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Abstract We present a novel probabilistic clustering model for objects that are represented
via pairwise distances and observed at different time points. The proposed method utilizes
the information given by adjacent time points to find the underlying cluster structure and
obtain a smooth cluster evolution. This approach allows the number of objects and clusters
to differ at every time point, and no identification on the identities of the objects is needed.
Further, the model does not require the number of clusters being specified in advance—they
are instead determined automatically using a Dirichlet process prior. We validate our model
on synthetic data showing that the proposed method is more accurate than state-of-the-art
clustering methods. Finally, we use our dynamic clustering model to analyze and illustrate
the evolution of brain cancer patients over time.

1 Introduction

Amajor challenge in data analysis is to find simple representations of the data that best reveal
the underlying structure of the investigated phenomenon (Lee and Sebastian Seung 1999).
Clustering is a powerful tool to detect such structure in empirical data, thus making it accessi-
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ble to practitioners (Jain andDubes 1988). The problemof clustering has a very long history in
the data mining and machine learning communities, and numerous clustering algorithms and
applications have been studied in many different scientific disciplines over the past 50years
(Jain 2008). Applications of clustering include a large variety of problem domains as, for
example, clustering text, social networks, images, or biomedical data (Bandyopadhyay and
Coyle 2003; Eisen et al. 1998; Ng et al. 2002; Steinbach et al. 2000). Traditional clustering
methods such as k-means or Gaussian mixture models (Ferguson 1973), rely on geometric
representation of the data. Nowadays, however, increasingly often there is no access to an
underlying vectorial representation of the data since only pairwise similarities or distances
are measured. An example application domain where such a setting frequently occurs is
biomedical data analysis, where more often than not only pairwise distance data is available,
e.g., when DNA or protein sequences are represented as pairwise distances or string align-
ments (Cuturi and Vert 2004; Leslie et al. 2003; Rätsch and Sonnenburg 2004; Saigo et al.
2004; Sonnenburg et al. 2007).

Although many clustering methods exist that work on distance data, including single
linkage clustering, complete linkage clustering, andWard’s clustering (Jain andDubes 1988),
these methods are static methods that are innocuous with respect to a potentially underlying
time structure. However, when data is obtained at different points in time, dynamic models
are needed that take a time component into account. For example in cancer research, genes are
frequentlymeasured at different time points, in order to examine the efficiency of amedication
over time. In Network Security, HTTP connections are recorded at various timestamps, since
network behaviors can quickly change over time; in Computer Vision, video streams contain
time-indexed sequence of images. To deal with such scenarios, dynamic models that take the
evolving nature of data into account are needed. Such a requirement has been addressed with
evolutionary or dynamic clustering models for vectorial data [as for instance in Ahmed and
Xing (2008), Blei and Frazier (2011), Teh et al. (2011), or Zhu et al. (2005)], which obtain
a smooth clustering over multiple time points. However, to the best of our knowledge, no
time-evolving clustering models exist that work on distance data directly, and clustering of
time-evolving distance data is still an unsolved problem.

In this work we will bridge this gap and present a novel Bayesian time-evolving clustering
model based on distance data directly that is specially tailored to temporal data and does not
require direct access to an underlying vector space. Our model will be able to detect cluster
popularity over time, based on the rich gets richer phenomenon. We will be able to make
predictions about how popular a cluster will be at time t + 1 if we already knew that it was
a rich cluster at time point t . The assumption that rich clusters get richer seems plausible in
many domains, for instance, a hot news topic is likely to stay hot for a given time period.
Our model is also able to cope with variable data size: the number of data points may
vary between time points, for instance, data items may arrive or leave. Also, the number
of clusters may vary over time and the model is able to adjust its capacity accordingly,
and automatically. The aim is to find the underlying structure at every time point and to
obtain a smooth cluster evolution which results in an easily interpretable model. Thereby the
information shared across neighboring time points is related to the size of the clusters, the
time-varying property of the clusters is assumed to be Markovian, and Markov Chain Monte
Carlo (MCMC) sampling is used for inference.

The presented method is also applicable for the less general case of pairwise similarity
data, by using a slightly altered likelihood. Since Mercer kernels can encode similarities
between many different kinds of objects (for instance kernels on graphs, images, structures
or strings) the method proposed here can cover the entire scope of applications of kernel-
based learning, be it string alignment kernels over DNA or protein sequences (Leslie et al.
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2003; Rätsch and Sonnenburg 2004; Sonnenburg et al. 2007) or diffusion kernels on graphs
(Vishwanathan et al. 2010).

We validate our approach by comparing it to baseline methods on simulated data where
our newmodel significantly outperforms state-of-the-art clustering approaches.We apply our
novel model to a highly topical and challenging real world data set of brain cancer patients
fromMemorial Sloan Kettering Cancer Center (MSKCC). This data consists of clinical notes
as part of electronic health records (EHR) of brain cancer patients over 3 consecutive years.
We model brain cancer patients over time where patients are grouped together based on the
similarity of sentences in the clinical notes (see Sect. 4.2). All experiments were run on a
2.9GHz Intel Core i5 processor with 8 GBRAM 1600MHz, single core.

2 Background

In this sectionwe recap important background knowledgewhich is essential for the remainder
of this paper.

Partition process Let Bn denote the set of partitions of [n], and [n] := {1, . . . , n} denote
an index set. A partition B ∈ Bn is an equivalence relation B : [n] × [n] → {0, 1} with
B(i, j) = 1 if y(i) = y( j) and B(i, j) = 0 otherwise. y denotes a function that maps [n] to
some label set L. Alternatively, B may be represented as a set of disjoint non-empty subsets
called “blocks”. A partition process is a series of distributions Pn on the set Bn in which
Pn is the marginal distribution of Pn+1. This means, that for each partition B ∈ Bn+1, there
exists a corresponding partition B∗ ∈ Bn which is obtained by deleting the last row and
column from the matrix B. The properties of partition processes are in detail discussed in
McCullagh and Yang (2008). Such a process is called exchangeable if each Pn is invariant
under permutations of object indices, see Pitman (2006) for more details. An example for
the partition lattice for B3 is shown in Fig. 1.

Gauss–Dirichlet cluster process The Gauss–Dirichlet cluster process consists of an infinite
sequence of points in R

d , together with a random partition of integers into k blocks. A
sequence of length n can be sampled as follows (MacEachern 1994; McCullagh and Yang
2008): fix the number of mixture modes k, generate mixing proportions π = (π1, . . . , πk)

from a symmetric Dirichlet distribution Dir(ξ/k, . . . , ξ/k), generate a label sequence
{y(1), . . . , y(n)} from a multinomial distribution and forget the labels introducing the ran-
dom partition B of [n] induced by y. Integrating out π , one arrives at a Dirichlet-Multinomial
prior over partitions

Pn(B|ξ, k) = k!
(k − kB)!

Γ (ξ)
∏

b∈B Γ (nb + ξ/k)

Γ (n + ξ)[Γ (ξ/k)]kB
, (1)

where kB ≤ k denotes the number of blocks present in the partition B and nb is the size
of block b. The limit as k → ∞ is well defined and known as the Ewens process (a.k.a.

Fig. 1 Partition lattice for B3 3|2|1321 1|23 13|2 12|3

1 block 3 blocks2 blocks
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Chinese Restaurant process, CRP), see for instance Ewens (1972), Neal (2000), and Blei
and Jordan (2006). Given such a partition B, a sequence of n-dimensional observations
xi ∈ R

n, i = 1, . . . , d , is arranged as columns of the (n × d) matrix X , and this X is
generated from a zero-mean Gaussian distribution with covariance matrix

Σ̃B = In ⊗ Σ0 + B ⊗ Σ1, with cov(Xir , X js |B) = δi jΣ0rs + Bi jΣ1rs . (2)

Σ0 denotes the (d × d) within-class covariance matrix and Σ1 the (d × d) between-class
matrix, respectively, and δi j denotes the Kronecker symbol. Since the partition process
is invariant under permutations, we can always think of B being block-diagonal. For
spherical covariance matrices (i.e. scaled identity matrices), Σ0 = α Id ,Σ1 = β Id , the
covariance structure reduces to Σ̃B = In ⊗ α Id + B ⊗ β Id = (α In + β B) ⊗ Id =:
ΣB ⊗ Id , with cov(Xir , X js |B) = (αδi j + β Bi j )δrs . Thus, the columns of X contain inde-
pendent n-dimensional vectors xi ∈ R

n distributed according to a normal distribution with
covariance matrix

ΣB = α In + β B. (3)

Further, the distribution factorizes over the blocks b ∈ B. Introducing the symbol ib := {i :
i ∈ b} defining an index-vector of all objects assigned to block b, the joint distribution reads

p(X, B|α, β, ξ, k) = Pn(B|ξ, k) ·
[∏

b∈B
∏d

j=1 N (
0, Xib j |α Inb + β1nb1

t
nb

)]
, (4)

where nb is the size of block b and 1nb a nb-vector of ones. In the context of clustering, n
denote the number of objects we want to partition, and d the dimension of each object.

Wishart–Dirichlet Cluster Process Assume that the random matrix Xn×d follows the zero-
meanGaussian distribution specified in (2),withΣ0 = α Id andΣ1 = β Id . Then, conditioned
on the partition B, the inner productmatrix K = X Xt/d follows a (possibly singular)Wishart
distribution in d degrees of freedom, K ∼ Wd(ΣB), as was shown in Srivastava (2003). If
we directly observe the dot products K , it suffices to consider the conditional probability of
partitions Pn(B|K ):

Pn(B|K , α, β, ξ, k) ∝ Wd(K |ΣB) · Pn(B|ξ, k)

∝ |ΣB |− d
2 exp

(
− d

2 tr
(
Σ−1

B K
))

· Pn(B|ξ, k)
(5)

Information loss Note that we assumed that there exists a matrix X with K = X Xt/d such
that the columns of X are independent copies drawn from a zero-mean Gaussian in R

n : x ∼
N (µ = 0n,Σ = ΣB). This assumption is crucial, since general mean vectors correspond
to a non-central Wishart model (Anderson 1946), which can be calculated analytically only
in special cases, and even these cases have a very complicated form which imposes severe
problems in deriving efficient inference algorithms.

By moving from vectors X to pairwise similarities K and from similarities to pairwise
distances D, there is a lack of information about geometric transformations: assume we
only observe K without access to the vectorial representations Xn×d . Then we have lost
the information about orthogonal transformations X ← X O with O Ot = Id , i.e. about
rotations and reflections of the rows in X . If we only observe D, we have additionally lost
the information about translations of the rows X ← X + (1nv

t + v1t
n), v ∈ R

d .
Themodels above imply that the means in each row are expected to converge to zero as the

number of replications d goes to infinity. Thus, if we had access to X and if we are not sure
that the above zero-mean assumption holds, it might be a plausible strategy to subtract the
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empirical row means, Xn×d ← Xn×d − (1/d)Xn×d1d1t
d , and then to construct a candidate

matrix K by computing the pairwise dot products. This procedure should be statistically
robust if d � n, since then the empirical means are probably close to their expected values.
Such a corrected matrix K fulfills two important requirements for selecting candidate dot
product matrices:

First, K should be “typical” with respect to the assumed Wishart model with µ = 0,
thereby avoiding any bias introduced by a particular choice. Second, the choice should be
robust in a statistical sense: if we are given a second observation from the same underlying
data source, the two selected prototypical matrices K1 and K2 should be similar. For small d ,
this correction procedure is dangerous since it can introduce a strong bias even if the model
is correct: suppose we are given two replications from N (µ = 0n,Σ = ΣB), i.e. d = 2.
After subtracting the rowmeans, all row vectors lie on the diagonal line inR2, and the cluster
structure is heavily distorted.

Consider now the case where we observe K without access to X . For “correcting” the
matrix K just as described above we would need a procedure which effectively subtracts the
empirical row means from the rows of X .

Unfortunately, there exists no such matrix transformation that operates directly on K
without explicit construction of X . It is important to note that the “usual” centering trans-
formation K ← QK Q with Qi j = δi j − 1

n as used in kernel PCA and related algorithms
does not work here: in kernel PCA the rows of X are assumed to be i.i.d. replications
in R

d . Consequently, the centered matrix Kc is built by subtracting the column means:
Xn×d ← Xn×d − (1/n)1n1t

n Xn×d and Kc = X Xt = QK Q. Here, we need to sub-
tract the row means, and therefore it is necessary to explicitly construct X , which implies
that we have to choose a certain orthogonal transformation O . It might be reasonable to
consider only rotations and to use the principal components as coordinate axes. This is
essentially the kernel PCA embedding procedure: compute Kc = QK Q and its eigen-
value decomposition Kc = V ΛV t , and then project on the principal axes: X = V Λ1/2.
The problem with this vector-space embedding is that it is statistically robust in the
above sense only if d is small, because otherwise the directions of the principal axes
might be difficult to estimate, and the estimates for two replicated observations might
highly fluctuate, leading to different column-mean normalizations. Note that this con-
dition for fixing the rotation contradicts the above condition d � n that justifies the
subtraction of the means. Further, column mean normalization will change the pairwise
dissimilarities Di j (even if the model is correct!), and this change can be drastic if d is
small.

The cleanest solution might be to consider the distances D (which are either obtained
directly as input data, or can be computed as Di j = Kii + K j j − 2Ki j ) and to avoid an
explicit choice of K and X altogether. Therefore, one encodes the translation invariance
directly into the likelihood, which means that the latter becomes constant on all matrices K
that fulfill Di j = Kii + K j j −2Ki j . The information loss that occurs by moving from vectors
to pairwise similarities and from similarities to pairwise distances is depicted in Fig. 2.

Translation-invariant Wishart–Dirichlet cluster process A method which works directly on
distances has been discussed in Adametz and Roth (2011) and Vogt et al. (2010) as an
extension of the Wishart–Dirichlet Cluster Process. These methods cluster static distance
data, and no access to vectorial data is required. The model presented in Vogt et al. (2010)
tackles the problem if we do not directly observe K , but only a matrix of pairwise Euclidean
distances D. In the following, the assumption is that the (suitably pre-processed) matrix D
contains squared Euclidean distances with components
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Fig. 2 Information loss that occurs by moving from vectors X to pairwise distances D. By moving from X to
pairwise similarities K , information about rotation of the vectors is lost, by moving from K to D, information
about translation is lost. One can reconstruct a whole equivalence class of K matrices (four examples are
bordered in red) from one distance matrix D, i. e. the reconstruction of a similarity matrix K from D is not
unique, as there is a non-injective surjective mapping from a set of K matrices to D

Di j = Kii + K j j − 2Ki j . (6)

A squared Euclidean distance matrix D is characterized by the property of being of negative
type, which means that xt Dx = − 1

2 x
t K x < 0 for any x : xt1 = 0. This condi-

tion is equivalent to the absence of negative eigenvalues in Kc = QK Q = − 1
2 Q DQ.

The distribution of D has been formally studied in McCullagh (2009), Eq. (3.2), where
it was shown that if K follows a standard Wishart generated from an underlying zero-
mean Gaussian process, K ∼ Wd(ΣB), −D follows a generalized Wishart distribution,
−D ∼ W(1, 2ΣB) = W(1,−Δ) defined with respect to the transformation kernel K = 1n ,
where Δi j = ΣBii + ΣB j j − 2ΣBi j . To understand the role of the transformation ker-
nel it is useful to introduce the notion of a generalized Gaussian distribution with kernel
K = 1n : X ∼ N (1n,µ,Σ). For any transformation L with L1n = 0, the meaning of
the general Gaussian notation is: L X ∼ N (Lµ, LΣ Lt ). It follows that under the kernel
K = 1n , two parameter settings (µ1,Σ1) and (µ2,Σ2) are equivalent if L(µ1 − µ2) = 0
and L(Σ1 − Σ2)Lt = 0, i.e. if µ1 − µ2 = 1n , and (Σ1 − Σ2) ∈ {1nv

t + v1t
n : v ∈ R

n},
a space which is usually denoted by sym2(1n ⊗ R

n). It is also useful to introduce the dis-
tributional symbol K ∼ W(K,Σ) for the generalized Wishart distribution of the random
matrix K = X Xt when X ∼ N (K, 0,Σ). The key observation in McCullagh (2009) is that
Di j = Kii + K j j − 2Ki j defines a linear transformation on symmetric matrices with kernel
sym2(1n ⊗ R

n) which implies that the distances follow a generalized Wishart distribution
with kernel 1n : −D ∼ W(1n, 2ΣB) = W(1n,−Δ) and

Δi j = ΣBii + ΣB j j − 2ΣBi j . (7)

In the multi-dimensional case with spherical within- and between covariances we generalize
the above model to Gaussian randommatrices X ∼ N (µ,ΣB ⊗ Id). Note that the d columns
of this matrix are i.i.d. copies. The distribution of the matrix of squared Euclidean distances
D then follows a generalized Wishart with d degrees of freedom −D ∼ Wd(1n,−Δ).
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This distribution differs from a standard Wishart in that the inverse matrix W = Σ−1
B is

substituted by the matrix W̃ = W − (1t W1)−1W11t W and the determinant | · | is substituted
by a generalized det(·)-symbol which denotes the product of the nonzero eigenvalues of
its matrix-valued argument (note that W̃ is rank-deficient). The conditional probability of a
partition then reads

P(B|D, ·) ∝ W(−D|1n,−Δ) · Pn(B|ξ, k)

∝ det(W̃ )
d
2 exp

( d
4 tr(W̃ D)

) · Pn(B|ξ, k).
(8)

and the probability density function (which serves as likelihood function in the model) is
then defined as

f (D) ∝ det(W̃ )
d
2 exp

( d
4 tr (W̃ D)

)
. (9)

Note that in spite of the fact that this probability is written as a function of W = Σ−1
B , it is

constant over all choices of ΣB which lead to the same Δ, i.e. invariant under translations
of the row vectors in X . For the purpose of inferring the partition B, this invariance property
means that one can simply use a block-partition covariance model ΣB and assume that the
(unobserved) matrix K follows a standard Wishart distribution parametrized by ΣB . We do
not need to care about the exact form of K , since the conditional posterior for B depends
only on D. Extensive analysis about the influence of encoding the translation invariance into
the likelihood versus the standard WD process and row-mean subtraction was conducted in
Vogt et al. (2010).

3 A time-evolving translation-invariant Wishart–Dirichlet process

In this section,we present a novel dynamic clustering approach, the time-evolving translation-
invariantWishart–Dirichlet process (Te-TiWD) for clustering distance data that is available at
multiple time points. In this model, we assume that pairwise distance data Dt with 1 ≤ t ≤ T
is available over T time points. At every time point t all objects are fully exchangeable, and
the number of data points may differ at the different time points. This model clusters data
points over multiple time points, allowing group memberships and the number of clusters
to evolve over time by addition, deletion or change in existing clusters. The model is based
on the static clustering model that was proposed in Vogt et al. (2010) which is not able to
account for a time structure.

Note that our model completely ignores any information about the identities of the data
points across the time points, which makes it possible to cluster different objects over time.
Table 1 summarizes notations which we will use in the following sections.

3.1 The model

The aim of the proposed method is to cluster distance data Dt at multiple time points, for
1 ≤ t ≤ T . For every time point under consideration, t , we obtain a distance matrix Dt

and we want to infer the partition matrix Bt , by utilizing the partitions from adjacent time
points. By using information from adjacent time points, we expect better clustering results
than clustering every time point independently. At every time point, the number of data points
may differ, and some clusters may die out or evolve over time. The assumptions on the data
are the following:

Assumption 1 Given a partition Bt , a sequence of the assumed underlying nt -dimensional
vectorial observations xti ∈ R

nt , i = 1, . . . , dt , are arranged as columns of the (nt × dt )
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Table 1 Notations used throughout this manuscript

Dt Distance matrix at time point t [cf. (6)]

Δt Δ matrix at time point t [cf. (7)]

Bt Partition matrix at time point t

kbt Number of blocks bt present in the partition Bt

nbt The size of block bt

n(−l)
bt

Size of block bt without object l

nt Number of data points present at the t-th time point

At kbt × kbt matrix

Ati j The between-class variance of block i and block j

[Bt ]T
t=1 is defined as (B1, B2, . . . , BT )

[At ]T
t=1 is defined as (A1, A2, . . . , AT )

p([Bt ]T
t=1) p(B1)p(B2|B1) . . . p(BT |BT −1) defines a first-order Markov chain

p([At ]T
t=1) p(A1)p(A2|A1) . . . p(AT |AT −1) defines a first-order Markov chain

[B]t− B matrices at all time points except at time point t

Fig. 3 Different models for clustering. Left example of the block diagonal structure of βB for three blocks, all
cluster centroids must be equidistant. Right example of the full covariance matrix ΣAt (for better readability,
we drop the time index t in the figure), which allows differing distances between cluster centroids

matrix Xt , i.e. xt1 , . . . , xtdt
i.i.d∼ N (0,ΣBt ), with covariance matrix

ΣBt = α Int + ΣAt . (10)

Covariance matrix ΣBt . In the static clustering method, the underlying vectorial data
was assumed to be distributed according to a Gaussian distribution with mean 0,
x1, . . . , xd

i.i.d∼ N (0,ΣB) with ΣB := α In + β B, [cf. (3)], where β B describes the between
class covariance matrix. As β denotes a scalar, all clusters in the static clustering are equidis-
tant (as demonstrated in left of Fig. 3). To model time evolving data, we need a more flexible
between-class covariance matrix ΣAt which allows that cluster centroids have different dis-
tances to each other. These full ΣAt matrices are necessary for a time-evolving clustering
model, as the clusters are coupled over the different time-points due to the geometric informa-
tion of the clusters, and this coupling can only be captured by modeling a richer covariance.
Hereby ΣAt ∈ R

(nt ×nt ) is obtained in the following way

ΣAt = Zt At Z T
t (11)
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with Zt ∈ {0, 1}nt ×kbt . The matrix Zt associates an object with one out of kbt clusters. As
every object can only belong to exactly one cluster, Zt has a single element of 1 per row.
In Fig. 3 we demonstrate examples of β B and ΣAt as well as the corresponding cluster
arrangements which the matrices imply.

Note that ΣAt is a more general version of β B:

Lemma 1 ΣAt = β B iff Ati j =
{
0 if i �= j
β if i = j

.

Prior over the block matrices Bt . The prior over the block matrices Bt is defined in the
followingway. The prior for Bt in one epoch is theDirichlet-Multinomial prior over partitions
as in (1). Using the definition of the conditional prior over clusters as defined in Ahmed and
Xing (2008), we extend this idea to the prior over partitions. In a generative sense, the same
idea is used to generate a labeled set of partitions and then we forget the labels to get a
distribution over partitions. By nt

bt−1
we denote the size of block bt−1 if the corresponding

block is present at time point t as well. We consider the following generative process for a
finite dynamic mixture model with k mixtures [cf. Ahmed and Xing (2008), Eqs. (4.5), (4.6)
and (5.9)]: for each time point t , we generate mixing proportions πt = (πt1, . . . , πtk) from a
symmetric Dirichlet distribution Dir(ξ/k + nt−1, . . . , ξ/k + nt−1). As in the static case, we
generate a label sequence fromamultinomial distribution and forget the labels introducing the
randompartition Bt . Integrating outπt , the conditional distribution forDirichlet-Multinomial
prior over partitions, given the partitions in the previous time point (t −1), can be written as:

Pnt (Bt |Bt−1, ξ, k) = k!
(
k − kBt

)!
Γ (ξ + nt−1)

∏
bt ∈Bt

Γ
(

nt
bt−1

+ ξ/k + nbt

)

Γ (nt + ξ + nt−1)
∏

bt ∈Bt
Γ

(
ξ/k + nt

bt−1

) (12)

Note that (12) defines a partition process as described in Sect. 2 with Pnt being the marginal
distribution of Pnt−1 , and it also is an exchangeable process, as each Pnt is invariant under
permutation of object indices.

Prior over At . Theprior over the At matrices is givenby aWishart distribution, P(At |At−1) ∼
Wd(At |At−1) and S0 := P(A1) = Wd(A1|Ikb1

). The degrees of freedom d influences the
behavior of theWishart distribution: a low value for d allows drastic changes in the clustering
structure, a high value for d allows fewer changes. We also have to consider that the size of
At−1, At and At+1 might differ, as it is possible that the number of clusters in every epoch
is different. Therefore, we consider the following two cases:

1. if there are more blocks at time t − 1 than at time t , i. e. kbt−1 > kbt :
delete corresponding rows and columns in At−1. With A′

t−1 we denote the “reduced” matrix.
Then it holds that At ∼ Wd(A′

t−1)

2. if there are fewer blocks at time t − 1 than at time t , i. e. if kbt−1 < kbt :
first, draw a kbt−1 × kbt−1 matrix A′

t from A′
t ∼ Wd(At−1). Second, augment as many new

rows and columns as needed to obtain the full positive definite (kbt ) × (kbt ) matrix At . We
can draw the additional rows and columns of At in the following way (see Bilodeau and
Brenner (1999) for details):

At =
(

A11A12

A21A22

)

(13)
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B1 Bt Bt+1 BT

A1 At At+1 AT

k

ξ

D1 Dt Dt+1 DT

s

S0

αm

r

d

Fig. 4 Depiction of the generative model of Te-TiWD with all hyper-parameters and parameters. Shaded
circles correspond to fixed or observed variables, unshaded to latent variables. Arrows that point to a box mean
that the parameters apply to all the variables inside the box, whereas arrows that directly point to a variable
only apply to that single variable. Dt denote the distance matrices observed at different points in time, Bt
denote the inferred partitions and At the between class covariance matrices at different time points 1 ≤ t ≤ T

with A11 := A′
t ∈ R

(kbt−1 )×(kbt−1 ), A21 ∈ R
1×(kbt−1 ), A12 ∈ R

(kbt−1 )×1 and A22 ∈ R. One
obtains A12, A21 and A22 in the following way:

A12|A11 ∼ N (0, s A11)

A22.1 ∼ W1(d − kbt , s)

A22 = A22.1 + A21A−1
11 A12

(14)

where s denotes a hyper parameter and d the degrees of freedom of the Wishart distribution
Wd(At−1).

A graphical depiction of the generative model of Te-TiWD is given in Fig. 4.

Posterior over Bt and At . With the likelihood for every time point, analogous to Eq. (9),
and the prior over At and Bt , we can now write down the equations for the posterior over Bt

and At for all time points t ∈ {1, 2, . . . , T }:

p
(
[Bt ]T

1 , [At ]T
1 |[Dt ]T

1 , ·
)

∝
T∏

t=1

W−
d (Dt |1,Δt ) P

(
[Bt ]T

1

)
P

(
[At ]T

1

)
(15)

=
T∏

t=1

det(W̃t )
dt
2 exp

(
dt

4
tr (W̃t Dt )

)

P
(
[Bt ]T

1

)
P

(
[At ]T

1

)
(16)

with W̃t := Wt − (1T Wt1)−1Wt11T Wt , where Wt := Σ−1
Bt

[cf. (8) and (9)].

3.1.1 MCMC sampling for posterior inference

For applying MCMC sampling to sample from the posterior, we look at the conditional
distributions. Consider the conditional distributions at each time point t :

p(Bt , At |Dt , [B]t−, [A]t−, ·) ∝
W−

d (Dt |1,Δt )P(Bt |Bt−1)P(Bt+1|Bt )P(At |At−1)P(At+1|At )
(17)
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Table 2 Table of prior
probabilities

cnew exists at P(l = cnew|Bt−1)P(Bt+1|Bt)

Both time points t − 1 and
t + 1

∝ (nct−1 · ξ
m ) · nct+1 (19)

Time point t − 1 but not at
time point t + 1

∝ ξ
m · nct−1 (20)

Time point t + 1 but not at
time point t − 1

∝ ξ
m · nct+1 (21)

Neither t − 1 nor t + 1, (i.e. l
belongs to a completely
new cluster)

∝ ξ
m (22)

Posterior sampling for Bt . The posterior sampling involves sampling assignments. As we
are dealing with non-conjugate priors in (17), we use a Gibbs sampling algorithm with m
auxiliary variables as presented in Neal (2000). We consider the infinite model with k → ∞.
The aim is to assign one object l in epoch t to either an existing cluster c, a new cluster that
exists at epoch t − 1 or epoch t + 1 or a totally new cluster. The prior probability that object
l belongs to an exisiting cluster c at time point t is

P(l = c|Bt−1)P(Bt+1|Bt ) ∝ nct−1 + n(−l)
ct

· nct+1

n(−l)
ct

. (18)

There exist four different prior probabilities of an object l belonging to a new cluster cnew

at time point t , which are summarized in Table 2.

Metropolis–Hastings update steps In every time point, we need to sample β values in the
between-class variance matrix ΣAt . To find the β values within one epoch, we sample the
whole “new” At matrix, denoted by Atnew , with aMetropolis–Hastings algorithm (see Robert
and Casella 2005). With Atold we denote the initial At matrix. As proposal distribution we
chose a Wishart distribution, leading to P(Atnew |Atold ) ∼ W(Atnew |Atold ) and P(Atnew) ∼
W(Atnew |Ikbt

).

Hyperparameters and initialization Our model includes the following hyperparameters: the
scale parameter α, the number k of clusters, the Dirichlet rate ξ , the degrees of freedom d
and a scale parameter s. The model is not sensitive to the choice of s, and we fix s to 1. α
is sampled from a Gamma distribution with shape and scale parameters r and m. For the
number k of clusters, our framework is applicable to two scenarios: we can either assume
k = ∞ which results in the CRP model, or we fix k to a large constant which can be viewed
as a truncated Ewens process. As the model does not suffer from the label switching problem,
initialization is not a crucial problem. We initialize the block size with size 1, i. e. we start
with one cluster for all objects. TheDirichlet rate ξ onlyweakly influences the likelihood, and
the variance only decays with 1/ log(nt ) (see Ewens 1972). In practice, we should not expect
to reliably estimate ξ . Rather, we should have some intuition about ξ , maybe guided by the
observation that under the Ewens process model the probability of two objects belonging to
the same cluster is 1/(1 + ξ). We can then either define an appropriate prior distribution, or
we can fix ξ . Due to the weak effect of ξ on conditionals, these approaches are usually very
similar. The degrees of freedom d can be estimated by the rank of K , if it is known from a
pre-processing procedure. As d is not a very critical parameter (all likelihood contributions
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are basically raised to the power of d), d might also be used as an annealing-type parameter
for freezing a representative partition in the limit for d → ∞.

Pseudocode A pseudocode of the sampling algorithm is given in Algorithm 1.

Algorithm 1 Pseudocode Te-TiWD
for i = 1 to iteration do
for t = 1 to T do
for j = 1 to nt do
Assign one object to an existing cluster or a new one using Eqs. (17)-(22)
Update kbt

end for
end for
for t = 1 to T do
Sample new At matrix using Metropolis–Hastings

end for
end for

Complexity We define one sweep of the Gibbs sampler as one complete update of (Bt , At ).
Themost time consuming part in a sweep is the update of Bt by re-estimating the assignments
to blocks for a single object (characterized by a row/column in Dt ), given the partition of the
remaining objects. Therefore we have to compute themembership probabilities in all existing
blocks (and in a new block). Every time a new partition is analyzed, a naive implementation
requires O(n3) costs for computing the determinant of W̃t and the product W̃t Dt . In one sweep
we need to compute kbt such probabilities for nt objects, summing up to costs of O(n4kbt ).
This suggests that the scalability to large datasets can pose a problem. In this regard we
plan to address run time in future work by investigating the potential of variational methods,
parallelizing the MCMC sampler and by updating parameters associated with multiple time
points simultaneously.
Identifiability of clusters In some applications, it is of interest to identify and track clusters
over time. For example by grouping newspaper articles into topics it might be interesting to
know which topics are present over a long time period, when a new topic becomes popular
and when a former popular topic dies out. Due to the translation-invariance of our novel
longitudinal model, we additionally need a cluster mean to be able to track clusters over
the time course. To estimate the mean of the clusters we propose to embed the “overall”
data matrix D∗ ∈ R

N×N with N := ∑T
t=1 nt that contains the pairwise distances between

all objects over all time points into a vector space, using kernel PCA. We first construct a
positive semi-definite matrix K ∗ which fulfills D∗

i j = K ∗
i i + K ∗

j j − 2K ∗
i j . For correcting

K ∗, we compute the centered matrix K ∗
c = Q∗K ∗Q∗ with Q∗

i j = δi j − 1
N . As a next step,

we compute the eigenvalue decomposition of K ∗
c , i.e. K ∗

c = V ΛV T and then project on

the principal axes X∗ = V Λ
1
2 , i.e. we use the principal components as coordinate axes.

By embedding the distances D∗ into a vector space, the underlying block structure might be
distorted (see Fig. 2). As our aim is to find the underlying block structure, it is hence infeasible
to embed the data for clustering. But, for tracking the clusters, we just need to find themean of
an already inferred block structure, i.e. we embed the data not for grouping data points, but for
finding a mean of an already assigned partition that allows us to track the clusters over time.
We embed all objects together and choose the same orthogonal transformations for all objects,
which enables identifiability of cluster means over the time course. This preprocessing step
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is only necessary if one is interested in the identifiability of clusters, and X∗ needs only
to be computed once outside the sampling routine. Since computing X∗ is computationally
expensive, it is done only once as a preprocessing step if required. Computing X∗ within the
sampling routine would slow down our sampler significantly.

4 Experiments

4.1 Synthetic experiments

4.1.1 Well separated clusters

In a first experiment, we test ourmethod on simulated data.We simulate data in twoways, first
we generate data points accordingly to themodel assumptions, and secondlywe generate data
independent of the model assumptions. We start with a small experiment where we consider
five time points each with 20 data points per time point in 100 dimensions, i. e. we consider
a small data set size and large dimension problem.

Data generation The data is generated (according to themodel assumptions) in the following
way: for the first time point, a randomblockmatrix B1 of size n1 = 20 is sampledwith kb1 = 3
(i.e. we generate 3 blocks at time point 1). A kb1 × kb1 matrix A1 is sampled from Wd(Ikb1

)

and B1 is filled with the corresponding β values from A1, which leads to the n1 × n1 matrix
ΣK1 . Next, d1 = 100 samples from N (0n,ΣB1) are drawn with ΣB1 = α In1 + ΣA1 , where
α = 2, and stored in the (n1 × d1) matrix X1. By choosing α = 2, we create well separated
clusters. The similarity matrix K1 = X1X T

1 is computed and squared distances are stored
in matrix D1. For the following time points t > 1, the partition for the block matrix Bt of
size nt is drawn from a Dirichlet-Multinomial distribution, conditioned on the partition at
time point t − 1. A new At matrix is sampled from Wd(At−1). If the number of blocks in
time points t and t − 1 are different, we sample At according to Eq. (14). dt samples from
N (0nt ,ΣBt ) are drawn with ΣBt = α Int + ΣAt . The pairwise distances are stored in the
matrix Dt . A PCA projection of this data is shown in Fig. 5 for illustration.

Experiments We perform four illustrative experiments for well-separated data:

(a) 500 Gibbs sweeps are computed for the Te-TiWD cluster process (after a burn-in phase
of 250 sweeps). We check convergence of the algorithm by analyzing the trace plot of
the number of blocks kbt during sampling. A trace plot is a plot of the iteration number
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Fig. 5 PCA projections of five time points with three well separated clusters per time point. Numbers and
colors correspond to true labels
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Fig. 6 We compare our new dynamic model (Te-TiWD) with baseline methods: static clustering as in Vogt
et al. (2010), combined clustering over all time points (pooled), a Gaussian time-evolving clustering model
(Te-Gauss) aswell as toWard, complete linkage and single linkage. In this experimentwith threewell separated
clusters per time point, all methods perform very well, except for pooling the data. The numbers above the
box plots correspond to median rand index values

against the value of the draw of the parameter at each iteration, in our case the number of
blocks kbt . On a trace plot one can visually see whether a chain gets stuck in certain areas
of the parameter space, which indicates bad mixing, and one can also observe after how
many sweeps the sampler stabilizes (the number of sweeps depends on the size of the data
set). We observe a remarkable stability of the sampler (compared to the usual situations
in traditional mixture models), which follows from the fact that no label-switching can
appear. Finally, we perform an annealing procedure to freeze a certain partition. Here, d
is used as an annealing-type parameter for freezing a representative partition in the limit
d → ∞. On our machine, this experiment took roughly 4min, and the sampler stabilizes
after roughly 50 sweeps. As the ground truth is known, we can compute the adjusted rand
index as an indicator for the accuracy of the Te-TiWD model. We repeat the clustering
process 50 times. The result is shown in form of a box plot (Te-TIWD) in Fig. 6.

(b) In order to compare the performance of the time-evolving model (Te-TiWD) to baseline
models, we also run the static probabilistic clustering process as well as hierarchical
clustering models (Ward, complete linkage and single linkage) on every time point sepa-
rately and compute the averaged accuracy over all time points. For the comparison to the
static probabilistic method (Vogt et al. 2010), we use the same set-up as for Te-TiWD,
we run 500 Gibbs sweeps with a burn-in phase of 250 sweeps and repeat it for 50 times.
For the hierarchical methods, the resulting trees are cut at the number of clusters found
by the nonparametric probabilistic model. Accuracy is computed for every time point
separately, and then averaged over all time points. In this scenario, the static clustering
models performs almost as well as the time-evolving clustering, see Fig. 6, as expected
in such a setting where all groups are well separated at every single time point.

(c) As a further comparison to a baseline dynamic clustering model, we embed the distances
into a Euclidean vector space and run a Gaussian dynamic clustering model (Te-Gauss)
on the embedded vectorial data. As the clusters are well separated, embedding the data
and clustering on vectors works well, as shown in box plot “Te-Gauss” in Fig. 6.

(d) As a last comparison we evaluate a pooled clustering over all time points. For this exper-
iment, we not only need the pairwise distances at every single time point, but also the
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pairwise distances of objects across all time points. The number of sweeps and repetitions
remains the same as in the experiments above. We conduct one clustering over all objects
of all time points, and after clustering, we extract the objects belonging to the same
time point and compute the rand index on every time point separately. This experiment
shows worse results (see box plot “pooled” in Fig. 6), which can be explained as follows:
by combining all time points to one data matrix, new clusters over all time points are
found, this means clusters are shifted and objects over time are grouped together, intro-
ducing new clusters by reforming boundaries of old clusters. These new clusters inhibit
objects to group together which would group together at single time points, destroying
the underlying “true” cluster structure.

4.1.2 Highly overlapping clusters

For a second experiment, we generated data in a similar way as above, but this time we create
5 highly overlapping clusters each with 200 data points per time point in 40 dimensions.
A PCA projection of this data is shown in Fig. 8. On our machine, this experiment took
roughly 3h, and the sampler stabilizes after roughly 500 sweeps. Again, we compare the
performance of the translation-invariant time-evolving clustering model with static state-of-
the-art probabilistic and hierarchical clustering models which cluster on every time point
separately and a time-varying Gaussian clustering model on embedded data (Te-Gauss).
For highly overlapping clusters, the new dynamic clustering model outperforms the static
probabilistic clusteringmodel (Vogt et al. 2010), and the hierarchicalmodels (Ward, complete
linkage, single linkage) fail completely. Further, our new model Te-TiWD outperforms the
dynamic, vectorial clustering model (Te-Gauss), demonstrating that embedding the data
into a Euclidean vector space yields worse results than working on the distances directly.
We tested the statistical significance with the Kruskal-Wallis rank-sum test and the Dunn
post test with Bonferroni correction for pairwise analysis. These tests show that Te-TiWD
performs significantly better than all clustering models we compared to. The Kruskal-Wallis
rank-sum test yields a p-value of 2.162797e-240 pointing to reject the hypothesis that the
samples were draw from the same population. As the obtained p-value of a Kruskal-Wallis
test is significant, it indicates that at least one of the tested methods is different from at least
one of the others. Now we use a multiple comparison test between the different methods
to determine which methods are significantly different with pairwise comparisons adjusted
appropriately. Those pairs of groups which have observed differences higher than a critical
value are considered statistically different at a given significance level of p = 0.005. Results
are shown in Fig. 7 (Fig. 8).

4.1.3 Data generation independent of model assumptions.

We also generate data in a second way which is independent of the model assumptions to
demonstrate that the performance of our model Te-TiWD is independent of the way the data
was generated. To demonstrate this, we repeat the case of highly overlapping clusters over 5
time points and generate data in the following way: dynamic Gaussian clusters are generated
over a period of 5 time points. At each time point five clusters are generated. 200 data points
are available at every time point and randomly split into 5 parts, every part representing the
number of data points per cluster. For consecutive time points, the number of data points
per cluster is sampled from a Dirichlet-Multinomial distribution. Every cluster is sampled
from a Gaussian distribution with a large variance, resulting in highly overlapping clusters.
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Fig. 8 PCA projections of five time points of simulated data with five highly overlapping clusters. Numbers
and colors correspond to true labels
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Fig. 9 We compare our new model (Te-TiWD) with baseline methods on synthetic data which is generated
independent of the model assumptions for five highly overlapping clusters. We observe that our method
significantly outperforms all baseline methods
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Between time steps, the cluster centers move randomly, with relocations sampled from the
same distribution. Finally, at every time point, the model-based pairwise distance matrix Dt

is computed, resulting in a series of moving distance matrices. On this second synthetic data
set, Te-TiWD performs significantly better than all baseline methods as well, as shown in
Fig. 9. Note that for the comparison with the Gaussian dynamic clustering model (Te-Gauss)
we first embed the distances Dt into vectorial data X∗

t and do not work on the simulated
vectorial data directly, to obtain a fair comparison.

4.2 Analysis of brain cancer patient based on electronic health records (EHR)

We apply our proposed model to a dataset of clinical notes from brain cancer patients at
Memorial Sloan Kettering Cancer Center (MSKCC). Brain cancer patients make up 1.4%
of all cancer patients, annually. Survival is highly variable, depending on age, gender, cancer
subtype, and progression when diagnosed, but on average 33% of patients survive the first
5years. As a first step, we partition a total of 195,297 sentences from 3,403 electronic health
records (EHR) from 704 MSKCC brain cancer patients into groups of similar vocabulary.
This is done by treating sentences as binary vectors with non-zero entries corresponding
to vocabulary, and obtaining a similarity measure using ranked neighborhood comparisons
(Vogt 2015). Sentences are clustered using this similarity measure with the Louvain method
(Blondel et al. 2008). The sentence clusters do not employ any form of negation detection,
and so interpreting them can be a little tricky. We use the context of the sentence cluster’s
topic as well as any additional information to help interpret the meaning of a cluster. Using
these sentence clusters as features, we obtain patient similarities with the same ranked neigh-
borhood comparison method. We partition the patients documents into windows of 1year
each, and obtain three time points where enough documents are available to compute sim-
ilarities between patients. At each year, we represent a patient with a binary vector whose
length is the number of sentence clusters. A non-zero entry corresponds to an occurrence of
that sentence cluster in the patient’s corpus during the specified time period.

In the first year, we have 704 patients, in the second year 170 and in the third year 123
patients. This data set has specific features which make our model particularly suitable. First,
the number of patients differs in every year. Second, patients disappear over the time course,
either due to death or due to leaving the hospital. Third, patients do not necessarily need to
have a document every year, so a patient can be absent from year 2 and appear in year 3. This
gap occurred a total of 31 times in our data set.

This is why our flexible model is very well suited for this problem, as the model can deal
with changing numbers of objects and changing number of clusters in every year, clusters
can disappear or reappear, as well as patients. The result of our clustering model is shown in
Fig. 10. On our machine, this experiment took roughly 6h, and the sampler stabilizes after
roughly 500 sweeps.

We observe ten different cluster chains over the time series. Note that patients can switch
cluster chains over the years, as the tumor progresses, the status of the patient may change,
resulting in more similarities to a different cluster chain than the year before. To analyze
the results of the method, we will discuss the clusters with the best and worst prognosis
in more detail, as analyzing all subtleties between clusters would be out of the scope of
this paper. Cluster chain 1 has the worst collective prognosis, with a survival rate of just
20%. Additionally, it only appears in the first year. Word clouds representing the sentence
clusters of this patient group are shown in Fig. 11. We can see that these patients are having
seizureswhich indicates that the brain cancer is especiallymalicious. They also show sentence
clusters about two types of blood cancers, b cell and mantle cell lymphoma, and prescription
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Fig. 10 Clusters over all 3years of brain cancer patients. We find ten different cluster chains where 2 remain
over al 3years, 3 vanish after the second year and one new cluster comes up in year 2 and remains in the third
year. Size of the tokens denote the cluster size, i.e. the number of patients per cluster. Note that patients can
change clusters, so a cluster decreasing in size or disappearing does not necessarily mean those patients die
or leave the hospital
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Fig. 11 Word clouds representing five sentence clusters that are observed in patients from cluster chain 1,
cluster with the worst prognosis. They describe patients that have blood cancers (lymphomas) in addition to
brain cancer

of cytarabine, which treats these cancers. This combination of blood and brain cancers could
explain the low survival rate.

Cluster chain 5 has the best collective prognosis, with a survival rate of 58%.Word clouds
representing sentence clusters for this patient group are show in Fig. 12. These clusters consist
of mainly “follow-up” language, such as checking the patients’ gait, speech, reflexes and
vision. The sentence clusters appear to indicate positive results, e.g. “Normal visual fields
are intact”, and “Patient denies difficulty with speech, language, balance or gait” are two
prototype sentences representing two sentence clusters that appear in this chain. Furthermore,
there is a sentence cluster with prototype sentences “no evidence for progression” and given
the increased survival rate of these patients, we interpret this as indicating that the cancers
are in a manageable state.

Modeling patients over time provides important insights for automated analyses and
medical doctors, as it is possible to check for every patient how the state of the patient
as represented by the cluster membership changes over time. Also, if a new patient enters
the study, one can infer, based on similarity to other patients, how to classify and possibly
treat this patient best or to suggest clinical trials for each patient. Such clustering methods
therefore make an important step towards solving the technical challenges of personalized
cancer treatment.
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Fig. 12 Word clouds representing four sentence clusters that are observed in patients from cluster chain 5, the
most positive cluster. These sentence clusters are “follow-up” language, such as checking reflexes or the ability
to walk and see well. This indicates that the patients are in a relatively stable state under regular observation

5 Conclusion

In this work, we propose a novel dynamic Bayesian clustering model to cluster time-evolving
distance data. A probabilistic model that is able to handle non-vectorial data in form of pair-
wise distances has the advantage that there is no need to embed the data into a vector space.
To summarize, our contributions in this work are five-fold: (i) We develop a dynamic prob-
abilistic clustering approach that circumvents the potentially problematic data embedding
step by directly operating on pairwise time-evolving distance data. (ii) Our model enables
to track the clusters over time, giving information about clusters that die out or emerge over
time. (iii) By using a Dirichlet process prior, there is no need to fix the number of clusters in
advance. (iv)We test and validate our model on simulated data. We compare the performance
of our new method with baseline probabilistic and hierarchical clustering methods. (v) We
use our model to cluster brain cancer patients into similar subgroups over a time course of
3years. Dynamic partitioning of patients would play an important role in cancer treatment,
as it enables inference from groups of similar patients to an individual. Such an inference
can help medical doctors to adapt or optimize existing treatments, assign billing codes, or
predict survival times for a patient based on similar patients in the same group.
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