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Abstract Heterogeneous networks, consisting of multi-type objects coupled with various
relations, are ubiquitous in the real world. Most previous work on clustering heterogeneous
networks either converts them into homogeneous networks or simplifies the modeling of the
heterogeneity in terms of specific objects, structures or assumptions. However, few stud-
ies consider all relevant objects and relations, and trade-off between integrating relevant
objects and reducing the noises caused by relations across objects. In this paper, we pro-
pose a general probabilistic graphical model for clustering heterogeneous networks. First,
we present a novel graphical representation based on our basic assumptions: different relation
types produce different weight distributions to specify intra-cluster probability between two
objects, and clusters are formed around cluster cores. Then, we derive an efficient algorithm
called PROCESS, standing for PRObabilistic ClusteringmodEl for heterogeneouS networkS.
PROCESS employs a balance-controlled message passing algorithm and mathematical pro-
gramming for inference and estimation. Experimental results show that our approach is
effective and significantly outperforms the state-of-the-art algorithms on both synthetic and
real data from heterogeneous networks.
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1 Introduction

Most real-world networks are heterogeneous, incorporating multi-type objects associated
with multi-type relations. For instance, the usual bibliographic networks consist of papers,
authors, publications (journals or conferences) and terms, which are associated with each
other in terms of various relations such as paper-paper citation relations and author-paper
authoring connections. Other typical heterogeneous networks include sensor networks, social
networks, and transport networks. It is becoming more and more important and essential to
analyze the heterogeneous objects and relations in such networks.

Clustering analysis is a practical and indispensable way to explore the structure of het-
erogeneous networks. The existing approaches for handling the heterogeneity of objects and
relations in such networks intend to convert the data into a simpler format in the follow-
ing ways. One focuses on how to embed objects in networks into an Euclidean space and
transform each object to a multi-dimensional data point, so that the objects can be clus-
tered by typical methods such as k-means. Such transformations are usually implemented
based on the adjacent matrix representing the network via multi-dimensional vectors, ignor-
ing explicit dependence across dimensions. Taking bibliographic networks as an example,
in order to cluster papers, each row of the adjacent matrix of the “paper–term” relations
may be converted into a vector to represent a paper, neglecting certain forms of “term–term”
relations existing in the network. This method is called multi-dimensional clustering, includ-
ing k-means (Hartigan and Wong 1979) and PLSA (Hofmann 1999). The other transforms
various relations across heterogeneous objects into a homogeneous networkwith unique rela-
tions. For example, regarding papers as the clustering target, both the “paper–author–paper”
authoring relations and the “paper–paper” citation relations are converted into “paper–paper”
relations for clustering without differentiating the two types of relations. This approach is
called graph partition, including the Kernighan–Lin algorithm (Kernighan and Lin 1970),
Girvan–Newman algorithm (Girvan and Newman 2002), and spectral partitioning algorithm
(Ng et al. 2001). In addition, algorithms such as NetClus (Sun et al. 2009b) and BibClus
(Xu and Deng 2011) handle the heterogeneity based on or requiring specific data structures,
lacking generality for clustering heterogeneous networks.

The motivation behind the above approaches is to reduce the heterogeneity of relations
and simplify the presentation of objects, by a multi-dimensional vector or in a homoge-
neous network, so that most of existing approaches can be applied. In fact, due to the
interaction between multi-type objects guided by multi-type relations, besides objects as
clustering target, it is often necessary to explicitly consider the contributions by those non-
target associated objects, and relations between target objects and non-target objects or even
between non-target objects themselves. This involves the necessity of considering coupling
relationships (Cao et al. 2012) between heterogeneous objects and between relations and
objects.

In this paper, we present a novel probabilistic graphical model and derive an efficient
algorithm, called PROCESS, for clustering heterogeneous networks. PROCESS performs
inference and estimation iteratively under EM framework. The inference implements cluster-
ing reassignment for each object by using the balance-controlled message passing algorithm
improved from the original one in Kschischang et al. (2001). The estimation updates model
parameters for each cluster by transforming the original problem into several mathematical
optimization problems, such as 0/1 integer programming (Nemhauser and Wolsey 1988).
PROCESS considers both target and attribute objects, brings about a good trade-off between
incorporating attribute objects and their possible noises to the clustering, and treats relations
between targets and attributes differently and adaptively. Substantial experiments on both syn-
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thetic and real datasets demonstrate the effectiveness of PROCESS and show that PROCESS
outperforms the state-of-the-art algorithms for clustering heterogeneous networks.

The main contributions of our work are summarized as follows:

1. We handle the heterogeneity of objects in the network directly, without any simplification
or reduction, through considering all associated types of objects and relations.

2. We study a mechanism to treat various relations in the network distinctively by learning
relation weights automatically, which lead to a good trade-off between incorporating
attribute objects and reducing noises.

3. We analyze the structure properties in a cluster, and propose the concept of cluster core,
size of which can be adjusted dynamically to avoid an extremely unbalanced clustering.

4. We develop a novel inference approach based on message passing algorithm and it prove
to be effective by extensive experiments.

The remainder of the paper is organized as follows. Section 2 introduces related work and
discusses their limitations in clustering heterogeneous networks. The graphical model is
proposed in Sect. 3. The PROCESS algorithm and its working mechanism are presented
in Sect. 4. Experimental results and evaluation are presented in Sect. 5. Finally, Sect. 6
summarizes our work and points out promising directions for future research.

2 Related work

Clustering analysis of networks is a promising technique in studying complex networks. A
typical network clusteringmethod is graph clustering, also called node clustering, since a net-
work is usually regarded as a simple graph consisting of nodes with edges. Node-clustering
algorithms are generalizations ofmulti-dimensional clustering algorithms like k-means (Har-
tigan and Wong 1979). They use functions of the transformed multi-dimensional data points
to define the distances and then minimize the inter-cluster similarity. A graphical version
of k-medoids (Rattigan et al. 2007) has been proposed in this way. Mostly, graph cluster-
ing reduces to the problem of graph partition, aiming to partition the graph to minimize
the weights of edges across the partitions. This method has been widely studied in different
ways, such as the Kernighan–Lin algorithm (Kernighan and Lin 1970), the spectral clustering
(Ng et al. 2001; Shiga et al. 2007), the min–max cut (Papadimitriou and Steiglitz 1998), the
Girvan–Newman algorithm (Girvan and Newman 2002), and many other methods optimiz-
ing different predefined criteria (Aggarwal andWang 2010). In addition, affinity propagation
(Frey and Dueck 2007) is an exemplar-based clustering algorithm proposed recently, attract-
ing much attention. It overcomes the sensitiveness of k-means to the initial points, and use
the similarity between each pair of data points as input, leading to its flexibility to networked
data.However,most of them focus on homogeneous networks and simplify the heterogeneous
relations into homogeneous one for clustering.

Clustering heterogeneous networks is an emerging research topic, which is attractingmore
and more attention (Sun et al. 2009b; Xu and Deng 2011; Deng et al. 2011, 2013; Yu et al.
2014). Clustering heterogeneous networks is also called relational clustering of heteroge-
neous relational data (Philip 2010). There are two typical paradigms: deterministic approach
and generative approach. The former mainly uses spectral analysis (Long et al. 2006) or
modularity analysis (Tang et al. 2009b) based on collective matrix factorization or cross-
dimension interaction, which leads to the computation of singular vectors or eigenvectors of
certain graph affinity matrices. These methods preset the weights of different relations rather
than learn adaptively, which may not reflect the data characteristics properly. The latter can
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be traced from the well-known topic model, the Latent Dirichlet Allocation model (Blei et al.
2003). Such approaches usually have difficulty in making full use of all types of objects and
relations. As a consequence, most of them just utilize partial network structure to conduct a
generative process.

Probabilistic approaches are recently studied in network or graph clustering (Sun et al.
2009b, a, 2012b, a; Xu and Deng 2011; Xu et al. 2012; Zhou and Liu 2013; Perozzi et al.
2014). NetClus (Sun et al. 2009b), BibClus (Xu and Deng 2011) and PathSelClus (Sun et al.
2012a) are three typical probabilistic generative models for clustering general heterogeneous
networks. NetClus and BibClus are constrained on specific data structures. NetClus needs a
star network schema and BibClus requires a center linkage structure. PathSelClus need user
to first provide a small set of object seeds for each cluster as guidance. Approaches proposed
in Sun et al. (2009a, 2012b), Zhou and Liu (2013) handle the issue of clustering on special
heterogeneous networks, such as bi-typed heterogeneous networks. The mixed membership
relational clustering model (Long et al. 2007) is a more general generative model under
a large number of exponential family distribution. However, it doesn’t discriminate target
objects from attribute objects, and will be unable to determine objects of which type should
be clustered clearly, failing to reduce possible noises. There are other methods dealing with
multi-type relations between homogeneous objects, called clustering with multiple graphs
(Tang et al. 2009a), which have a limited application.

In summary, the dependency between heterogeneous objects and relations are not fully
considered in existing methods. As far as we know, there is no work providing a systematic
solution addressing the aforementioned challenges in clustering heterogeneous networks. In
addition, the current methods tend to specify the contribution of each relation rather than
automatically determining it by learning the data characteristics.

3 The proposed model

3.1 Motivation

Before introducing our model, we first explore the critical problem in clustering heteroge-
neous networks as shown in Fig. 1. Considering the network structure in Fig. 1a, it is a
homogeneous network including single type of objects. Our task is to cluster these objects
by using associated relations in the network. Obviously, the objects should be assigned to
three clusters marked with dashed circles.

(a) (c) (d)

A A
A

B

(b)

1

3

2

1

2

3

4

5

Fig. 1 a A homogenous network with target objects only. b An extended heterogenous network by adding
four attribute objects. These objects provide supportive information for target objects clustering. c, d Another
heterogenous network, which is built by adding two noisy attribute objects to the network in b. We use
traditional graph partition algorithms to cluster the network in c. We treat two types of relations differently and
use a heterogenous clustering method in the network of d. In these three networks, big white circles represent
target objects, and small black spots or stars represent attribute objects. Among them, star-shape objects are
noises, and spot-shape objects provide useful information
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The above relations we take into account indicate direct interactions between objects.
However, unconnected objects may be related as well, by possessing common attributes. For
instance, papers without citation relation may own the same authors, terms, etc. To utilize
these attributes, we introduce objects ofmore types to represent them, called attribute objects,
and add them to the above homogeneous network. The original objects to be clustered are
called target objects. It isworthmentioning that attribute objects provide extra information for
clustering, but some of themmay not belong to any cluster. Figure 1b shows a heterogeneous
network by extending the homogeneous network in Fig. 1a, and introducing attribute objects
represented by small black spots.Adding objects 1, 2 and 3makes us confirm that the two right
clusters in Fig. 1a should be merged into one. This indicates that bringing attribute objects
into consideration supplements the insufficiency of the relation information in homogeneous
networks.

However, can the addition of attribute objects guarantee a better clustering result? In
Fig. 1c, another two attribute objects (star-shape) are brought into the network. Although the
relations, including target-target relation (solid lines) and target-attribute relation (dashed
lines), have been enriched, the network may be easily clustered in an inappropriate way as
shown in Fig. 1c by using a graph partition algorithm. It treats all relations equally, and
assigns object A to the right cluster instead of the left one. This error is caused by the lack
of considering different roles played by different relations in the partition. It does not cater
for the fact that relations between target objects carry more discriminative information than
target-attribute ones in clustering, because the latter is only an auxiliary to the clustering of
target objects.

As shown in Fig. 1d, to obtain an ideal clustering result, we consider that the weighting
of relations between targets is higher than that of the target-attribute relations. Note that the
relation weights are usually learned from the network structure rather than be pre-specified.
Consequently A is assigned to the left cluster, because the relation between A and B is
stronger than A − 4 and A − 5. We regard attribute objects like 4 and 5 as noises since they
bring inter-cluster relations. On the contrary, attribute objects 1, 2 and 3 make us confirm
that the four target objects on the right are in the same cluster.

The above example shows the following challenges in clustering heterogeneous networks:

– It is necessary to consider all associated objects of multiple types rather than just the
target objects, and consider various relations rather than just relations between target
objects in the clustering;

– Different relations, including target–target, target–attribute and attribute–attribute rela-
tions, playvarying roles,which should be treateddistinctively by learning relationweights
adaptively and automatically in clustering;

– Attribute objects could contribute to the clustering of targets but might also bring noises
leading to wrong clustering outcomes. This will lead to challenges in finding a proper
trade-off between involving heterogeneous objects and reducing noises caused by rela-
tions across objects in different clusters.

In this paper, in order to develop a general and effective algorithm for clustering a hetero-
geneous network, we aim to take all associated types of objects and relations into account and
treat them differently. Also, we study the structural properties in a cluster and characterize
them well. Then, we employ two basic assumptions in our model:

– We regard relation weight as a random parameter to determine the probability of two
connected objects belonging to the same cluster. To deal with multiple relation types
discriminatively, hyper-parameters are introduced to allow relation weights of different
types obey different probability distributions.
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Fig. 2 a A single community which contains three core members encircled in the dashed oval, and the rest
members linked around the core. b A clustered social network, in which one color represents one cluster.
These core objects in each cluster, marked with larger circles, make each cluster tight and compact

– We define a cluster core consisting of a small number of objects in each cluster, since
most of clusters possess a central structure. The rest objects form clusters centered on
these cores.

For the first assumption, intuition tells us that relations are more likely to be created
between intra-cluster objects than between inter-cluster objects, thus it is crucial to bring
in more relations for clustering. However, some types of relations, linked objects mostly
belonging to different clusters, may produce much noises rather than useful information,
which may determine a small relation weight. In a word, by adjusting relation weights, we
allow each relation type to play different roles in clustering.Here, under each relation type, the
relation weights follow a distribution controlled by a specific hyper-parameter. These hyper-
parameters are learned by the maximum likelihood estimation of objects forming several
clusters giving the current network structure.

For the second assumption, we find that in a social network, a real community or cluster
usually contains a central structure, composed of a minority of members or objects. Figure 2a
shows that these members encircled in the dashed oval act as a pivot of the community, which
we define as community cores or cluster cores. These members connect with many of the
rest members. Figure 2b shows a clustered social network, in which each cluster possesses a
cluster core, including three objects marked with larger circles. Then, objects can surround
these cluster cores by linking to them directly or indirectly, and eventually form three clear
clusters which are tight and compact.

Figure 2b shows that each cluster core is comprised of three objects, but in a more general
case, the object number of each cluster core, i.e. cluster core size, is uncertain. How do we
specify the size of each cluster core? How differently will it impact clustering results by
assigning one or more objects to a cluster core? Given the network containing two clusters
shown in Fig. 3a, suppose we assign one object, represented by the large circle, to each cluster
core. Since the area around the green cluster core has a much higher relation density than
the area around the red one, the green cluster inclines to an overwhelming coverage, leading
to an extremely unbalanced clustering. However, by adding another object to the red cluster
core, we obtain a relatively balanced clustering shown in Fig. 3b. Also, we observe that when
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Fig. 3 a Two unbalanced clusters containing only one core object. b A relatively balanced clustering result
by adding one core object to the red cluster. With two separated core objects, the red cluster looks less tight
than the green one (Color figure online)

a cluster core has multiple separated objects, the corresponding cluster might become less
tight like the red one. Through the above analysis, we know that, due to the different tightness
of each cluster, the size and distribution of each cluster core should be adjusted dynamically
to avoid an extremely unbalanced clustering, caused by a fixed core size.

Based on the above discussion, we build our model in the next subsection.

3.2 Model representation

In this section, we present a probabilistic graphical model for heterogeneous network clus-
tering. Formally, we introduce some basic concepts and notations used throughout the paper.

Definition 1 Heterogeneous Network: A network G = 〈V, E〉 is a heterogeneous network,
if V =⋃S

s=1 Vs denotes a set of objects of S types, and E =⋃T
t=1 Et consists of T types of

relations.S = {1, 2, . . . , S} represents all object types, and T = {1, 2, . . . , T } represents all
relation types. For object types s1, s2 ∈ S, t (s1,s2) ∈ T indicates the corresponding relation
type, if there are edges between Vs1 and Vs2 .

Definition 2 Target and Attribute Types: Given a heterogeneous network G, s∗ ∈ S is
called target type, if objects in Vs∗ are specified as the clustering target. The rest object types
s ∈ S \ {s∗} play an auxiliary role in clustering, called attribute types.

The two definitions indicate that heterogeneous network clustering considers and merges
the relation information across both homogeneous and heterogeneous objects. Due to the
heterogeneity, with more useful information carried, abundant noises would be brought in as
well. When we specify target objects, we should assign them into different clusters clearly
against noises carried by attribute objects, which may blur cluster borders.

We use a generative model to characterize a heterogeneous network. First, we introduce
some notations as follows:
Cluster core parameters

• C = {C1, . . . ,CK }: the set of cluster cores, where Ck ⊆ Vs∗ , consisting of a few target
objects, is also a subset of the kth cluster.

• N = {N1, . . . , NK }: the sizes of cluster cores in C , where Nk = |Ck | is usually a small
number to guarantee a tight and compact cluster.
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Relation weight parameters

• W = {Wi j ≥ 0|i, j ∈ V, i �= j}: the set of relation weights, where each pair of objects
i and j has a Wi j .

• β = {β1, . . . , βT }: the set of hyper-parameters of the distributions on W , where βt con-
trols the relationweight distribution under relation type t . β can be learned to characterize
the heterogeneity for different relation types.

Variables

• X = {Xi j ∈ {0, 1}|i, j ∈ V, i �= j}: the set of observedBoolean relation states, reflecting
whether a real relation exists, where for each pair of objects i ∈ Vs1 and j ∈ Vs2 , Xi j = 1
if (i, j) ∈ Et (s1,s2) , otherwiseXi j = 0.

• Z = {Zi ∈ {1, . . . , K }|i ∈ V }: the set of hidden cluster assignments, where Zi stands
for the cluster which object i belongs to.

Note that, we view X as observed variables, Z as hidden variables, C,W and β as estimated
parameters, and N as the self-adapting parameter.

The generative process of generating a directed graphical model is as follows:

1. For each cluster k

(a) Randomly sample core Ck from Vs∗ with |Ck | = Nk

2. For each object i

(a) If i ∈ Vs∗ , then sample Zi ∼ P(Zi |C)

(b) Else sample Zi from the uniform distribution on {1, . . . , K }.
3. For each pair i and j with relation type t

(a) Sample Wi j ∼ P(Wi j |βt )

(b) Sample Xi j ∼ P(Xi j |Zi , Z j ,Wi j )

Figure 4 shows the directed graphical model produced by the generative process. To
conduct this process, we define the conditional probabilities mentioned above as:

– P(Zi |C): This probability indicates cluster assignment of a target object depending on
cluster cores. For each Zi , i ∈ Vs∗ , P(Zi |C) is defined as:

P(Zi = y|C) =

⎧
⎪⎨

⎪⎩

1/K i /∈⋃k Ck

ε i ∈⋃k Ck ∧ i /∈ Cy

1 − (K − 1)ε i ∈ Cy

, (1)

where 0 < ε � 1/K is a small quantity. The above formula indicates that the objects in
cluster cores C should be assigned into one cluster with an extremely high probability,
while the rest target objects have the uniform probability 1/K to belong to any cluster.
These temporary assignments are derived only from cluster cores C without considering
the network structure.

– P(Wi j |βt ): This probability allows that relation weights of multiple types obey differ-
ent distributions controlled by hyper-parameters, so that various relations can be treated
differently. For each pair of objects i and j with their relation type t , since Wi j is non-
negative, we need a unimodal distribution to characterize it, and the gamma distribution
is a frequently used choice. We assume a gamma distribution for P(Wi j |βt ) as follows:

P(Wi j |βt ) = Gamma(Wi j |κ, βtθ), (2)
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Attribute type 1 Attribute type 2
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Fig. 4 The probabilistic graphical model for heterogeneous network clustering. The blank nodes in the upper
box describe target objects, while the ones in the two lower boxes represent two types of attribute objects
respectively. Six red dashed ovals represent six types of relations, including relations between homogeneous
objects and between heterogeneous objects (Color figure online)

where κ, θ are fixed and βt > 0. Here, we impose a harmonic average constraint as:

1

T

∑

t

1

βt
= 1, (3)

aiming to restrict the relative differences between β values to a fixed average level and
also for the convenience of calculation.

– P(Xi j |Zi , Z j ,Wi j ): This probability implies the probability difference of creating a
connection between two inter-cluster objects and between two intra-cluster objects. By
using the Bayes’ rule, we can derive P(Xi j |Zi , Z j , w) from P(Zi , Z j |Xi j ,Wi j ) and
P(Xi j ) as:

P(Xi j |Zi , Z j ,Wi j ) ∝ P(Xi j )P(Zi , Z j |Xi j ,Wi j ). (4)

For simplicity, we denote Xi j as x and Wi j as w for short. To derive P(Zi , Z j |x, w),
we rely on a basic intuition that objects i and j are more likely to share the same cluster
membership if an edge with certain weight w exists between i and j , and define the
probability as:

P(Zi = u, Z j = v|x, w) =
{
1/K 2 x = 0

ew I (u=v)/γ x = 1
, (5)
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where γ = K (ew + K − 1) is a normalization constant. By substituting Eq. (5) into Eq.
(4), we obtain the reduced formula as:

P(x |Zi , Z j , w) =
{
p1x + (1 − p1)(1 − x) Zi = Z j

p2x + (1 − p2)(1 − x) Zi �= Z j
, (6)

where

p1 = Kη/
(
Kη + 1 + (K − 1)e−w

)
,

p2 = Kη/
(
Kη + K − 1 + ew

)
.

(7)

Here, 0 < η = P(x=1)
P(x=0) � 1, reflecting the relation density of the network, is usually an

extremely small quantity, since most real-world networks are sparse.

In summary, we can obtain the fully joint probability as follows:

P(Z , X,C,W ;β, N )

=
∏

i∈Vs∗
P(Zi |C)

∏

i< j

(
P(Wi j |β)P(Xi j |Zi , Z j ,Wi j )

)
. (8)

4 PROCESS algorithm, its inference, and estimation

In this section, we take advantage of the typical EM framework to implement the clustering
procedure through inference and estimation, and then develop an effective algorithm called
PROCESS.

4.1 Clustering procedure and the EM framework

Generally, a clustering procedure contains two steps in each iteration:

1. reassign each object to a new cluster,
2. update model parameters for further clustering.

Such two steps are proceeded repeatedly until some criterion for convergence is achieved.
Many existing clustering algorithms are derived from diversified ways for cluster reassign-
ment and parameter update. As a simple example, k-means reassigns each object based on
its distance to the cluster centers and updates the vectors of center points in each iteration.
In this paper, the model parameters contains cluster core parameters as C, N and relation
weight parameters as W, β, which are learned by using maximum likelihood estimation
(MLE) under the EM framework.

The EM framework can be applied to learn the above model parameters, and consists of
two iterative steps:

– E-step calculate the expected value of the log likelihood function by marginal inference
for hidden variables, corresponding to the clustering step of cluster reassignment.

– M-step estimate the model parameters by maximizing the above expected value, corre-
sponding to the clustering step of parameter update.

Then, we denote the estimated parameters as Θ = (C,W, β). In E-step, the expected value
of the log likelihood function with respect to the conditional distribution of Z given X under
Θ(t) can be described as:
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Fig. 5 The solving process of
our model based on the EM
framework

M-StepE-Step
q(t)(Zi)

q(t)(Zi,Zj)

N

New cluster assignments New model parameters 

Adjusting

Q(Θ|Θ(t)) = EZ |X;Θ(t) [log P(Z , X,C,W ;β, N )]
=
∑

i∈Vs∗

∑

Zi

q(t)(Zi ) log P(Zi |C) +
∑

i< j

(
log P(Wi j |β)+

∑

Zi ,Z j

q(t)(Zi , Z j ) log P(Xi j |Zi , Z j ,Wi j )
)
,

(9)

where q(t)(Z) := P(Z |X;Θ(t)). In M-step, we estimate the parameters Θ as:

Θ(t+1) = argmax
Θ

Q(Θ|Θ(t)). (10)

Note that we have constraints for C and β defined as:

|Ck | = Nk, k = 1, . . . , K and
1

T

∑

t

1

βt
= 1. (11)

The working process of our model based on the EM framework can be illustrated in
Fig. 5. Below, we will explain the marginal inference in E-step and the parameter estimation
in M-step respectively.

4.2 Inference for q(t)(Zi ) and q(t)(Zi , Z j )

In Eq. (9), we need to calculate the marginal probabilities q(t)(Zi ) and q(t)(Zi , Z j ) from
q(t)(Z) = P(Z |X;Θ(t)) in each iteration. The probability q(t)(Z) involves the number of
pairs of disconnected objects, which is much larger than that of the edges, and can be written
as:

q(t)(Z) =
∏

i∈Vs∗
P(Zi |C)

∏

(i, j)∈E
P(Xi j = 1|Zi , Z j ,Wi j )

∏

(i, j)/∈E
P(Xi j = 0|Zi , Z j ,Wi j ).

(12)

Since hidden variables Z in q(t)(Z) are fully coupled, it is intractable to calculate themarginal
probabilities.We denote P(Xi j = 0|Zi , Z j ,Wi j ) as p0|= if Zi = Z j , otherwise p0|�=, written
as:

P(Xi j = 0|Zi , Z j ,Wi j ) =
⎧
⎨

⎩

1+(K−1)e−Wi j

Kη+1+(K−1)e−Wi j
= p0|= Zi = Z j

K−1+eWi j

Kη+K−1+eWi j
= p0|�= Zi �= Z j

, (13)

where we have:

1

Kη + 1
≤ p0|=

p0|�=
= 1

Kη + 1

(
1 + K 2η(η + 1)

(Kη + 1)ew + K − 1

)
≤ 1. (14)
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Since 0 < η � 1 reflects the network edge density, p0|=
p0|�= can be restricted to a very narrow

range below but close to 1, and p0|=
p0|�= ≈ 1. Due to p0|= being slightly smaller than p0|�=,

∏
(i, j)/∈E P(Xi j = 0|Zi , Z j ,Wi j ), representing the joint distribution of a large amount of

disconnected objects, tends to assign the objects separately to different clusters. Similarly,
we denote P(Xi j = 1|Zi , Z j ,Wi j ) as p1|= if Zi = Z j , otherwise p1|�=, written as:

P(Xi j = 1|Zi , Z j ,Wi j ) =
⎧
⎨

⎩

Kη

Kη+1+(K−1)e−Wi j
= p1|= Zi = Z j

Kη

Kη+K−1+eWi j
= p1|�= Zi �= Z j

, (15)

where we have:

1 ≤ p1|=
p1|�=

= Kη + K − 1 + eWi j

Kη + 1 + (K − 1)e−Wi j
≈ eWi j < +∞. (16)

Since p1|= is larger than p1|�= and their ratio greatly depends on Wi j ,
∏

(i, j)∈E P(Xi j =
1|Zi , Z j ,Wi j ), representing the joint distribution of a number of connected objects, tends to
assign the objects to the same cluster.

Here, we use a trick to reduce the coupling among Z in q(t)(Z) by only considering pairs
of connected objects, and factorize q(t)(Z) into many local factors in terms of vertices and
edges as follows:

q(t)(Z) ∝
∏

i∈Vs∗
P(Zi |C)

∏

(i, j)∈E
P(Xi j = 1|Zi , Z j ,Wi j )

=
∏

i∈V
φi (Zi )

∏

(i, j)∈E
ψi j (Zi , Z j ),

(17)

where φi (Zi ) ≡ 1 if i /∈ Vs∗ . Further, we build a factor graph and introduce an efficient
method to calculate marginal distributions, calledmessage passing (Kschischang et al. 2001),
the time complexity of which increases by the edge number. Here, we adopt the sum-product
algorithm, a method of the message passing family. The factor graph consists of variable
nodes {Zi |i ∈ V } and factor nodes {φi |i ∈ V } ∪ {ψi j |(i, j) ∈ E}. We define the message
from j to i across factorψi j as a K -dimensional vectorm j→i (Zi ), which is calculated below:

m(r)
j→i (Zi ) ∝

∑

Z j

(
φ j (Z j )ψi j (Zi , Z j )

∏

j ′ ∈N ( j)\i
m(r−1)

j ′→ j
(Z j )

)
, (18)

where
∑K

k=1 m
(r)
j→i (Zi = k) = 1. After several iterations, it converges, and then q(t)(Zi )

and q(t)(Zi , Z j ) can be calculated as follows:

q(t)(Zi ) ∝ φi (Zi )
∏

j∈N ( j)

m j→i (Zi )

q(t)(Zi , Z j ) ∝ q(t)(Zi )q(t)(Z j )ψi j (Zi , Z j )

m j→i (Zi )mi→ j (Z j )
.

(19)

According to the factor graph theory, the message passing algorithm gives the exact
marginal probabilities for all variable nodes in a cycle-free graph. However, it seems that the
argument for the exactness will break down when cycles are present in graph. In fact, some
equivalent algorithms have achieved excellent experimental results in error-correcting codes
defined on Tanner graphs with cycles (Frey and MacKay 1997) and etc. Yedidia et al. (2003)
showed that the fixed points of the algorithm correspond to Bethe free energy minima. And
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Fig. 6 Assign objects to two clusters by the original message passing algorithm, causing an unbalanced clus-
tering. Red and cyan (the complementary color of red) stands for two clusters. Each object has a probabilistic
cluster assignment represented by a mix of red and cyan. Each arrow beside an edge represents a message
flow, attached with a small histogram of cluster proportions in the message vector. a In the beginning, two
objects are specified to cluster cores, but the rest are not assigned to any cluster since no messages are passed.
bAfter one step, two core objects pass messages to their neighbors respectively. cAfter three steps, the objects
assigned to the red cluster are more than to the cyan because the red parts of histograms in most messages
dominate. dAfter ten steps, withmessages fully propagated, all objects are assigned to the red cluster including
the original core object of the cyan cluster (Color figure online)

McEliece et al. (1998) conjectured that the algorithm on graphs with cycles converges with
a high probability to an approximate optimal solution.

The above reduction of q(t)(Z) yields an efficient algorithm for calculatingmarginal prob-
abilities. However, for pairs of disconnected objects, although all p0|=

p0|�= are approximately
equal to 1, the product of a large number of these pairs may produce a considerable effect.
Ignoring this product may lose the effect of assigning disconnected objects to different clus-
ters, leading to assigning most objects to one large cluster. In another word, it will cause an
extremely unbalanced clustering by using the original message passing algorithm on such
reduction illustrated in Fig. 6.

We therefore design a balance-controlled message passing algorithm by normalizing each
dimension of all message vectors to restrict the differences among cluster sizes as:

m̃(r)
j→i (Zi = k) ∝ 1

πα
k
m(r)

j→i (Zi = k), k = 1, . . . , K (20)

where πk = ∑
m(r)

j→i (Zi = k) and α ∈ [0, 1] is a control parameter to make the algorithm
adaptive to data cluster balance. If α = 0, there is no balancing and it becomes the same
as the original message passing algorithm. When message passes, πk corresponding to the
largest cluster k goes far beyond other πk′ , meaning that most message vectors have a high
proportion in the kth dimension. If α = 1, the dominant proportion in message vectors can
be reduced by dividing the normalization constant πk , leading to a strict balanced clustering.
If 0 < α < 1, the balance is relaxed which causes a non-strict balanced clustering.

4.3 Estimation of Θ(t)

Since Q(Θ|Θ t ) can be split into two parts: C and W, β, we estimate them respectively.
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4.3.1 Calculating C

We define a logical matrix M|Vs∗ |×K as: mik = 1 if i ∈ Ck and otherwise mik = 0. The
constraint on the sizes of C can be written as

∑
i mik = Nk . Since a target object cannot

specified to more than one cluster core, we have
∑

k mik ≤ 1. Also, the three cases about
each target object i in Eq. (1) can be interpreted as:

i /∈⋃k Ck i ∈⋃k Ck − CZi i ∈ CZi

λ1 = 1 −∑K
k=1 mik 1 0 0

λ2 =∑K
k=1 mik − mi Zi 0 1 0

λ3 = mi Zi 0 0 1

Therefore, P(Zi |C) can be written as:

P(Zi |C) = (
1

K
)λ1ελ2

(
1 − (K − 1)ε

)λ3 . (21)

Then, the calculation of C can be converted into a 0/1 integer programming problem by
maximizing the objective function:

∑

i∈Vs∗

K∑

k=1

q(t)(Zi = k)mik, (22)

which is a 0/1 integer programming problem and can be solved by the following theorem.

Theorem 1 Given a 0/1 integer programming problem described as:

max f (X) =
N∑

i=1

M∑

j=1

ai j xi j

s.t.
M∑

j=1

xi j ≤ 1, i = 1, . . . , N

N∑

i=1

xi j = n j , j = 1, . . . , M,

(23)

where xi j ∈ 0, 1, N ≥ M. The solution can be estimated approximately by

max f (X |xi j=1) − max f (X |xi j=0) ≈ rg(i, j) + rh(i, j) + ai j , (24)

so that

xi j =
{
1 rg(i, j) + rh(i, j) + ai j ≥ 0

0 rg(i, j) + rh(i, j) + ai j < 0
, (25)
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Fig. 7 The max-sum algorithm on a factor graph

where rg(i, j) and rh(i, j) are the limits of the sequences {r (0)
g (i, j), . . .} and {r (0)

h (i, j), . . .}
respectively, with the interactive recursive formulas:

r (t)
g (i, j) = −max

{
0,max

j ′ �= j

{
r (t−1)
h (i, j

′
) + ai j ′

}}

r (t)
h (i, j) = −largest

i ′ �=i

(n j )
{
r (t)
g (i

′
, j) + ai ′ j

}

i = 1, . . . , N ; j = 1, . . . , M,

(26)

where largest(n)(S) means the nth biggest number in set S.

Proof We convert f (X) into an equivalent objective function with no constraints:

f̃ (X) =
N∑

i=1

M∑

j=1

fi j (xi j ) +
N∑

i=1

gi (Xi :) +
M∑

j=1

h j (X : j ) (27)

wherewe denote {xi1, . . . , xi N } as Xi :, similarly for X : j . Here, fi j (xi j ) = ai j xi j , gi (Xi :) = 0
if
∑M

j=1 xi j ≤ 1 and otherwise gi (Xi :) = −∞; and h j (X : j ) = 0 if
∑N

i=1 xi j = n j and

otherwise h j (X : j ) = −∞. Thus, X̂ = argmax f̃ (X). In general graphs with loops, the
message passing algorithm is an efficient approximate algorithm implemented in a factor
graph. Here, we build a factor graph in Fig. 7 and use the max-sum algorithm. Five messages
ρgi→xi j , ρh j→xi j , ρ fi j→xi j , μxi j→gi and μxi j→h j are defined in Fig. 7. These messages are
updated according to below rules:

ρ(t)
gi→xi j (xi j ) = max

Xi :\xi j

⎧
⎨

⎩
gi (Xi :) +

∑

j ′ �= j

μ(t)
x
i j

′ →gi (xi j ′ )

⎫
⎬

⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

j ′ �= j

μ
(t)
x
i j

′ →gi (0) xi j = 1

∑

j ′ �= j

μ
(t)
x
i j

′ →gi (0) + Δ1 xi j = 0
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ρ
(t)
fi j→xi j

(xi j ) = fi j (xi j )

μ
(t)
xi j→h j

(xi j ) = ρ(t)
gi→xi j (xi j ) + ρ

(t)
fi j→xi j

(xi j )

ρ
(t)
h j→xi j

(xi j ) = max
X : j \xi j

⎧
⎨

⎩
h j (X : j ) +

∑

j ′ �= j

μ
(t)
x
i
′
j
→h j

(xi ′ j )

⎫
⎬

⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

i ′ �=i

μ
(t)
x
i
′
j
→h j

(0) + Δ2(n j − 1) xi j = 1

∑

i ′ �=i

μ
(t)
x
i
′
j
→h j

(0) + Δ2(n j ) xi j = 0

μ(t+1)
xi j→gi (xi j ) = ρ

(t)
h j→xi j

(xi j ) + ρ
(t)
fi j→xi j

(xi j )

Δ1 = max

{

0,max
j ′ �= j

{

μ(t)
x
i j

′ →gi (1) − μ(t)
x
i j

′ →gi (0)

}}

Δ2(n) = topSum
i ′ �=i

(n)

{

μ
(t)
x
i
′
j
→h j

(1) − μ
(t)
x
i
′
j
→h j

(0)

}

,

where topSum(n){·} means the sum of the top-n values. Let r (t)
g (i, j) = ρ

(t)
gi→xi j (1) −

ρ
(t)
gi→xi j (0) and r

(t)
h (i, j) = ρ

(t)
h j→xi j

(1) − ρ
(t)
h j→xi j

(0), and we have

r (t)
g (i, j) = −max

{

0,max
j ′ �= j

{
r (t−1)
h (i, j

′
) + ai j ′

}
}

r (t)
h (i, j) = −largest

i ′ �=i

(n j )
{
r (t)
g (i

′
, j) + ai ′ j

}
.

Since max f̃ (X |xi j ) ≈ ρgi→xi j (xi j )+ρh j→xi j (xi j )+ρ fi j→xi j (xi j ), the conclusion is proved.
��

The inspiration of the above proof is derived from the message passing way in affinity
propagation (Frey and Dueck 2007).

4.3.2 Calculating W and β

First, we fix β to calculate W . Note that we only need to calculate w where x = 1. For each
pair (i, j) ∈ E with the relation type t , we can draw a function only with respect to w from
Q(Θ|Θ(t)):

f (w) ≈ − log(ew + (K − 1)) +
(

ρ − 1

βtθ

)

w + (κ − 1) logw, (28)

where ρ =∑K
k=1 q

(t)(Zi = k, Z j = k). To maximize f (w), we need to obtain the solution

ŵ such that f
′
(ŵ) = 0. Since f

′′
(ŵ) = − (K−1)e−w

(1+(K−1)e−w)2
− κ−1

w2 < 0, it has a unique global
maximum, which can be solved by using the Newton–Raphson Method (Ypma 1995).

Then, we calculate β based on the updated W , by defining a function with respect to β:

f (β) = −
∑

t

(

κ|Et | logβt +
∑

(i, j)∈Et
Wi j

θβt

)

, (29)

123



Mach Learn (2016) 104:1–24 17

Algorithm 1 PROCESS
Input: Heterogeneous network G, parameters κ, θ, α

Output: Cluster assignment Z
1: Initialize Ck by a random target object and set each Wi j = (κ − 1)θ and βt = 1
2: repeat
3: Infer q(t)(Zi ) and q

(t)(Zi , Z j ) using the balanced message passing algorithm under α

4: Assign each object to a cluster by q(t)(Zi )
5: Decide whether adjust Nk to keep balance
6: Estimate new Ck under Nk using Theorem 1
7: Estimate new W , β by the Newton Method.
8: until Convergence

under the harmonic average constraint
∑

t 1/βt = T . By using the Lagrange Multiplier λ,

βt =
⎛

⎝1

θ

∑

(i, j)∈Et

Wi j + λ

⎞

⎠/κ|Et |, (30)

where λ can be solved by calculating the root of the following equation:

∑

t

⎛

⎝κ|Et |/
⎛

⎝1

θ

∑

(i, j)∈Et

Wi j + λ

⎞

⎠

⎞

⎠ = T . (31)

4.4 The PROCESS algorithm

Based on the above analysis, the entire process of PROCESS is shown in Algorithm 1, where
the input parameters consist of κ, θ, α. Their roles and determination are discussed below:

– κ, θ : parameters in P(Wi j |βt ) = Gamma(Wi j |κ, βtθ) to adjust the shape and scale of
the distribution respectively.

– α: parameters in the balance-controlled message passing algorithm to balance cluster
sizes to some degree.

The algorithm contains two main loops. The inner loop is to calculate the marginal prob-
ability by message passing, the time complexity of which is O(n0|E |), where n0 is the
average iteration number of message passing. The outer loop is to update parameters and
reassign the objects to clusters under the EM framework. The whole time complexity is about
O(n0|E | ·n1), where n1 is the average iteration number of EM. In fact, n0 and n1 are usually
a small constant, so that the running time goes linearly with the number of edges in the
heterogeneous Network.

Note that parameter N = {N1, . . . , NK },where Ni = |Ci |, controls the balance of cluster
sizes. A balancedmessage passing algorithm is designed by adjusting α. However, there is no
prior knowledge about how the data could be clustered before running the algorithm. When
α gets slackened, it might cause extremely unbalanced clusters according to our experiments.
Clustering adjustment on N is beneficial due to its self-adapting adjustment according to the
situation happening during the clustering process. At the beginning, we set |Ci | = 1(1 ≤ i ≤
K ). In each iteration, we set a bottom line to decide whether to accept a cluster result based
on the available core sizes. For example, if max{|Ci |(1 ≤ i ≤ K )}/min{|Ci |(1 ≤ i ≤ K )}
becomes too large, we would increase the core size for the minimal cluster.
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5 Experiments

5.1 Baselines

We evaluate the effectiveness of the PROCESS algorithm on both synthetic and real datasets
by comparison with four state-of-the-art algorithms:

– The graphical k-medoids (k-medoids) (Rattigan et al. 2007): This method uses network
structure indices to find the shortest path between two points and adapt the traditional
k-medoids to networked data. It works for homogeneous networks.

– NetClus (Sun et al. 2009b): This method is able to handle heterogeneous networks and
uses the star network schema, a sub-net picked from the whole network only consists of
relations between target objects and attribute objects.

– BibClus (Xu and Deng 2011): This method also works for heterogeneous networks.
Besides target-attribute relations, it can use relations among target objects based on
center linkage structure, but ignoring relations between attribute objects.

– The spectral relational clustering (SRC) (Ng et al. 2001): This method is a general model
for clustering heterogeneous networks based on the collective factorization on related
matrices, without discriminating target and attribute objects.

Normalized mutual information (NMI) (Manning et al. 2008) and F-measure are used to
measure how well each algorithm’s clustering result matches the ground truth. Note that, we
set κ = 2, θ = 2, and α = 1 in all experiments unless otherwise noted.

5.2 Synthetic datasets

Our synthetic data generator is comprised of a vertex generator GenV(K , n1, . . . , nS, ν) and
an edge generator GenE

(
V, 〈s1, s2, pin, pout 〉Tt=1

)
. For each cluster k, it contains objects of

S types, denoted as V (k) = ⋃S
s=1 V

(k)
s with |V (k)

s | being a normal random variable with
expected value ns and standard deviation ns/ν. Given a set of vertices, a random clustered
graph G is generated by inserting intra-cluster edges of specific type t (s1,s2) with probability
pin and inter-cluster edges of type t (s1,s2) with probability pout . This data generation idea
derives from Brandes et al. (2003). Here, we set three kinds of object types {1, 2, 3} and des-
ignate the first type as the target one. Also, we consider four relations combining object types,
i.e. {(1, 1), (1, 2), (1, 3), (2, 3)}. Under this setting, eight datasets are drawn with their para-
meters shown in Table 1. Note that (G1,G2), (G3,G4), (G5,G6) and (G7,G8) are comparison
groups respectively,with one pout varying to reflect the heterogeneity for clustering. Thismay
not be the best choice but it is good enough to demonstrate the effectiveness of PROCESS.

Table 2 shows the comparison results of NMI and F-measure (F. in the figure) scores.
It shows that PROCESS performs extremely better than the baselines on all datasets. For
(G1,G2), (G3,G4) and (G5,G6), pout of the relation type (1, 3) is raised in each group,
and the rest of pout keeps 0.1pin . Each time the raised pout brings inter-cluster noises,
the performance of the baselines drop obviously while PROCESS is affected slightly. In
some datasets, PROCESS can cluster objects 100% correctly. According to G1 and G3 in
Table 3, all the algorithms have a better clustering result in a more dense network given the
fixed cluster number K and ratio |Ein | : |Eout |. G3 and G5 have the similar density and
|Ein | : |Eout | but different cluster number K . Results show that the network with a larger
K can be easily clustered, this may be because the edge number across one specific pair of
clusters is reduced with K increasing. (G7,G8) has different expected object numbers. In
general, clustering algorithms are more likely to be influenced by the object type with more
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Table 1 Dataset description
(ν = 5, all pin are the same) K n1, n2, n3 pin p(1,1)

out , p(1,2)
out , p(1,3)

out , p(2,3)
out

G1 5 50, 50, 50 0.1 0.01, 0.01, 0.01, 0.01

G2 5 50, 50, 50 0.1 0.01, 0.01, 0.05, 0.01

G3 5 50, 50, 50 0.05 0.005, 0.005, 0.005, 0.005

G4 5 50, 50, 50 0.05 0.005, 0.005, 0.01, 0.005

G5 10 50, 50, 50 0.1 0.005, 0.005, 0.005, 0.005

G6 10 50, 50, 50 0.1 0.005, 0.005, 0.001, 0.005

G7 5 50, 25, 75 0.05 0.005, 0.01, 0.005, 0.005

G8 5 50, 25, 75 0.05 0.005, 0.005, 0.01, 0.005

Table 2 Comparison results on eight datasets (PROCESS uses κ = 2, θ = 2, α = 1)

Dataset k-medoids NetClus BibClus SRC PROCESS

NMI F. NMI F. NMI F. NMI F. NMI F.

G1 0.5703 0.6483 0.8155 0.7955 0.8184 0.8011 0.9092 0.8729 1.0000 1.0000

G2 0.1470 0.3130 0.3808 0.4721 0.0000∗ 0.3318∗ 0.7059 0.7504 0.9599 0.9723

G3 0.3456 0.4633 0.6163 0.6765 0.5671 0.6685 0.7655 0.7943 0.9785 0.9860

G4 0.2801 0.4027 0.3733 0.4756 0.4340 0.4975 0.6630 0.7044 0.9464 0.9656

G5 0.5500 0.5002 0.8359 0.7807 0.8400 0.7256 0.9379 0.8635 1.0000 1.0000

G6 0.4246 0.4019 0.7760 0.7370 0.8306 0.6855 0.9269 0.8271 1.0000 1.0000

G7 0.1912 0.3571 0.3065 0.4228 0.0342∗ 0.3359∗ 0.4216 0.4274 0.8900 0.9252

G8 0.1694 0.3283 0.2726 0.4252 0.3074 0.4551 0.3626 0.4046 0.9197 0.9476

Table 3 Graph statistics on G1,
G3, G5

G1 G3 G5

Density 0.0220 0.0113 0.0110

Avg. degree 18.49 9.46 17.08

|Ein | : |Eout | 1:0.44 1:0.41 1:0.44

vertices, but PROCESS seems to have less dependency on that by adjusting relation weights
adaptively. Admittedly, PROCESS benefits from the match between our model assumption
and the idea of generating data, but the great advantage demonstrates its effectiveness.

For each algorithm, we test it for 10 iterations and use the averaged results after removing
obvious anomalies to weaken the influence from initialization. PROCESS and SRC always
have stable results, while NetClus andBibClus need the results from k-medoids as their initial
inputs. To minimize the impact of the results from k-medoids, we run k-medoids 20 times
and select the best run as the initial input for NetClus and BibClus. Among all algorithms,
BibClus produces the most unstable result. The asterisks in Table 2 indicate that BibClus
clusters almost all the objects into one large cluster, leading to a very low NMI, because
BibClus does not consider the balance among clusters.

In order to explain how PROCESS adjusts relation weights adaptively in a heterogeneous
network, we conduct another test to discover the change of parameter β when a relation
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Fig. 8 The change of β with the inter-cluster probability p(1,3)
out varying. The fixed setting is pin = 0.1,
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out = 0.001, K = 5 and (n1, n2, n3) = (50, 50, 50)

type changes its contribution during clustering. In Fig. 8a, p(1,3)
out represents the inter-cluster

probability between the target type and the attribute type 3. When p(1,3)
out ranges from 0.02

to 0.1 with other probability fixed, the corresponding parameter β3 for the relation type
(1, 3) decreases, indicating its importance decreases. Note that all βt , t = 1, . . . , 4 hold a
harmonic average constraint, so βt except β3 increases. Due to this adaptation, the F-measure
of PROCESS stays in a high level as shown in Fig. 8b.

Also, the running time of PROCESS has been studied. Figure 9 shows the scalability
testing of PROCESS on a scalable vertex set. In Fig. 9b, we construct three networks with
different density levels, i.e. low, medium and high density. Like most real networks, the edge
number increases linearly with the vertex number. Figure 9a shows in each network, the
running time of PROCESS grows linearly with the vertex number as well, indicating that our
algorithm has linear scalability. In the previous section, we have pointed out that the time
complexity depends on the average iteration number and the edge number. Since messages
can pass quickly in a dense network, it leads to a fast convergence, which explains why
PROCESS has a shorter running time in the network with high density.

5.3 Real datasets

Wecrawl data from theACMDigital Library (http://portal.acm.org) and build a bibliographic
heterogeneous network consisting of papers, authors, conferences and terms.Then,we choose
four closely relevant classes, data mining (DM), database system (DB), information retrieval
(IR) and artificial intelligence (AI) and twenty representative conferences in these four areas
to create a dataset, including 6193 papers, 10150 authors, 20 conferences and 11442 terms.
The paper statistics in these four areas is shown in Table 4. Since the data source provides
primary classification for each paper, we take them as the ground truth and view papers as
target objects.

Table 5 shows the comparison results on the real datasets. PROCESS has a much higher
quantity in both NMI and F-measure. From Table 4, we observe that the sizes of the four
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Fig. 9 The running time of PROCESS on a scalable vertex set. The average iteration numbers of EM in
high, medium, low density networks are 3, 8, 15, and the average degrees are 4.15 ± 0.05, 8.16 ± 0.1, and
16.32 ± 0.1. The fixed setting is K = 5, pin/pout = 10

Table 4 Paper statistics in four
areas

DB DM IR AI

#paper 1151 873 2807 1362

Table 5 Comparison results on
the real data

NMI F-measure

k-medoids 0.1285 0.3989

NetClus 0.1717 0.4461

BibClus 0.2228 0.5204

SRC 0.2311 0.4850

PROCESS 0.4107 (0.5123) 0.5603(0.7173)

areas are not quite balanced, e.g. IR has three times of papers more than DM. In the previous
section, we introduce a balancing parameter α to control the balance of message passing,
and set α = 1 for simplicity. However, it is not appropriate for this test. Here, we change α

to 0.2 to relax the balancing control. That is why we have two evaluation values in Table 5
for PROCESS. The value outside the parenthesis corresponds to α = 1 and the one inside
the parenthesis is for α = 0.2. It shows that after relaxing the balance, PROCESS performs
much better. To illustrate it, we visualize the clustered sub-networks including only target
objects, i.e. papers, by using the real data and prediction with different α in Fig. 10. We find
that the prediction with α = 1 holds more balance but the prediction with α = 0.2 is much
closer to the real one. Table 6 shows all 20 conferences in the clustered form. This result is
obtained under the setting that papers are target objects. Also, we take the conferences as
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real data )2.0=α(noitciderp)1=α(noitciderp
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DM(green)
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DM(green)
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Fig. 10 The visualization of the real data and prediction with different balancing controls α = 1 and α = 0.2
(only show target objects). Red represents DB, green represents DM, blue represents IR and yellow represents
AI. These dense networks consist of thousands of small colored points, which might make it difficult to tell
cluster border clearly through color in the figure (Color figure online)

Table 6 Clustered conferences
in four groups

Conferences

DB PODC PODS SAC SIGMOD CSC DOLAP

DM KDD GIS

IR MM RecSys SIGIR WI WIDM WWW CIKM

AI ICAIL IEA/AEI COLT AGENTS GECCO

Table 7 Paper distribution on DB, DM, IR, AI in each conference

DB DM IR AI DB DM IR AI

PODC 14 0 2 3 PODS 149 9 16 1

SAC 89 55 143 100 SIGMOD 550 45 102 7

CSC 47 0 4 22 DOLAP 20 12 1 0

KDD 10 523 105 115 GIS 10 14 17 8

MM 18 6 266 16 RECSYS 0 2 33 7

SIGIR 24 2 1110 23 WI 2 32 123 37

WIDM 9 15 38 0 WWW 29 26 357 52

CIKM 173 91 468 37 ICAIL 2 0 5 203

IEA/AEI 3 3 1 209 COLT 0 0 0 123

AGENTS 1 0 12 155 GECCO 1 8 4 244

target objects and run the algorithm, but some conferences are difficult to be categorized into
one single area, such as SAC and GIS shown in Table 7.

Based on the substantially experimental results on the synthetic and real datasets, we find
that PROCESS wins a bigger margin to the existing state-of-the-art methods. This suggests
that our assumptions in Subsection Motivation are reasonable and disclose the particular
characteristics of heterogeneous networks. In addition, the experimental results also confirm
that our method effectively models the assumptions and is more suitable for heterogeneous
network clustering.
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6 Conclusions

In this paper, we present a novel probabilistic model for clustering heterogeneous networks.
This model is based on two assumptions: (1) different relation types produce different weight
distributions to specify intra-cluster probability between two objects; and (2) clusters are
formed around cluster cores. Under this model, we further propose PROCESS, an clustering
algorithm that can differentiate target objects from attribute objects, incorporates relations
between targets and attributes, and leverage between incorporating attribute objects and
reducing noises. Substantial experiments show that PROCESS is effective and outperforms
state-of-the-art algorithms for clustering heterogeneous networks.

In our future work, wewill study the parallel/distributed algorithms of the proposedmodel
to handle large-scale heterogeneous networks with plenty of attributes and a huge number
of nodes. In addition, it is also an interesting work to extend our model to tackle other
challenging learning tasks of heterogeneous networks such as ranking and classification.
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