilities are in the range 0.03–0.002,
and IOFPTA-model checking returned the value 0. The values obtained from the learned
models, on the other hand, approximated the true values rather well, and had K L-errors in
the range 0.001–0.01.

The smoothing effect in the learned models can also have the less desirable consequence
of leading to non-extreme estimates for probabilities that in the generating model are actually
0/1-valued. This was observed for property 16, which for r = 5 has max-probability 1 in
the generating model. Here IOFPTA model checking returned the correct result, wheras
the probabilities in the learned models were in the range 0.95–0.99 even for large data
sizes. Similarly, some of the properties that have zero probability in the r = 3 model, had
probabilities in the range 0.01–0.001 in the learned models.

Figure 7 illustrates the K L-errors for all 61 properties for small datasets (N = 40k), and
the largest datasets for which model checking the IOFPTA tree was feasible (N = 1m for
r = 3, and N = 320k for r = 5). In these plots the x-axes index the test properties. The
properties are here sorted according to increasing values of the K L-errors obtained from the
trees. Thus, the indexing differs from the numbering given in Table 5, and also the ordering of
the properties differs in the four plots of Fig. 7. The y-axes show the K L-errors in log-scale.
Infinite K L-values are represented by the value 10.0, and zero values by 10−6.
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At the right end of each plot appear the properties that gave K L = ∞ from IOFPTA
model-checking. The errors obtained for the same properties from the learned models are in
the same range as the errors for other properties. On the left ends of the plots appear properties
with actual probability zero, which give zero error from the tree, but nonzero estimates, and
hence nonzero errors from the learned models.

For the r = 5 model the properties appearing at indices 42–49 (N = 40k), respectively
52–59 (N = 320k) are properties 17–24 of Table 5, which are all of the form Pmax(¬♦<kend)
for different values of k, i.e., they represent the maximum probability of the game lasting at
least k steps, for various values of k. For both the tree and the learnedmodels the estimates for
these probabilities were quite inaccurate. Figure 8 on the right shows the actual probability
values obtained for the Pmax(¬♦<9end) query for r = 5. For the datasizes N = 40k and
N = 320k depicted in Fig. 7, the estimates are above 0.9 for all trees and models, whereas
the true value is 0.5. The left plot in Fig. 8 shows the results for the same query in the r = 3
case.

Figure 9 shows the probabilities returned for the queries Pmax♦Pr10 and Pmax♦Pr2.
These are queries for which the corresponding KL-errors lie in the middle ranges of the
KL-errors seen in Fig. 7.

Figure 10 shows the averageKL-errors obtained as a function of the data size. The average
here is taken over all test properties excluding the properties Pmax(¬♦<kend) (whose high
values would otherwise mask the development of KL-errors for the remaining properties).
Furthermore, for each data size, only properties are included for which all models return
non-infinite errors.

To obtain a more complete picture on the influence of the ε parameter, we also vary ε over
the whole feasible range from 0 to 2 for the fixed data size N = 106. Figure 11 shows the
sizes and average KL-errors for the learned models. The different ε-values we used are listed
on the x-axis simply on equi-distant marks. The ε-values we otherwise used for N = 106
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are 0.5 and 0.01, which both are in the middle of the range of values considered here. Even
at the extreme end ε = 2 the learned models are significantly smaller than the original
IOFPTA’s (which have sizes 47,564 and 134,693 for r = 3 and r = 5, respectively). This
is because even though the Hoeffding test proper will always reject when ε = 2, we still
obtain positive compatibility results, and hence merges of nodes, due to the base test in line
1 of our Hoeffding compatibility test (Algorithm 3). The minimal model size is 31 nodes,
corresponding to exactly one node for each output symbol. This minimal size is reached at
ε = 10−60 and ε = 10−10 for r = 3 and r = 5, respectively. The average KL errors are
shown in Fig. 11 separately for the “hard” test properties Pmax(¬♦<kend), and the remaining
“easy” properties. Furthermore, to obtain readable plots, the KL-errors for the hard properties
have been scaled by a factor of 0.1.

Figure 11 indicates that better results are obtained when ε is chosen so large that the size
of the learned model is somewhat larger than the size of the true model. This would also
have to be expected, since a model that over-estimates the true number of states can be trace-
equivalent to the true model, whereas a model with fewer states than the true model usually
can not. For the ’easy’ test properties we obtain a fairly clear picture of optimal ε-values
in the range 0.5–1.5, corresponding to models that are in the range of 1× to 10× the size
of the true model. The picture for the ’hard’ properties is less clear and rather different for
r = 3, where the most accurate models are learned for a range of small ε-values, and r = 5,
where the error decreases nearly monotonically as ε increases. Overall, the results show that
IOalergia learning is quite robust with respect to the precise choice of the ε value.

Summarizing our observations, we can reach a number of conclusions: the differences in
the accuracy of estimated probabilities are quite significant for different models of similar
size (r = 3 with 103 states; r = 5 with 161 states), and for different queries Pmax(¬♦<kend)
and Pmax♦PrX of similar syntactic form and complexity. Thus, neither the size of the true
model, nor the complexity of the query alone will be good predictors for the accuracy of max-
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probability estimates obtained either by statistical model checking, or by model learning. In
spite of very different convergence speeds, we observed convergence of the estimated max-
probabilities to the true values for all test properties.

When comparing statistical model checking against model learning, no clear winner
emerges in terms of the accuracy of estimated probabilities. The main difference lies in
a smoothing effect of the learning process that eliminates extreme 0/1 empirical probabili-
ties. This can allow the learned model to successfully generalize from the data, and return
accurate estimates for low-probability properties that are not seen in the data, and for which
statistical model checking returns zero probabilities. On the other hand, it can also lead to
over-generalization, where true probability zero properties are given non-zero values in the
learned model. Here it should be emphasized that in our experiments we have not tried to
exploit another generalization capability of model learning, which is the ability to generalize
from observations of finite initial trace segments to infinite behaviors. Traces in our slot
machine model are finite with probability 1, and our data only contained traces of completed
runs. This gives ideal conditions for statistical model checking, since empirical probabilities
in the data correspond to actual model probabilities.

Comparing the results obtained from models learned with fixed ε = 0.5, and decreasing
ε = 10, 000/N we observe in Figs. 8, 9 and 10 for smaller data sizes a slight advantage
for ε = 0.5. This is explained by Fig. 6, which shows that under the ε = 10, 000/N
regime the learned model stays smaller than the true model for the whole range of data sizes,
approaching the true size only at the very end. The ε = 0.5 models, on the other hand,
soon become somewhat larger than the true model. As also indicated by Fig. 11, moderate
over-approximations of the true model tend to lead to smaller KL errors.

In terms of space, model learning obviously leads to very significant savings (Fig. 6). As
mentioned above, we cannot make a meaningful comparison for the time complexity of sta-
tistical model checking versus model learning, since we are using a very inefficient approach
for performing the former. Figure 12 shows the computation time for IOalergialearning
for the case r = 3 and ε = 0.5. The overall time is divided into the construction time for
the IOFPTA, and the time for the IOalergianode-merging process. We observe that both
times are linear in the datasize. For Alergia, the theoretical worst-case complexity is cubic
in the size of the IOFPTA, but the linear behavior we here observe is consistent with what is
reported as the typical behavior of Alergia in practice. Moreover, we see that the times for
the tree construction and the node merging phases of the learning procedure are of the same
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Table 2 Accuracies of pure
versus count-aggregating
IOalergia(r = 3)

Model Size Average KL-error

IOFPTA 47,564 0.012

ε = 0.5 133 0.0048

ε = 0.5, count aggregate 706 0.0062

ε = 0.01 80 0.013

ε = 0.01, count aggregate 161 0.0056

order of magnitude. Since even a highly optimized statistical model checking procedure will
not be much faster than the IOFPTA construction, we can conclude that the time for model
learning is of the same order of magnitude as a single run of statistical model checking, with
significant savings for the amortized cost of checking multiple properties.

As discussed inSect. 3.2, in our IOalergia implementationwedonot aggregate frequency
counts when merging nodes, and we perform the compatibility tests always based on the
counts in the original IOFPTA. For comparison we also tested a version of the algorithm in
which counts are aggregated. The main observation we made was that for a given ε-value,
models learned using aggregated counts were larger than models learned without count
aggregation. Thus, aggregating counts leads to more rejections in the compatibility tests.
This can be explained by the fact that the Hoeffding test will always accept compatibility
when the two counts n1, n2 are very small (cf. Algorithm 3), e.g. both are at most 2, or one
is equal to 1, and the other less than 10. Since counts at the leaves of the IOFPTA (or nodes
very close to the leaves) will usually have very low counts, this means that in the original
IOFPTAmost pairs of leaves will be tested as compatible. However, after merging the counts
of two or three leaves, this will more often no longer be the case. The accuracy of models
learned with count-aggregation was not higher than the accuracy of models learned without
aggregation, but with ε-settings that lead to models of approximately equal size. Table 2
shows some detailed results for the r = 3 model learned from data of size N = 1m. For the
two ε-values that also have been used in the previous experiments for N = 1m, the table
shows the sizes of the learned models, with and without count aggregation. For comparison
also the IOFPTA is included in the table. The average KL-error shown in the last column of
the table is the average error over all 61 test properties (for r = 3, N = 1m the errors for
the difficult properties 17–24 are not such clear outliers that their inclusion in the average
dominates the results). For the IOFPTA the KL-error is averaged over all properties except
two for which the error is infinite. The table indicates that the accuracy depends more on the
size of the learned model (best results being obtained when slightly over-estimating the true
size) than on whether learning is with or without count aggregation.

5.2 Experiments for CTMCs

For CMTCs, we consider a case study adapted from Haverkort et al. (2000), where two
sub-clusters of workstations are connected through a backbone. Each sub-cluster has N
workstations, and the data from aworkstation is sent to the backbone by a switch connected to
theworkstation’s sub-cluster. The topology of the system is shown inFig. 13. Each component
in the system can break down and any broken component can be repaired. The average failure-
free running time of the workstations, switches, and backbone is 2, 5, and 10 h, respectively;
the average time required for repairing one of these components is 1, 2, and 4 h. There are
two types of Quality of Service (QoS) associated with the system:
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Fig. 13 The topology of a workstation cluster (Haverkort et al. 2000)

Table 3 Summary statistics of
the CTMC models for the
workstation cluster case study

N 4 8 10

|Q | 200 648 968

|Tran | 1240 4248 6424

– minimum: at least 3N/4 workstations are operational and connected via switches and the
backbone,

– premium: at least N workstations are operational and connected via switches and the
backbone.

Note that if the premium requirement is met, then so is the minimum requirement. We specify
CTMCs for this system with a varying number of workstations. The summary statistics for
the models in terms of the number of states and transitions are listed in Table 3.

When generating data from the specified models, the observation sequences correspond
to timed strings that alternate between observable symbols and time values. Following the
sampling procedure outlined in Sect. 4, we generated observation sequences from different
system configurations with 4, 8, and 10 workstations in each sub-cluster. The average length
of these observation sequences is 50. We also assume that each component is operational
initially. For the present case study, the most important property is the amount of time for
which the minimum and premium QoS requirements are satisfied. These two properties are
expressed by the sub-CSL formulas

P =?[♦≤t !“minimum′′] P =?[♦≤t !“premium′′],
where t is a real number.

For the experimental results reported below, we used α = 0.5 for the compatibility tests
employed in the learning algorithms. The choice of having a fixed α-value is based on the
experimental results for the slotmachinemodel (see Sect. 5.1),which showed that the learning
algorithms are fairly robust wrt. the particular choice of α-value.

As shown in Fig. 14, the two QoS properties above are generally well approximated
by the learned models although (as expected) the quality of the approximations decreases
as the complexity of the generating models increases. All models are learned using 40000
symbols, and all probabilities have been computed using PRISM. For comparison, we have
also included the results obtained by directly using the timed frequency prefix tree acceptors
(TFPTAs) for performingmodel checking.As can be seen from thefigure,when the prediction
horizon starts to increase the properties are no longer well-approximated by the TFPTA-
models. Summary information about the models learned for various data sizes and system
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Fig. 14 The results of checking the properties P =?[♦≤t !“minimum′′] and P =?[♦≤t !“premium′′] in the
learned models, timed frequency prefix tree acceptor, and the generating models with t ∈ [0.5, 6]

Table 4 Experimental results for
the workstation cluster |S|(×103) |Seq| |TFPTA| Time |Q| DA DT

A

N = 4

1 15 478 0.78 125 0.0389 0.0612

4 45 1889 1.44 182 0.0294 0.0568

10 107 4659 2.67 197 0.0197 0.0447

40 402 18429 9.16 213 0.0149 0.0374

N = 8

1 15 473 0.39 179 0.0398 0.0530

4 45 1878 1.31 333 0.0286 0.0700

10 107 4622 2.99 458 0.0202 0.0489

40 402 18208 11.72 578 0.0141 0.0454

N = 10

1 6 493 1.00 196 0.1082 0.1786

4 30 1916 1.56 400 0.0789 0.1790

10 98 4632 4.09 584 0.0585 0.1575

40 406 18128 15.77 794 0.0531 0.1638

configurations are given in the first five columns in Table 4; |S| is the number of symbols in
the dataset (×103); |Seq| is the number of sequences in the dataset; |TFPTA| is the number
of nodes in the TFPTA; ‘Time’ is the learning time (in seconds), including the time for
constructing the TFPTA, and |Q| is the number of states in the learned model.

In addition to the two properties above, we have measured the quality of the learned
models by randomly generating sets of sub-CSL formulas Φ using a stochastic context-free
grammar. Each formula is restricted to a maximum length of 20. For the temporal operators
we uniformly sample a time value t from [0, 20] and defined the time intervals as [0, t]. In
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Fig. 15 The quality of learned models measured in terms of randomly generated formulas

order to avoid testing on tautologies or other formulas with little discriminative value, we
constructed a baseline model B with one state for each symbol in the alphabet and with
uniform transitions probabilities. For each generated formula ϕ ∈ Φ we then tested whether
the formula was able to discriminate between the learned model A, the generating model M ,
and the baseline model B. If ϕ was not able to discriminate between these three models (i.e.,
PA(ϕ) = PM (ϕ) = PB(ϕ)), then ϕ was removed from Φ.

We finally evaluated the learned models by comparing the mean absolute difference in
probability (calculated using PRISM) over the generated formulas for the models M and A:

DA = 1

|Φ|
∑

ϕ∈Φ
|PM (ϕ) − PA(ϕ)|. (6)

The mean absolute difference between M and B is calculated analogously.
The results of the experiments are listed in columns DA and DT

A in Table 4, where column
DT

A lists the results obtained by performing model checking using the TFPTA-model. For
models with 4, 8, and 10 workstations in each sub-cluster we ended up with 677, 637, and
635 random formulas, respectively, after the elimination of non-discriminative formulas.
The results are further illustrated in Fig. 15, where we also see that the difference (measured
using the randomly generated formulas) between the learnedmodel and the generatingmodel
decreases as the amount of data increases. Each data point is the mean value based on eight
experiments with different randomly generated data sets. For comparison, the absolute mean
difference between the baseline models and the generating models are 0.424, 0.350, and
0.293, for N = 4, N = 8, and N = 10, respectively.
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6 Conclusion

In this paper we have proposed a framework for learning probabilistic system models based
on observed system behaviors. Specifically, we have considered system models in the form
of deterministic Markov decision processes and continuous time Markov chains, where the
former model class includes standard deterministic Markov chains as a special case. The
learning framework is presented within a model checking context and is based on an adapted
version of theAlergia algorithm (Carrasco andOncina 1994) for learning finite probabilistic
automata models.

We have shown that in the large sample limit the learning algorithm will correctly identify
the model structure as well as the probability parameters of the model. We position the
learning results within a model checking context by showing that for the learned models the
probabilities of model properties expressed in the formal specification languages LTL and
sub-CSL will converge to the probabilities given by the true models.

The learning framework is empirically analyzed based on two use-cases covering Markov
decision process and continuous time Markov chains. The use cases are analyzed wrt. the
structure of the learned system models as well as relevant LTL and sub-CSL definable prop-
erties. The results show that for both model classes the learning algorithm is able to produce
models that provide accurate estimates of the probabilities of the specified LTL and sub-CSL
properties. The results have also been compared to the estimates obtained by statistical model
checking, but with the analysis limited to properties testable by statistical model checking.
Thus, we do not exploit the generalization capabilities of model learning for reasoning about
unbounded system properties. The comparison shows that in terms of LTL-accuracy, there is
no clear winner between the two approaches; the main differences in the results are caused
by the smoothing effect of model learning. On the other hand, in terms of space and time
complexity we see a significant difference in favor of model learning. For the sub-CSL prop-
erties, both the accuracy and complexity results are significantly better than those obtained by
statistical model checking, in particular for sub-CSL properties defined over longer time hori-
zons. These results are further complemented by accuracy estimates for randomly generated
sub-CSL formulas, demonstrating that the learned models also provide accurate probability
estimates of more general model properties.

The theoretical learning results presented in the paper focus on learning in the limit rather
than on probably approximately correct (PAC) learning results. Extending the results to PAC
learning would require an error measure for the model classes in question, which, in turn,
would entail defining a suitable measure for probability distributions over Σω. Candidate
error measures have been investigated by Jaeger et al. (2014) who show that there are funda-
mental difficulties in defining measures that on the one hand support PAC learnability results
and on the other hand satisfy natural continuity properties.

In addition to the results reported in the paper, we have conducted preliminary experiments
on learning deterministic MDP approximations based on observations generated by non-
deterministic system models. The results showed that the learned (deterministic) models
are not sufficiently expressive to capture all relevant non-deterministic system properties.
Based on these results, we wish as part of future work to consider learning methods for
non-deterministic model classes. We expect, however, that the learning methods will be
significantly different from themethods proposed in the current paper as, e.g., the assumption
about a deterministic system behavior is key for the FPTA-based data representation.

The current paper is a significantly extended version of Mao et al. (2011) and Mao et al.
(2012). We have subsequently adapted the results in Mao et al. (2012) to support active

123



286 Mach Learn (2016) 105:255–299

learning scenarios, where one guides the interaction with the system under analysis in order
to reduce the amount of data required for establishing an accurate system model (Chen and
Nielsen 2012). Furthermore, the learning algorithm has also been extended for learning and
verifying properties of systems endowed with a relational structure (Mao and Jaeger 2012).
Generally, these learning results assume access to multiple observation sequences of the
system in question. For systems that are hard (or even impossible) to restart, this requirement
will rarely hold. In Chen et al. (2012) we have therefore considered methods for investigating
system properties by learning system models based on a single observation sequence.

Appendix: Consistency of Alergia-style learning

Overview

In this appendix we give a detailed and general proof on the consistency of Alergia-like
algorithms for learning finite stochastic automata. Our proof follows the same main lines of
arguments as previous proofs presented in Carrasco and Oncina (1999), de la Higuera and
Thollard (2000), Sen et al. (2004a). However, we extend and improve on these existing works
in several ways.

First,weprovide results that are formulated on the basis of a very general automatonmodel,
and thereby provide a uniform treatment of consistency for the basic Alergia algorithm, as
well as for extensions such as DLMDPs ad DCTMCs as introduced in Sect. 2. Also, the
general stochastic reactive automaton model introduced below easily accommodates models
both with non-zero termination probabilities, i.e., defining probability distributions on Σ∗,
and models without termination probabilities, i.e., defining probability distributions on Σω.

Second, in our proof we aim to make the statistical part of the argument more rigorous
and self-contained: all previous consistency proofs – and also the one we propose in the
following – depend on arguments about the error probabilities of the compatibility tests
performed by the algorithm. The problem here is that the concrete tests performed depend
on the structure of the specific FPTA, and thereby are dependent on the data. However,
a test that would have a certain significance level if it was fixed prior to the observation
of the data, may not have the same correctness guarantees if the fact that it is performed
depends on the sampled data itself. A trivial example may illustrate the point: suppose
we want to test the hypothesis that a coin is fair based on the empirical frequency h̄ of
heads in a sample of 100 tosses. For this we can find p, q > 0 with p < q such that
Pfair(h̄ /∈ [1/2 − p, 1/2 + q]) = Pfair(h̄ /∈ [1/2 − q, 1/2 + p]) = 0.05. Thus, reject if
h̄ /∈ [1/2− p, 1/2+ q] and reject if h̄ /∈ [1/2− p, 1/2+ q] are both tests for the hypothesis
P(h) = 1/2 at significance level 0.05. However, if we perform the first test whenever
h̄ ≤ 1/2, and the second if h̄ > 1/2, then the resulting test no longer has a 0.05 significance
level. Of course, in Alergia, the execution of tests and the data sample are not connected in
such an inadmissible way as in this example. In order to correctly account for this fact in the
consistency proof, we largely separate the statistical argument from the concrete execution
runs of the algorithm, and, in effect, always consider all the statistical tests that could be
performed given some possible data sample.

The separation of the statistical from the algorithmic aspect also is part of the third goal
of our consistency proof, which is to obtain a modular argument that clearly identifies three
main components that lead to consistency:
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– algorithmic component: conditions on the procedure by which nodes in the initial FPTA
are tested for compatibility and merged. This will lead only to a very simple and loose
constraint on the algorithmic procedure.

– data component: conditions on the sampling process for the data from which the automa-
ton is learned.

– statistical component: conditions on the statistical tests used to decide node compatibility

This modular structure of the results facilitates their application to new or modified ver-
sions of existing algorithms.

Stochastic reactive automata model

We define a general stochastic automaton model of which LMDPs and CTMCs are special
cases.We then also provide a general concept for deterministic stochastic automata, of which
DLMDPs and DCTMCs are special cases. Our model is reactive, in the sense that it takes
inputs, and its stochastic behavior is conditioned on those inputs. All probabilistic aspects of
the automaton are encoded by random variables associated with each state.

Definition 12 A stochastic reactive finite automaton (SRFA)

A = (Q, qs, X,Σ in, succ, obs)

is given by

– A finite set of states Q containing a designated start state qs .
– Each state q ∈ Q is labeled with random variables X (q)

1 , . . . , X (q)
n , where each X (q)

i
takes values in some sample space Ωi (the same for all q), according to some parametric
model Θi (the same for all q).

– A finite input alphabet Σ in.
– A successor function succ : Q × Σ in × ∏n

i=1 Ωi → Q
– An observation function obs : Σ in × ∏n

i=1 Ωi → P{1, . . . , n}.
We denote

∏n
i=1 Ωi with Ω , and (ω1, . . . , ωn) with ω. obs(σ,ω) contains the indices of

the random variables that are observed when the input is σ , and the ω are the sampled values
of (X (q)

1 , . . . , X (q)
n ). We can then define the observation space

Obs := {(σ, (ωi )i∈obs(σ,ω)) | σ ∈ Σ in,ω ∈ Ω)}
Given an input string π ∈ (Σ in)ω, a SRFA defines a probability distribution over the

space of state-observation sequences (Q × Obs)ω by assuming that the random variables
X (q) are independent at each state q , so that their joint distribution defines distributions for
the successor state and the next observation.

By a slight abuse of notation, we also use obs(σ,ω) to denote (σ, (ωi )i∈obs(σ,ω)). We use
o to denote elements of Obs.

Definition 13 A stochastic automaton is finite-branching deterministic (called DSRFA), if
there exists an equivalence relation ≡ on Obs, so that

– ≡ partitions Obs into finitely many equivalence classes
– obs(σ,ω) ≡ obs(σ ′,ω′) ⇒ ∀q : succ(q, σ,ω) = succ(q, σ ′,ω′)

The equivalence class of o ∈ Obs, is denoted [o], and [Obs] is the set of all equivalence classes.
In finite-branching deterministic automata we can also denote succ(q, σ,ω) as succ(q, o),
or succ(q, [o]).
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Example 5 We show how DLMDPs as described in Definition 3 can be represented as a
DSRFA. We assume there also is an alphabet Σout of observable output symbols. On a given
input σ i ∈ Σ in the automaton makes a random transition to a state labeled with σ o ∈ Σout,
so that the successor state is uniquely determined by the (σ i , σ o) pair.

To represent this as a DSRFA, we assume that each state is labeled by random variables
Xσ i (σ i ∈ Σ in)with values inΣout. Xσ i represents the conditional distribution over the next
output symbol, given input σ i . Given input σ i ∈ Σ in one observes the value of the relevant
variable Xσ i , i.e., obs(σ i , (X (q)

σ )σ∈Σ in) = (σ i , X (q)

σ i ). Then succ(q, σ i , (X (q)
σ )σ∈Σ in) is the

unique q ′ ∈ Q defined by q, σ i , X (q)

σ i . In this case, the equivalence class [o] is just the
singleton o.

To expand this to DCTMCs, one may add a real-valued delay variable XT , e.g.
with an exponential distribution. Assuming that the delay time is always observed, then
obs(σ i , XT , (X (q)

σ )σ∈Σ in) = (σ i , XT , X (q)

σ i ). Furthermore (σ i , XT , X (q)

σ i ) ≡
(σ i ′, X ′

T , X (q)

σ i

′
) iff σ i = σ i ′, and X (q)

σ i = X (q)

σ i

′
.

For random variables X, Y we write X ≈ Y if X and Y have the same distribution.

Definition 14 Two states q, q ′ ∈ Q are said to be locally compatible, written q ∼l q ′, if
X (q)
i ≈ X (q ′)

i for i = 1, . . . , n. They are said to be globally compatible, written q ∼ q ′, if
q ∼l q ′, and succ(q, ō) ∼l succ(q ′, ō) for all ō ∈ Obs∗.

The relation q ∼ q ′ is an equivalence relation on Q. The automaton obtained by factoring
A over this equivalence relation is denoted A/ ∼.

Computation prefix tree

For a finite-branching deterministic automatonA, we can define the computation prefix tree:

Definition 15 The computation prefix tree (CPT) for A is the infinite rooted tree in which
every node v has one successor succ(v, [o]) for each equivalence class [o] ∈ [Obs].

Each node v in the CPT can be labeled with a state q(v) ∈ Q: the root is labeled with
qs , and the [o]-successor of a node labeled with q is labeled with succ(q, o). For a finite
computation (sequence of observations) ō = o1, . . . , ok one inductively defines the node
v ∈ T reached by ō: For k = 0 the node reached by ō is the root. For k ≥ 1 the node
reached by o1, . . . , ok is the [ok]-successor of the node reached by o1, . . . , ok−1. Each node
v is reached by a unique observation sequence, denoted ō(v).

Without loss of generality, we from now on assume that all states in A are reachable by
some computation, so that every state q ∈ Q also appears as a node label in the CPT.

Definition 16 Let A be a DSFA with |Q| = m and T its CPT. A kernel of T is any initial
part K of T that contains for each state q ∈ Q a node v(q) labeled with q . If K is a kernel,
then K+1 is the union of K with all [o]-successors ([o] ∈ [Obs]) of nodes in K . The critical
region of K is the extension of K by the set of all nodes v ∈ T reachable from K by a path
of length at most m2.

Inmost accounts of Alergia-like learning algorithms, it is assumed that an initial part of the
CPT is constructed from the data. We take an essentially equivalent, but conceptually slightly
different view, and let the data only increment empirical count variables at the nodes of the
full, infinite tree. This, in particular, serves the purpose to consider sets of tests independently
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fromparticular data samples, i.e., our analysiswill be based on always considering all possible
compatibility tests between nodes of the full CPT that would be performed given any sample.

Let v be a node in T . For each i = 1, . . . , n we associate with v an empirical distribution
variable X̂ (v)

i whose values are multisets of values from Ωi (for finite Ωi such a multiset is
just given by an integer count for each value in Ωi ).

For j = 1, . . . , N let ō( j) = o( j)
1 , . . . , o( j)

k( j) be an observed computation of length k( j).

The sample (ō( j)) j defines the empirical distributions at a node v ∈ T that is reached by

observation sequence ō(v) of length k as follows: the multiset X̂ (v)
i is the union of all ωi that

are observed in those o( j)
k+1 for j such that k( j) ≥ k + 1, and o( j)

1 , . . . , o( j)
k = ō(v).

State merging in the CPT

Alergia-like algorithms merge nodes of the CPT based on compatibility tests between pairs
of nodes. The following definition introduces a binary relation representing the outcome of
such tests.

Definition 17 A compatibility test relation on T is a binary symmetric and reflexive relation
∼t between the nodes of T . Furthermore, we define v ∼∗

t v′ iff v ∼t v′, and for all ō ∈ Obs∗:
succ(v, ō) ∼t succ(v′, ō).

Based on recursively applied compatibility tests, Alergia-like algorithms actually compute
the ∼∗

t relation, and merge pairs of nodes v, v′ (and their successors) for which v ∼∗
t v′. At

each stage in the algorithm, an equivalence relation on T describes the equivalence classes
of merged nodes. In the following, we define equivalence relations ∼tc

i that describe the
equivalence classes of merged nodes after i iterations of the algorithm. For this we assume
a fixed (but arbitrary) enumeration of the nodes of T :

T = v1, v2, v3, . . .

Definition 18 For i = 1, 2, . . . we define for v, v′ ∈ T : v ∼i v′ iff there exist j, h ≤ i
and ō ∈ Obs∗, such that v j ∼∗

t vh , v = succ(v j , ō), and v′ = succ(vh, ō). Let ∼tc
i be the

transitive closure of ∼i .

The following lemma stipulates sufficient conditions on ∼t for the algorithm to terminate
with the correctly identified equivalence classes of A/ ∼.

Lemma 1 Let k ≥ 1 be such that K+1 = {v1, . . . , vk} for some kernel K of T . Let C be the
critical region for K . Assume that ∼t satisfies the following two conditions:

(i) for all v, v′ in C: v ∼t v′ iff q(v) ∼l q(v′) (correct test results on C)
(ii) for all j, h ≤ k, and all ō ∈ Obs∗: if q(succ(v j , ō)) ∼l q(succ(vh, ō)), then

succ(v j , ō) ∼t succ(vh, ō) (no false rejections in relevant tests)

Then for all v, v′ ∈ T : v ∼tc
k v′ ⇔ q(v) ∼ q(v′).

Proof First assume that v ∼tc
k v′. It is sufficient to consider the case where v ∼k v′: if in

that case q(v) ∼ q(v′), this will also be true in the general case v ∼tc
k v′, since ∼ itself is a

transitive relation.
Assume, then, that v ∼k v′, and let v j , vh ∈ K for v, v′ as given by Definition 18. It is

sufficient to show that q(v j ) ∼ q(vh). Assume q(v j ) � q(vh). Then q(v j ) �∼l q(vh), or
for some computation sequence ō: succ(q(v j ), ō) �∼l succ(q(vh), ō). The length of ō can be
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bounded by m2, since any pair of states reachable from q(v j ), q(vh) is reachable within at
most m2 steps. Thus, succ(v j , ō), succ(vh, ō) ∈ C , and by (i), succ(v j , ō) �∼t succ(vh, ō),
so that v j �∼∗

t vh , a contradiction.
For the converse direction, we first note that the statement is true for v, v′ ∈ K+1, because

then q(v) ∼ q(v′) implies v ∼∗
t v′ by (i) and (ii), and therefore also v ∼k v′.

For the general case we proceed as follows: we show that for every v ∈ T there exists
vK ∈ K with v ∼tc

k vK . Then, for v, v′ ∈ T with q(v) ∼ q(v′) we obtain v ∼tc
k vK ,

v′ ∼tc
k v′

K . By the first part of the proof, then q(v) ∼ q(vK ), and q(v′) ∼ q(v′
K ), and hence

also q(vK ) ∼ q(v′
K ), and v ∼tc

k v′.
Assume that there exists v ∈ T \ K+1 for which no vK exists. Let v be such a coun-

terexample that is minimal in the sense that v = succ(v0, o), v0 ∈ K+1 \ K , and | o | (i.e.,
the distance of v to K+1) is minimal. For v0 there exists v1 ∈ K with q(v0) ∼ q(v1), and
therefore v0 ∼∗

t v1. Let v′ = succ(v1, o). Then v ∼k v′. The distance of v′ to K+1 is less
than |o |, and therefore v′ ∼tc

k vK for some vK ∈ K . Thus, also v ∼tc
k vK , a contradiction. ��

Definition 18 reflects a quite high-level description of an iterative state-merging proce-
dure that abstracts from several implementation details present in our version of the Alergia
algorithm as described in Sect. 3. For instance, the definition of∼i does not take into account
that in our algorithm we test the compatibility of a node qb (corresponding to the next node
vi considered in the enumeration of T according to Definition 18) with candidate nodes qr
(corresponding to the nodes v1, . . . , vi−1 in our enumeration) in lexicographic order of qr ,
and that once one such compatibility is found, no further compatibilities of qb with other
nodes qr are tested. Due to these differences between the procedural merge strategies in con-
crete implementations, and the abstract merge relations ∼i , it is not the case that in all cases
the final equivalence classes over states computed by the algorithm coincide with the limit of
∼tc

i as i → ∞. However, these two equivalence relations will be the same if condition (i) of
Lemma 1 holds: in that case, the test relation ∼t is guaranteed to be an equivalence relation
onC , and implementation details that influence which representatives of an equivalence class
are used for compatibility testing do not affect the outcome.

The only necessary procedural aspect we have to require of an implementation in order to
guarantee that under the conditions of Lemma 1 the computed equivalence relation coincides
with ∼tc

k is that nodes of the CPT are processed in a fixed order, which is not influenced by
the data sample.

We will now investigate conditions under which it is ensured that ∼t will satisfy the
conditions of Lemma 1 if ∼t is defined by statistical tests of the relation ∼l . This will be a
purely statistical question without any reference to algorithmic procedures.

Statistical tests

We assume that the relation ∼t is defined by statistical tests ∼t,i for the local equivalences

X (q(v))
i ≈ X (q(v′))

i as ∼t= ∩n
i=1 ∼t,i .

According to the terminology and notation introduced in Definition 12, a random variable
X has a distribution on a state spaceΩ characterized by a parameter θ ∈ Θ . In the following,
we denote this distribution by Pθ . By a slight abuse of notation, we also use Pθ to denote
the distributions induced on ΩN (N ≥ 1) and Ω∞ by independent random sampling from
Pθ . Furthermore, Pθ1×θ2 denotes the sampling distribution for two independent samples
according to Pθ1 and Pθ2 , respectively. For an infinite sample sequence ω ∈ Ω∞ we denote
by ω(N ) the initial sequence of N samples.
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Definition 19 A two-sample test for equivalence for the parametric family {Pθ | θ ∈ Θ} is
a mapping

R
>0 ×

⋃

N∈N
ΩN ×

⋃

N∈N
ΩN → {accept, reject}

such that for all θ ∈ Θ:

Pθ×θ ({(ω1,ω2) ∈ ΩN1 × ΩN2 | T (ε,ω1,ω2) = reject}) < ε. (7)

Furthermore, we require that for all ε > 0

T (ε,ω1,ω2) = accept (8)

if |ω1 |= 0 or |ω2 |= 0.

In the following we use Ω( f (N )) and O( f (N )) in the usual complexity-theoretic sense
to denote the classes of functions that grow at least, respectively at most, as fast as f (N ).
Note, in particular, that Ω now appears with two distinct meanings: as a function class, and
as a sample space.

Definition 20 Let h : N → R be non-decreasing. A two-sample test T is strongly h-
consistent, if there exists a sequence (εN )N with

(i-a)
∑

N h(N )εN < ∞
(ii-a) for all θ1, θ2 ∈ Θ , θ1 �= θ2, and for all g1, g2 ∈ Ω(N ):

Pθ1×θ2({(ω1,ω2) ∈ Ω∞ × Ω∞ |
T (εN ,ω1(g1(N )),ω2(g2(N ))) = accept for infinitely many N }) = 0. (9)

T is called weakly h-consistent, if instead of (i-a) and (ii-a) only the following holds

(i-b) for all δ > 0, there exists N0 ∈ N, such that for all N ≥ N0: h(N )εN ≤ δ.
(ii-b) for all θ1, θ2 ∈ Θ , θ1 �= θ2, for all g1, g2 ∈ Ω(N ):

lim
N

Pθ1×θ2({(ω1,ω2) ∈ Ω∞ × Ω∞ | T (εN ,ω1(g1(N )),ω2(g2(N ))) = accept) = 0.

The following definitions introduces the conditions we have to impose on data generation
procedures to ensure consistency.

Definition 21 Let ō∞ = ō(1), ō(2), . . . , ō(N ), . . . be an infinite sequence of finite observa-
tion sequences, where each ō(N ) is independently sampled from some sampling distribution
Ps
N .

1 We denote with Ps the sampling distribution for ō∞, and with X̂ (v)
i,N the empirical

distribution defined as in Sect. 1 from the first N elements of ō∞. Let h : N → R as in
Definition 20. We say that Ps is h-admissible if

(i) for all v, N , i : the elements of X̂ (v)
i,N are an iid sample from P(Xq(v)

i ).

(ii) for all v, i : Ps(|X̂ (v)
i,N | = Ω(N )) = 1 (at least linear increase of sample sizes for all

empirical node distributions)
(iii) E(|{v | ∃i : |X̂ (v)

i,N | > 0}|) = O(h(N )) (in expectation, the increase of the number of
nodes with non-empty samples is at most h(N )).

1 Note that the ō(N ) can not be assumed to be identically distributed, since the input sequences will be different
in different samples.
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Theorem 4 Let Ps be an h-admissible sample distribution. For i = 1, . . . , n let Ti be an
h-consistent two-sample test for equivalence for the parametric family {Pθ | θ ∈ Θi } with
associated sequence (εi,N ).

For N > 1, i ∈ {1, . . . , n} we define
v ∼(N )

t,i v′ :⇔ T (εi,N , X̂ (v)
i,N , X̂ (v′)

i,N ) = accept (10)

Furthermore, define

v ∼(N )
t v′ :⇔ ∀i : v ∼(N )

t,i v′.

If T is strongly h-consistent, then

Ps(∼(N )
t almost always satisfies (i) and (ii) in Lemma 1) = 1. (11)

If T is weakly h-consistent, then for all δ > 0 exists N0 ∈ N, such that for all N ≥ N0:

Ps(∼(N )
t satisfies (i) and (ii) in Lemma 1) ≥ 1 − δ. (12)

Proof We first observe that we may assume that all Ti satisfy Definition 20 with the same
sequence εN , because replacing εi,N with εN := maxi εi,N preserves the validity of conditions
(i) and (ii) in Definition 20.

We now first show that ∼(N )
t a.a. satisfies (i). Let v, v′ ∈ C , and assume, first, that

q(v) ∼l q(v′). Then θi = θ ′
i for all i , and thus

Ps(T (εN , X̂ (v)
i,N , X̂ (v′)

i,N ) = reject) ≤ εN .

If (i-a) holds, then by the Borel-Cantelli lemma (here only using
∑

N εN < ∞)

Ps(v ∼(N )
t,i v′ a.a.) = 1

for all i , and therefore also
Ps(v ∼(N )

t v′ a.a.) = 1. (13)

If (i-b) holds, then for a given δ and sufficiently large N :

Ps(v ∼(N )
t,i v′) ≥ 1 − δ/(4n |C |2),

and therefore

Ps(for all v, v′ ∈ C : q(v) ∼l q(v′) ⇒ v ∼t v′) > 1 − δ/4. (14)

Conversely, assume q(v) �∼l q(v′). Let i ∈ {1, . . . , n} be such that θi �= θ ′
i . Assume that

T is strongly consistent. Then, by Definition 20 (ii-a) and Definition 21 (ii):

Ps(T (εN , X̂ (v)
i,N , X̂ (v′)

i,N ) = reject a.a.) = 1,

and therefore
Ps(v �∼(N )

t v′ a.a.) = 1. (15)

(13) and (15) together imply that Ps(∼(N )
t almost always satisfies (i) in Lemma 1) = 1.

If T is only weakly consistent, then by Definition 20 (ii-b) and Definition 21 (ii), for all
δ and all sufficiently large N :

Ps(T (εN , X̂ (v)
i,N , X̂ (v′)

i,N ) = reject) ≤ δ/(4n |C |2),
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and therefore

Ps(for all v, v′ ∈ C : q(v) ∼l q(v′) ⇐ v ∼t v′) > 1 − δ/4. (16)

(14) and (16) together imply that Ps(∼(N )
t satisfies (i) in Lemma 1) ≥ 1 − δ/2.

We now turn to showing condition (ii) of Lemma 1. For this we consider the probability
that (ii) does not hold for ∼(N )

t . In the following, when we write a union or summation over
pairs v, v′ this is always shorthand for union or summation over the set

{v, v′ | q(v) ∼l q(v′), ∃v j , vh ∈ K , ō ∈ Obs∗ : v = succ(v j , ō), v′ = succ(vh, ō)}
Using (7) and (8) we can write:

Ps(∪v,v′ {v �∼(N )
t v′}) ≤

∑

v,v′

n∑

i=1

Ps(v �∼(N )
t,i v′)

=
∑

v,v′

n∑

i=1

Ps(v �∼(N )
t,i v′, |X̂ (v)

i,N | > 0)

=
∑

v,v′

n∑

i=1

Ps(v �∼(N )
t,i v′ | |X̂ (v)

i,N | > 0)Ps(|X̂ (v)
i,N | > 0)

≤ εN
∑

v,v′

n∑

i=1

Ps(|X̂ (v)
i,N | > 0) (17)

For any given v there exist at most |K | different v′ for which the pair v, v′ is included in the
sum. Also writing Ps(|X̂ (v)

i,N | > 0}) as E(1|X̂ (v)
i,N |>0

) with 1e the indicator function of event

e, we can therefore further bound (17):

≤ εN |K |
∑

v∈T

n∑

i=1

Ps(|X̂ (v)
i,N | > 0)

= εN |K |
∑

v∈T

n∑

i=1

E(1|X̂ (v)
i,N |>0

) = εN |K |E
(

∑

v∈T

n∑

i=1

1|X̂ (v)
i,N |>0

)

≤ εN |K |nE
(

∑

v∈T
1∃i :|X̂ (v)

i,N |>0

)

= O(h(N )εN ), (18)

where the last equality is due to Definition 21 (iii).
If Definition 20 (i-a) holds, it follows with the Borel-Cantelli Lemma that

Ps(∼(N )
t infinitely often violates Lemma 1 (ii)) = 0.

��
If Definition 20 (i-b) holds, then for sufficiently large N

Ps(∼(N )
t violates Lemma 1 (ii)) ≤ δ/2. (19)

Weconclude this section by showing that theHoeffding test for the equivalence of binomial
distributions, and the F-test for the equivalence for exponential distributions are strongly and
weakly h-consistent, respectively, for

hgeoλ (N ) := E(|{v | ∃i : |X̂ (v)
i,N | > 0}|),
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where the expectation is with respect to the sampling procedure described in Sect. 4, i.e. with
a geometric distribution with parameter λ for the length of the sample sequences ō( j).

Lemma 2 limN hgeoλ (N )/N = 0

Proof Let VN := |{v | ∃i : |X̂ (v)
i,N | > 0}| and V+

N := VN − VN−1, i.e., V
+
N is the number

of nodes v ∈ T that are reached for the first time in the N th sample. Then E(VN ) =∑N
k=1 E(V+

k ), and the lemma can be proven by showing that E(V+
k ) → 0 as k → ∞. We

can write

E(V+
k ) = E(V+

k | V+
k > 0)Ps(V+

k > 0).

For all k: E(V+
k | V+

k > 0) = (1 − λ)/λ. This is because the geometric distribution
represents a memoryless sampling procedure for the length of an observation sequence ō, so
that conditional on ō having reached a first new node v, the expected length of the remaining
string is still the prior expectation (1−λ)/λ. It is thus sufficient to show that Ps(V+

k > 0) → 0
for k → ∞. For this let Al,k be the event that all nodes v ∈ T at depth ≤ l are included
in Vk . Then, because of Definition 21 (ii), we have that for all fixed l: Ps(Al,k) → 1 for
k → ∞. Thus, for all l and all δ > 0 there exists k0 such that for all k ≥ k0: Ps(V+

k >

0) ≤ Ps(V+
k > 0 | Al,k) + δ. With Ps(V+

k > 0 | Al,k) ≤ (1 − λ)l then Ps(V+
k > 0) → 0

follows. ��

Lemma 3 The Hoeffding test defined by Algorithm 3 is strongly hgeoλ -consistent.

Proof We first note that the Hoeffding test is indeed a two-sample test in the sense of
Definition 19 (Carrasco and Oncina 1999). To show strong consistency, let εN := 1/Nr

for some r > 2. Then (i-a) of Definition 20 is satisfied, because according to Lemma 2
hgeoλ (N )εN < 1/Nr−1 in the limit N → ∞.

To show (ii-a), let θ1 > θ2 be parameters of the binomial distribution, and g1, g2 ∈ Ω(N ).
In this case, ωi (gi (N )) are samples fromΩ = {0, 1} of size gi (N ). Let fi denote the number
of occurrences of 1 in ωi (gi (N )), and T (εN ,ω1(g1(N )),ω2(g2(N ))) = accept iff

| f1/g1(N ) − f2/g2(N ) |< (
√
1/g1(N ) + √

1/g2(N ))
√
1/2 ln(2/εN ). (20)

By the strong law of large numbers, Pθ1×θ2(limN→∞ | f1/g1(N )− f2/g2(N ) |→ θ1−θ2) =
1. The right-hand side of (20) is of the order O(

√
ln N/N ), and, thus, goes to zero as N → ∞.

It follows that with probability 1, (20) only holds for finitely many N .
We note that similarly we obtain that the Hoeffding test is weakly hgeoλ -consistent for

sequences εN := 1/Nr with r > 1. ��

Lemma 4 The F-test defined by Algorithm 4 is weakly hgeoλ -consistent.

Proof For the F-test, the data ωi (gi (N )) consists of samples from Ω = R following expo-
nential distributions with parameters θi . Let g1, g2 ∈ Ω(N ). In the following, we denote
Ni := gi (N ) (i = 1, 2).

Let θ̂i := ∑Ni
l=1 ωl/Ni . Then (θ̂1/θ̂2)(θ2/θ1) (approximately) follows an F(2N1, 2N2)-

distribution with mean μ = N2
N2−1 and standard deviation

σ =
√

N 2
2 (N1 + N2 − 1)

N1(N2 − 1)2(N2 − 2)
(21)
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(Cox 1953; Gehan and Thomas 1969), and

Pθ1×θ2

(

θ̂1/θ̂2 ∈
[

μ − σ√
εN

, μ + σ√
εN

])

= PF(2N1,2N2)

([

(μ − σ√
εN

)
θ1

θ2
, (μ + σ√

εN
)
θ1

θ2

])

. (22)

The F-test is constructedby an applicationofChebyshev’s inequality for the F(2N1, 2N2)-
distribution, and thereby is seen to be a two-sample test in the sense of Definition 19.

To show weak consistency, let εN = 1/
√
Nhgeoλ (N ). With Lemma 2 then hgeoλ (N )εN =

√
hgeoλ (N )/N → 0, so that Definition 20 (i-b) is satisfied.

Now assume θ1 �= θ2. With Lemma 2 we obtain σ/
√

εN = O((hgeoλ (N )/N )1/4) → 0.
Withμ → 1 this means that the interval [(μ− σ√

εN
) θ2
θ1

, (μ+ σ√
εN

) θ2
θ1

] is bounded away from
1 as N → ∞, and that the right-hand side of (22) goes to zero. ��

Appendix 2: MDP test properties

See Table 5.

Table 5 LTL test properties used in the Experiments of Sect. 5.1

Query Answer

r = 3 r = 5

1. Pmax=? [F “Pr10” ] 2.16E−001 4.04E−001

2. Pmax=? [F “Pr2” ] 4.48E−001 7.40E−001

3. Pmax=? [F “Pr0” ] 1.00 1.00

4. Pmax=? [ X ( X ( “100”)) ] 5.33E−001 4.58E−001

5. Pmax=? [ X ( X ( “200”)) ] 4.90E−001 5.60E−001

6. Pmax=? [ X ( X ( “110”)) ] 1.60E−001 1.32E−001

7. Pmax=? [ X ( X ( “120”)) ] 3.73E−001 3.08E−001

8. Pmax=? [ X ( X ( “220”)) ] 3.27E−001 3.92E−001

9. Pmax=? [ X ( X ( X ( “111”)) ) ] 1.23E−001 7.66E−002

10. Pmax=? [ X ( X ( X ( “122”)) ) ] 2.50E−001 2.27E−001

11. Pmax=? [ X ( X ( X ( “112”)) ) ] 2.86E−001 1.79E−001

12. Pmax=? [ X ( X ( X ( “222”)) ) ] 7.62E−002 1.65E−001

13. Pmax=? [ X ( X ( X ( “Pr0”))) ] 5.00E−001 5.00E−001

14. Pmax=? [ X ( X ( X ( “Pr2”))) ] 0.00 0.00

15. Pmax=? [ X ( X ( X ( “Pr10”))) ] 0.00 0.00

16. Pmax=? [ ! (F<7 (“End”)) ] 5.00E−001 1.00

17. Pmax=? [ ! (F<8 (“End”)) ] 2.50E−001 5.00E−001

18. Pmax=? [ ! (F<9 (“End”)) ] 2.50E−001 5.00E−001

19. Pmax=? [ ! (F<10 (“End”)) ] 1.25E−001 2.50E−001

20. Pmax=? [ ! (F<11 (“End”)) ] 1.25E−001 2.50E−001

21. Pmax=? [ ! (F<12 (“End”)) ] 6.25E−002 1.25E−001
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Table 5 continued

Query Answer

r = 3 r = 5

22. Pmax=? [ ! (F<13 (“End”)) ] 6.25E−002 1.25E−001

23. Pmax=? [ ! (F<14 (“End”)) ] 3.13E−002 6.25E−002

24. Pmax=? [ ! (F<15 (“End”)) ] 3.13E−002 6.25E−002

25. Pmax=? [ X ( X ( “100”)) & (F “Pr10”) ] 5.25E−002 9.18E−002

26. Pmax=? [ X ( X ( “100”)) & (F “Pr2”) ] 1.28E−001 1.92E−001

27. Pmax=? [ X ( X ( “100”)) & (F “Pr0”) ] 5.33E−001 4.58E−001

28. Pmax=? [ X ( X ( “200”)) & (F “Pr10”) ] 2.02E−001 3.05E−001

29. Pmax=? [ X ( X ( “200”)) & (F “Pr2”) ] 3.22E−001 4.43E−001

30. Pmax=? [ X ( X ( “200”)) & (F “Pr0”) ] 4.90E−001 5.60E−001

31. Pmax=? [ X ( X ( “110”)) & (F “Pr10”) ] 8.63E−003 1.33E−002

32. Pmax=? [ X ( X ( “110”)) & (F “Pr2”) ] 2.10E−002 3.42E−002

33. Pmax=? [ X ( X ( “110”)) & (F “Pr0”) ] 1.60E−001 1.32E−001

34. Pmax=? [ X ( X ( “210”)) & (F “Pr10”) ] 4.89E−002 7.97E−002

35. Pmax=? [ X ( X ( “210”)) & (F “Pr2”) ] 1.19E−001 2.08E−001

36. Pmax=? [ X ( X ( “210”)) & (F “Pr0”) ] 3.73E−001 3.08E−001

37. Pmax=? [ X ( X ( “220”)) & (F “Pr10”) ] 1.04E−001 2.64E−001

38. Pmax=? [ X ( X ( “220”)) & (F “Pr2”) ] 2.50E−001 3.86E−001

39. Pmax=? [ X ( X ( “220”)) & (F “Pr0”) ] 3.27E−001 3.92E−001

40. Pmax=? [ X ( X ( X ( “222”)) ) & (F “Pr10”) ] 7.62E−002 1.65E−001

41. Pmax=? [ X ( X ( X ( “222”)) ) & (F “Pr2”) ] 0.00 1.58E−001

42. Pmax=? [ X ( X ( X ( “222”)) ) & (F “Pr0”) ] 0.00 1.19E−001

43. Pmax=? [ X ( X ( X ( “221”)) ) & (F “Pr10”) ] 0.00 9.95E−002

44. Pmax=? [ X ( X ( X ( “221”)) ) & (F “Pr2”) ] 2.50E−001 2.27E−001

45. Pmax=? [ X ( X ( X ( “221”)) ) & (F “Pr0”) ] 0.00 2.18E−001

46. Pmax=? [ X ( X ( X ( “211”)) ) & (F “Pr10”) ] 0.00 2.31E−002

47. Pmax=? [ X ( X ( X ( “211”)) ) & (F “Pr2”) ] 0.00 7.82E−002

48. Pmax=? [ X ( X ( X ( “211”)) ) & (F “Pr0”) ] 2.86E−001 1.79E−001

49. Pmax=? [ X ( X ( X ( “111”)) ) & (F “Pr10”) ] 0.00 3.87E−003

50. Pmax=? [ X ( X ( X ( “111”)) ) & (F “Pr2”) ] 0.00 9.91E−003

51. Pmax=? [ X ( X ( X ( “111”)) ) & (F “Pr0”) ] 1.23E−001 7.66E−002

52. Pmax=? [ (X ( X ( X ( “221”)) )) & (X ( X ( X ( X (“222”))) )) ] 0.00 6.37E−002

53. Pmax=? [ (X ( X ( X ( “221”)) )) & (X ( X ( X ( X (“121”))) )) ] 0.00 1.64E−001

54. Pmax=? [ (X ( X ( X ( “211”)) )) & (X ( X ( X ( X (“221”))) )) ] 0.00 5.00E−002

55. Pmax=? [ (X ( X ( X ( “211”)) )) & (X ( X ( X ( X (“211”))) )) ] 0.00 1.29E−001

56. Pmax=? [ X ( X ( “110”)) & (X ( X ( X ( “112”)) )) & (F “Pr0”) ] 3.73E−002 6.14E−002

57. Pmax=? [ X ( X ( “110”)) & (X ( X ( X ( “111”)) )) & (F “Pr0”) ] 4.27E−002 9.50E−002

58. Pmax=? [ X ( X ( “110”)) & (X ( X ( X ( “112”)) )) & (F “Pr2”) ] 1.19E−002 2.49E−002

59. Pmax=? [ X ( X ( “110”)) & (X ( X ( X ( “111”)) )) & (F “Pr2”) ] 5.59E−003 1.25E−002

60. Pmax=? [ X ( X ( “110”)) & (X ( X ( X ( “112”)) )) & (F “Pr10”) ] 4.89E−003 9.57E−003

61. Pmax=? [ X ( X ( “110”)) & (X ( X ( X ( “111”)) )) & (F “Pr10”) ] 2.30E−003 4.88E−003

The properties are given in PRISM syntax. For conciseness, blank, apple, bar are represented by 0,1,2,
respectively
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