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Abstract One important challenge for probabilistic logics is reasoning with very large
knowledge bases (KBs) of imperfect information, such as those produced by modern web-
scale information extraction systems. One scalability problem shared by many probabilistic
logics is that answering queries involves “grounding” the query—i.e., mapping it to a proposi-
tional representation—and the size of a “grounding” growswith database size. To address this
bottleneck, we present a first-order probabilistic language called ProPPR in which approxi-
mate “local groundings” can be constructed in time independent of database size. Technically,
ProPPR is an extension to stochastic logic programs that is biased towards short derivations;
it is also closely related to an earlier relational learning algorithm called the path ranking
algorithm. We show that the problem of constructing proofs for this logic is related to com-
putation of personalized PageRank on a linearized version of the proof space, and based on
this connection, we develop a provably-correct approximate grounding scheme, based on
the PageRank–Nibble algorithm. Building on this, we develop a fast and easily-parallelized
weight-learning algorithm for ProPPR. In our experiments, we show that learning for ProPPR
is orders of magnitude faster than learning for Markov logic networks; that allowing mutual
recursion (joint learning) in KB inference leads to improvements in performance; and that

Editors: Gerson Zaverucha and Vítor Santos Costa.

B William Yang Wang
yww@cs.cmu.edu

Kathryn Mazaitis
krivard@cs.cmu.edu

Ni Lao
nlao@google.com

William W. Cohen
wcohen@cs.cmu.edu

1 School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213,
USA

2 Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-015-5488-x&domain=pdf


102 Mach Learn (2015) 100:101–126

ProPPR can learnweights for amutually recursive programwith hundreds of clauses defining
scores of interrelated predicates over a KB containing one million entities.

Keywords Probabilistic logic · Personalized PageRank · Scalable learning

1 Introduction

Probabilistic logics are useful for many important tasks (Lowd and Domingos 2007; Fuhr
1995; Poon and Domingos 2007, 2008); in particular, such logics would seem to be well-
suited for inference with the “noisy” facts that are extracted by automated systems from
unstructured web data. While some positive results have been obtained for this problem
(Cohen 2000), most probabilistic first-order logics are not efficient enough to be used for
inference on the very large broad-coverage KBs that modern information extraction systems
produce (Suchanek et al. 2007; Carlson et al. 2010). One key problem is that queries are typi-
cally answered by “grounding” the query—i.e., mapping it to a propositional representation,
and then performing propositional inference—and for many logics, the size of the “ground-
ing” can be extremely large. For instance, in probabilistic Datalog (Fuhr 1995), a query is
converted to a structure called an “event expression”, which summarizes all possible proofs
for the query against a database; in ProbLog (De Raedt et al. 2007) and MarkoViews (Jha
and Suciu 2012), similar structures are created, encoded more compactly with binary deci-
sion diagrams (BDDs); in probabilistic similarity logic (PSL) (Brocheler et al. 2010), an
intentional probabilistic program, together with a database, is converted to constraints for
a convex optimization problem; and in Markov Logic Networks (MLNs) (Richardson and
Domingos 2006), queries are converted to a propositional Markov network. In all of these
cases, the result of this “grounding” process can be large.

As a concrete illustration of the “grounding” process, Fig. 1 shows a very simple MLN
and its grounding over a universe of two web pages a and b. Here, the grounding is query-
independent. In MLNs, the result of the grounding is a Markov network which contains
one node for every atom in the Herbrand base of the program—i.e., the number of nodes is
O(nk) where k is the maximal arity of a predicate and n the number of database constants.
However, even a grounding size that is only linear in the number of facts in the database, |DB|,

Fig. 1 A Markov logic network program and its grounding relative to two constants a, b (dotted lines are
clique potentials associated with rule R2, solid lines with rule R1)
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would be impractically large for inference on real-world problems. Superficially, it would
seem that groundings must inherently be o(|DB|) for some programs: in the example, for
instance, the probability of aboutSport(x)must depend to some extent on the entire hyperlink
graph, if it is fully connected. However, it also seems intuitive that if we are interested
in inferring information about a specific page—say, the probability of aboutSport(d1)—
then the parts of the network only distantly connected to d1 are likely to have a small
influence. This suggests that an approximate grounding strategy might be feasible, in which
a query such as aboutSport(d1) would be grounded by constructing a small subgraph of the
full network, followed by inference on this small “locally grounded” subgraph. As another
example, consider learning from a set of queries Q with their desired truth values. Learning
might proceed by locally-grounding every query goal, allowing learning to also take less than
O(|DB|) time.

In this paper, we first present a first-order probabilistic language which is well-suited to
such approximate “local grounding”. We describe an extension to stochastic logic programs
(SLP) (Muggleton 1996; Cussens 2001) that is biased towards short derivations, and show
that this is related to personalized PageRank (PPR) (Page et al. 1998; Chakrabarti 2007)
on a linearized version of the proof space. Based on the connection to PPR, we develop a
provably-correct approximate inference scheme, and an associated proveably-correct approx-
imate grounding scheme: specifically, we show that it is possible to prove a query, or to build
a graph which contains the information necessary for weight-learning, in time O( 1

αε
), where

α is a reset parameter associated with the bias towards short derivations, and ε is the worst-
case approximation error across all intermediate stages of the proof. This means that both
inference and learning can be approximated in time independent of the size of the underly-
ing database—a surprising and important result, which leads to a very scalable inference
algorithm. We show that ProPPR is efficient enough for inference tasks on large, noisy
KBs.

The ability to locally ground queries has another important consequence: it is possible
to decompose the problem of weight-learning to a number of moderate-size subtasks—in
fact, tasks of size O( 1

αε
) or less—which are weakly coupled. Based on this we outline a

parallelization scheme, which in our current implementation provides an order-of-magnitude
speedup in learning time on a multi-processor machine.

This article extends prior work (Wang et al. 2013) in the following aspects. First, the
focus of this article is on inference on a noisy KB, and we comprehensively show the chal-
lenges on the inference problems on large KBs, how one can apply our proprosed locally
grounding theory to improve the state-of-the-art in statistical relational learning. Second, we
provide numerous new experiments on KB inference, including varying the size of the graph,
comparing to MLNs, and varying the size of the theory. We demonstrate that the ProPPR
inference algorithm can scale to handle million-entity datasets with several complex theo-
ries (non-recursive, PRA non-recursive, and PRA recursive). Third, we provide additional
background on our approach, discussing in detail the connections to prior work on stochastic
logic programs and path finding.

In the following sections, we first introduce the theoretical foundations and background of
our formalism. We then define the semantics of ProPPR, and its core inference and learning
procedures. We next focus on a large inference problem, and show how ProPPR can be used
in a statistical relational learning task. We then present experimental results on inference in
a large KB of facts extracted from the web (Lao et al. 2011). After this section, we describe
our results on additional benchmark inference tasks. We finally discuss related work and
conclude.
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Table 1 A simple program in
ProPPR. See text for explanation about(X,Z):- handLabeled(X,Z) # base

about(X,Z):- sim(X,Y),about(Y,Z) # prop

sim(X,Y):- link(X,Y) # sim,link

sim(X,Y):-

hasWord(X,W),hasWord(Y,W),

linkedBy(X,Y,W) # sim,word

linkedBy(X,Y,W):- true # by(W)

2 Background

In this section, we introduce the necessary background that our approach builds on: logic
program inference as graph search, an approximate Personalized PageRank algorithm, and
stochastic logic programs.

2.1 Logic program inference as graph search

To begin with, we first show how inference in logic programs can be formulated as search
over a graph. We assume some familiarity with logic programming and will use notations
from Lloyd (1987). Let LP be a program which contains a set of definite clauses c1, . . . , cn ,
and consider a conjunctive query Q over the predicates appearing in LP . A traditional Prolog
interpreter can be viewed as having the following actions. First, construct a “root vertex” v0,
which is a pair (Q, Q), and add it to an otherwise-empty graph G ′

Q,LP . (For brevity, we drop
the subscripts of G ′ where possible.) Then recursively add to G ′ new vertices and edges as
follows: if u is a vertex of the form (Q, (R1, . . . , Rk)), and c is a clause in LP of the form
R′ ← S′

1, . . . , S
′
�, and R1 and R′ have a most general unifier θ = mgu(R1, R′), then add

to G ′ a new edge u → v where v = (Qθ, (S′
1, . . . , S

′
�, R2, . . . , Rk)θ).1 Let us call Qθ the

transformed query and (S′
1, . . . , S

′
�, R2, . . . , Rk)θ the associated subgoal list. Empty subgoal

lists correspond to solutions, and if a subgoal list is empty, we will denote it by �.
The graph G ′ is often large or infinite so it is not constructed explicitly. Instead Prolog

performs a depth-first search on G ′ to find the first solution vertex v—i.e., a vertex with an
empty subgoal list—and if one is found, returns the transformed query from v as an answer
to Q.

Table 1 and Fig. 2 show a simple Prolog program and a proof graph for it. (Ignore for now
the annotation after the hash marks, and edge labels on the graphs, which will be introduced
below.) For conciseness, in Fig. 2 only the subgoals R1, . . . , Rk are shown in each node
u = (Q, (R1, . . . , Rk)). Given the query Q = about(a,Z), Prolog’s depth-first search would
return Q = about(a,fashion). Note that in this proof formulation, the nodes are conjunctions
of literals, and the structure is, in general, a directed graph, rather than a tree. Also note that
the proof is encoded as a graph, not a hypergraph, even if the predicates in the LP are not
binary: the edges represent a step in the proof that reduces one conjunction to another, not a
binary relation between entities.

1 Here Qθ denotes the result of applying the substitution θ to Q; for instance, if Q = about (a, Z) and
θ = {Z = f ashion}, then Qθ is about (a, f ashion).
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Fig. 2 A partial proof graph for the query about(a,Z). The upper right shows the link structure between
documents a, b, c, and d, and some of the words in the documents. Restart links are not shown

Table 2 The PageRank–Nibble algorithm for computing the Personalized PageRank vector in a graph where
Pr(v|u) is the transition probability for reaching v from u, α′ is a lower-bound on Pr(v0|u) for any node u to
be added to the graph Ĝ, and ε is the desired degree of approximation

define PageRank–Nibble (v0, α′, ε):
let p = r = 0, let r[v0] = 1, and let Ĝ = ∅
while ∃u : r(u)/|N (u)| > ε do:

push(u)
return p

end

define push(u, α′):
comment: this function modifies p, r, and Ĝ
p[u] = p[u] + α′ · r[u]
r[u] = r[u] · (1 − α′)
for v ∈ N (u):

add the edge (u, v, φu→v) to Ĝ
if v = v0 then

r[v] = r[v] + Pr(v|u)r[u]
else

r[v] = r[v] + (Pr(v|u) − α′)r[u]
endfor

end

2.2 Personalized PageRank

Personalized PageRank (Page et al. 1998) is a crucial algorithm for inference in large graphs.
In this subsection, we introduce an approximate personalized PageRank method called
PageRank–Nibble (Andersen et al. 2006, 2008). The outline of this algorithm is shown
in Table 2. This method has been used for the problem of local partitioning: in local parti-
tioning, the goal is to find a small, low-conductance2 component Ĝ of a large graph G that
contains a given node v. In the next section, we will show that this algorithm can also be
used to implement a probabilistic Selective Linear Definite (SLD) resolution with bounded
computation.

PageRank–Nibble maintains two vectors: p, an approximation to the personalized PageR-
ank vector3 associated with node v0, and r, a vector of “residual errors” in p. Initially, p = ∅
2 For small subgraphs GS , conductance of GS is the ratio of the weight of all edges exiting GS to the weight
of all edges incident on a node in GS .
3 In the probabilistic view of personalized PageRank, the i th entry in the vector p is the probability of reaching
the i th node vi from the start node v0.
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and r = {v0}. The algorithm repeatedly picks a node u with a large residual error r[u], and
reduces this error by distributing a fraction α′ of it to p[u], and the remaining fraction back to
r[u] and r[v1], . . . , r[vn], where the vi ’s are the neighbors of u. The order in which nodes u
are picked does not matter for the analysis. In our implementation, we follow Prolog’s usual
depth-first search as much as possible.

Although the result stated in Andersen et al holds only for undirected graphs, it can be
shown to also hold for directed graphs, as is the case here. Specifically, following their
proof technique, it can be shown that after each push, p + r = ppr(v0). It is also clear
that when PageRank–Nibble terminates, then for any u, the error ppr(v0)[u] − p[u] is
bounded by ε|N (u)|: hence, in any graph where the set of neighbors of u, namely N (u),
is bounded by a constant, a good approximation will be returned by PageRank–Nibble.
PageRank–Nibble incrementally exploits the graph, and the nodes with non-zero weights
are the nodes actually touched by PageRank–Nibble. Consider the subset of G ′ defined by
these nodes (the nodes visited by the PageRank–Nibble), clearly this subgraph is also of size
o( 1

α′ε ).
To summarize, the PageRank–Nibble algorithm is an approximation to Personalized

PageRank. In the next section, we will show that this algorithm can also be used to implement
a probabilistic SLD resolution with bounded computation.

2.3 Stochastic logic programs

In past work on stochastic logic programs (SLPs) (Muggleton 1996; Cussens 2001), the
randomized traversal ofG ′ wasdefinedby a probabilistic choice, at each node, ofwhich clause
to apply, based on a weight for each clause. Specifically, there is a weight for each clause
R1 ← Q1, . . . , Qk with head R1, and these weights define a distribution on the children
of node ((Q, (R1, . . . , Rk))); i.e., the clause weights defined a transition probability for the
graphs G ′ defined above. This defines a probability distribution over vertices v, and hence
a distribution over transformed queries (i.e. answers) Qθ . The randomized procedure thus
produces a distribution over possible answers, which can be tuned by learning to upweight
desired correct answers and downweight others.

Note that each different � node corresponds to a different proof for Q, and different
proofs may be associated with different substitutions θ and hence different solutions to
the query Q. In Fig. 2, for instance, the leaf in the lower left corresponds to the solu-
tion θ = {Z = fashion} of the query Q = about(a,Z), while the leaf in the lower right
corresponds to {Z = sport}. In the formalism of SLPs, one assigns a probabilistic score
to every node in the proof graph, and then, to assign a probabilistic score to a partic-
ular solution Q′, one simply sums the probabilities for all leaf nodes (�i , θi ) such that
Qθi = Q′.

3 The programming with personalized PageRank (PROPPR) language

3.1 Extensions to the semantics of SLPs

We will now describe our “locally groundable” first-order probabilistic language, which we
call ProPPR. Inference for ProPPR is based on a personalized PageRank process over the
proof constructed by Prolog’s SLD resolution theorem-prover.
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3.1.1 Feature-based transition probabilities

We propose two extensions. First, we will introduce a new way of computing clause
weights, which allows for a potentially richer parameterization of the traversal process.
Briefly, for each use of a clause c in a proof, we associate with it a feature vector φ,
which is computed based on the binding to the variables in the head of c. The fea-
ture vector φ for a clause is defined by the code following “#” after c. For instance,
applying the clause “sim(X,Y):- link(X,Y) # sim, link.” always yields a vector φ that has
unit weight on (the dimensions corresponding to) the two ground atoms sim and link,
and zero weight elsewhere; likewise, applying the clause “linkedBy(X,Y,W):- true # by(W).”
to the goal linkedBy(a,c,sprinter) yields a vector φ that has unit weight on the atom
by(sprinter).

To do this, the annotations after the hashmarks in the program in Table 1 are used
to generate the features on the edges in Fig. 2. For example, the # sim,link annotation
in Table 1 is instantiated by the edge in the top-left of Fig. 2, and #by(W) generates a
feature template, which can be activated as, for example, the by(sprinter) edge in the mid-
dle of Fig. 2. More generally, we associate with each edge u → v in the graph a feature
vector φu→v . This feature vector is produced indirectly, by associating with every clause
c ∈ LP a function Φc(θ), which produces the vector φ associated with an application of
c using mgu θ . As an example, if the last clause of the program in Table 1 was applied to
(Q, linkedBy(a, c, sprinter), about(c, Z)) with mgu θ = {X = a, Y = c,W = sprinter}
then Φc(θ) would be {by(sprinter)}, if we use a set to denote a sparse vector with 0/1
weights.

In ProPPR, it is possible to have one unique feature for each clause: in fact, this
is the default setting in ProPPR. However, allowing user-defined feature vectors gives
us more flexibility in guiding the learning system. This allows us to decouple “fea-
ture engineering” from writing logic programs. Note that another key difference between
SLPs and ProPPR is that the former associates a fixed weight/probability with each
clause, whereas in ProPPR, when a feature template is involved, the weight of this
clause can depend on the partial instantiation of the clause. For example, the clause
“sim(X, Y ):- hasWord(X,W ), hasWord(Y,W ), linkedBy(X, Y,W ) # sim,word.” associates
two weights with the feature vector for this clause. In SLP, this would be only one
weight. Additionally ProPPR allows clauses like “linkedBy(X,Y,W):- true # by(W).”
which have feature templates that allow the weight of a clause to depend on the con-
stants used in the proof—e.g., in Table 1, depending on the actual word, the second
sim(X, Y ) could get different weights: if W = “champion” the second sim(X, Y ) clause
gets a weight of 0.9, while for W = “the”, the weight could be 0.2. This would
not be possible in SLPs, except by including a separate clause for each instantia-
tion of W .4 Note that db is a special feature indicating that a database predicate was
used.

This feature vector is computed during theorem-proving, and used to annotate the edge
u → v in G ′ created by applying c with mgu θ . Finally, an edge u → v will be traversed
with probability Pr(v|u) ∝ f (w, φu→v) where w is a parameter vector and where f (w, φ)

is a weighting function. (Here we use f (w, φ) = exp(w · φ), but any differentiable function
would be possible.) This weighting function now determines the probability of a transition,
in theorem-proving, from u to v: specifically, Prw(v|u) ∝ f (w, φu→v). Weights inw default
to 1.0, and learning consists of tuning these weights.

4 We thank an anonymous reviewer for pointing out this example.
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3.1.2 Restart links and solution self-links

Our second and more fundamental extension is to add additional edges inG ′. Specifically we
add edges (a) from every solution vertex to itself; and (b) also add an edge from every vertex to
the start vertex v0.Wewill call this augmented graphGQ,LP below (or justG if the subscripts
are clear from context). The first type of link, the self-loops, serves to upweight solution
nodes, and are a heuristic—all analytic results would hold without them. The second type of
link, the restart links, make SLP’s graph traversal a personalized PageRank (PPR) procedure,
sometimes known as random-walk-with-restart (Tong et al. 2006). Self-loop links and restart
links are annotated by additional feature vector functions Φrestart(R) and Φselfloop(R), which
are applied to the leftmost literal R of the subgoal list for u to annotate the edge u → v0.

The restart links, which link back to the start vertex, bias the traversal of the proof graph to
upweight the results of short proofs. To see this, note that if the restart probability P(v0|u) = α

for every node u, then the probability of reaching any node at depth d is bounded by (1−α)d .
Later we will show that theoretically these restart edges are important for constructing the
approximated local groundings in time independent of the database size.

3.1.3 Summary of the extended proof graph

To summarize, if u is a node of the search graph, u = (Qθ, (R1, . . . , Rk)), then the transitions
from u, and their respective probabilities, are defined as follows, where Z is an appropriate
normalizing constant:

– If v = (Qθσ, (S′
1, . . . , S

′
�, R2, . . . , Rk)θσ ) is a state derived by applying the clause c

(with mgu σ ), then

Pr
w

(v|u) = 1

Z
f (w, Φc(θσ ))

– If v = (Q, �) is a solution, then

Pr
w

(v|u) = 1

Z
f (w, Φselfloop(R1θ))

– If v = v0 = (Q, Q) is the initial state in G, then

Pr
w

(v|u) = 1

Z
f (w, Φrestart(R1θ))

– If v is any other node, then Pr(v|u) = 0.

Finally wemust specify the functionsΦc andΦrestart . For clauses in LP , the feature-vector
producing function Φc(θ) for a clause is specified by annotating c as follows: every clause
c = (R ← S1, . . . , Sk) is annotated with a conjunction of “feature literals” F1, . . . , F�,
which are written at the end of the clause after the special marker “#”. The function Φc(θ)

then returns a vector φ = {F1θ, . . . , F�θ}, where every Fiθ must be ground: it cannot contain
any free variables.

The requirement5 that edge features Fiθ are ground is the reason for introducing the
apparently unnecessary predicate linkedBy(X,Y,W) into the program of Table 1: adding the
feature literal by(W) to the second clause for sim would result in a non-ground feature by(W),

5 The requirement that the feature literals returned by Φc(θ) must be ground in θ is not strictly necessary for
correctness. However, in developing ProPPR programs we noted that non-ground features were usually not
what the programmer intended.
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since W is a free variable when c is used. Notice also that the weights on the by(W) features
are meaningful, even though there is only one clause in the definition of linkedBy, as the
weight for applying this clause competes with the weight assigned to the restart edges.

It would be cumbersome to annotate every database fact, and difficult to learn weights for
so many features. Thus, if c is the unit clause that corresponds to a database fact, then Φc(θ)

returns a default value. φ = {db}.6
The function Φrestart(R) depends on the functor and arity of R. If R is defined by clauses

in LP , then Φrestart(R) returns a unit vector φ = {defRestart}. If R is a database predicate
[e.g., hasWord(doc1,W)] then we follow a slightly different procedure, which is designed to
ensure that the restart link has a reasonably large weight even with unit feature weights: we
compute n, the number of possible bindings for R, and set φ[defRestart] = n · α

1−α
, where α

is a global parameter. This means that with unit weights, after normalization, the probability
of following the restart link will be α.

Putting this all together with the standard power-iteration approach to computing per-
sonalized PageRank over a graph (Page et al. 1998), we arrive at the following inference
algorithm for answering a query Q, using a weight vector w. We let W be a matrix such
that W[u, v] = Prw(v|u), and in our discussion, we use ppr(v0) to denote the personalized
PageRank vector for v0. Let Nu+0(u) be the neighbors of u with non-zero weight.

1. Let v0 = (Q, Q) be the start node of the search graph. Let G be a graph containing just
v0. Let v0 = {v0}.

2. For t = 1, . . . , T (i.e., until convergence):

For each u with non-zero weight in vt−1, and each v ∈ Nu+0(u), add (u, v,Φu→v)

to G with weight Prw(v|u), and set vt = W · vt−1

3. At this point vT ≈ ppr(v0). Let S be the set of nodes (Qθ, �) that have empty subgoal
lists and non-zero weight in vT , and let Z = ∑

u∈S vT [u]. The final probability for the
literal L = Qθ is found by extracting these solution nodes S, and renormalizing:

Pr
w

(L) ≡ 1

Z
vT [(L , �)]

where vT [(L , �)] is the unnormalized probability of L reaching this particular solution node.
For example, given the query Q = about(a,Z) and the program of Table 1, this procedure
would assign a non-zero probability to the literals about(a,sport) and about(a,fashion), con-
currently building the graph of Fig. 2.

As a further illustration of the sorts of ProPPR programs that are possible, some small
sample programs are shown in Table 3. Clauses c1 and c2 are, together, a bag-of-words
classifier: each proof of predictedClass(D,Y) adds some evidence for document D having
class Y , with the weight of this evidence depending on the weight given to c2’s use in
establishing related(w,y), where w is a specific word in D and y is a possible class label. In
turn, c2’s weight depends on the weight assigned to the r(w, y) feature by w, relative to the
weight of the restart link.7 Adding c3 and c4 to this program implements label propagation,8

and adding c5 and c6 implements a sequential classifier. These examples show that ProPPR
allows many useful heuristics to be encoded as programs.

6 If a non-database clause c has no annotation, then the default vector is φ = {id(c)}, where c is an identifier
for the clause c.
7 The existence of the restart link thus has another important role in this program, as it avoids a sort of “label
bias problem” in which local decisions are difficult to adjust.
8 Note that we use the inDoc predicate for efficiency purposes; in ProPPR, like Prolog, predicates are indexed
by their first argument.
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Table 3 Some more sample ProPPR programs

c1: predictedClass(Doc,Y):-
possibleClass(Y),
hasWord(Doc,W),
related(W,Y) # c1.

c2: related(W,Y):- true,
# relatedFeature(W,Y)

Database predicates:
hasWord(D,W): doc D contains word W
inDoc(W,D): doc D contains word W
previous(D1,D2): doc D2 precedes D1
possibleClass(Y): Y is a class label

c3: predictedClass(Doc,Y):-
similar(Doc,OtherDoc),
predictedClass(OtherDoc,Y) # c3.

c4 : similar(Doc1,Doc2):-
hasWord(Doc1,W),
inDoc(W,Doc2) # c4.

c5 : predictedClass(Doc,Y):-
previous(Doc,OtherDoc),
predictedClass(OtherDoc,OtherY),
transition(OtherY,Y) # c5.

c6: transition(Y1,Y2):- true,
# transitionFeature(Y1,Y2)

LP = {c1, c2} is a bag-of-words classifier (see text). LP = {c1, c2, c3, c4} is a recursive label-propagation
scheme, in which predicted labels for one document are assigned to similar documents, with similarity being
an (untrained) cosine distance-like measure. LP = {c1, c2, c5, c6} is a sequential classifier for document
sequences

3.1.4 Discussion

Thus far, we have introduced a language quite similar to SLPs. The power-iteration PPR
computation outlined above corresponds to a depth-bounded breadth-first search procedure,
and the main extension of ProPPR, relative to SLPs, is the ability to label a clause application
with a feature vector, instead of the clause’s identifier. Below, however, we will discuss a
much faster approximate grounding strategy, which leads to a novel proof strategy, and a
parallelizable weight-learning method.

3.2 Locally grounding a query

Note that the procedure for computing PPR on the proof graph both performs inference by
computing a distribution over literals Qθ and “grounds” the query, by constructing a graph
G. ProPPR inference for this query can be re-done efficiently,9 by running an ordinary PPR
process on G. Unfortunately, the grounding G can be very large: it does not always include
the entire database, but if T is the number of iterations until convergence for the sample
program of Table 1 on the query Q = about(d,Y),G will include a node for every page
within T hyperlinks of d . To address this problem, we can use a proof procedure based on
PageRank–Nibble, the algorithm described in Sect. 2.2.

The PageRank–Nibble–Prove algorithm is shown in Table 4, which calls the approximate
Personalized PageRank algorithm in Table 2. Relative to PageRank–Nibble, the main differ-
ences are the use of a lower-bound on α rather than a fixed restart weight and the construction
of the graph Ĝ. Putting them together, we have the following efficiency bound:

Theorem 1 (Andersen, Chung, Lang) Let ui be the i th node pushed by PageRank–Nibble–
Prove. Then, for the sum of all neighbors of ui , we have

∑
i |N (ui )| < 1

α′ε .

This can be proved by noting that initially ||r||1 = 1, and also that ||r||1 decreases by at
least α′ε|N (ui )| on the i th push. As a direct consequence we have the following:

9 This is useful for faster weight learning, which will be explained in the next subsection.
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Table 4 The PageRank–Nibble–Prove algorithm for inference in ProPPR. α′ is a lower-bound on Pr(v0|u)

for any node u to be added to the graph Ĝ, and ε is the desired degree of approximation of the ppr vector

define PageRank–Nibble–Prove(Q):
let v =PageRank–Nibble((Q, Q), α′, ε)
let S = {u : p[u] > ε and u = (Qθ, �)}
let Z = ∑

u∈S p[u]
define Prw(L) ≡ 1

Z v[(L , �)]
end

The nodes touched by PageRank–Nibble also define a subset Ĝ of the proof graph G

Corollary 1 The number of edges in the graph Ĝ produced by PageRank–Nibble–Prove is
no more than 1

α′ε .

Note that we expand the proof tree gradually, and generate a partial proof tree ĜQ during
this process. Importantly, the bound holds independent of the size of the full database of
facts. The bound also holds regardless of the size or loopiness of the full proof graph, so this
inference procedure will work for recursive logic programs.10 Note that the bound depends
on 1/α′, so if α′ = 0, then this approximate PageRank procedure may not terminate.

We should emphasize a limitation of this analysis: this approximation result holds for the
individual nodes in the proof tree, not the answers Qθ to a query Q. Following SLPs, the
probability of an answer Qθ is the sum of the weights of all solution nodes that are associated
with θ , so if an answer is associated with n solutions, the error for its probability estimate
with PageRank–Nibble–Prove may be as large as nε.

To summarize,we have outlined an efficient approximate proof procedure,which is closely
related to personalized PageRank. As a side-effect of inference for a query Q, this procedure
will create a ground graph ĜQ on which personalized PageRank can be run directly, with-
out any relatively expensive manipulation of first-order theorem-proving constructs such as
clauses or logical variables. As we will see, this “locally grounded”11 graph will be very
useful in learning weights w to assign to the features of a ProPPR program.

3.3 Learning for ProPPR

As noted above, inference for a query Q in ProPPR is based on a personalized PageRank
process over the graph associated with the SLD proof of a query goal G. More specifically,
the edges u → v of the graph G are annotated with feature vectors φu→v , and from these
feature vectors, weights are computed using a parameter vector w, and finally normalized to
form a probability distribution over the neighbors of u. The “grounded” version of inference
is thus a personalized PageRank process over a graph with feature-vector annotated edges.

In prior work, Backstrom and Leskovec (2011) outlined a family of supervised learning
procedures for this sort of annotated graph. In the simpler case of their learning procedure,
an example is a triple (v0, u, y) where v0 is a query node, u is a node in the personalized
PageRank vector pv0

for v0, y is a target value, and a loss �(v0, u, y) is incurred if pv0
[u] �= y.

10 For undirected graphs, it can also be shown (Andersen et al. 2006, 2008) that the subgraph Ĝ is in some
sense a “useful” subset of the full proof space: for an appropriate setting of ε, if there is a low-conductance
subgraph G∗ of the full graph that contains v0, then G∗ will be contained in Ĝ: thus if there is a subgraph G∗
containing v0 that approximates the full graph well, PageRank–Nibble will find (a supergraph of) G∗.
11 Note that “local grounding” means constructing a proof graph, but the nodes in this graph need not to be
ground terms in the logic programming sense.
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In the more complex case of “learning to rank”, an example is a triple (v0, u+, u−) where v0
is a query node, u+ and u− are nodes in the personalized PageRank vector pv0

for v0, and a
loss is incurred unless pv0

[u+] ≥ pv0
[u−]. The core of Backstrom and Leskovec’s result is a

method for computing the gradient of the loss on an example, given a differentiable feature-
weighting function f (w, φ) and a differentiable loss function �. The gradient computation is
broadly similar to the power-iteration method for computation of the personalized PageRank
vector for v0. Given the gradient, a number of optimization methods can be used to compute
a local optimum.

Instead of directly using the above learning approach for ProPPR, we decompose the
pairwise ranking loss into a standard positive-negative log loss function. The training data
D is a set of triples {(Q1, P1, N 1), . . . , (Qm, Pm, Nm)} where each Qk is a query, Pk =
〈Qθ1+, . . . , Qθ I+〉 is a list of correct answers, and Nk is a list 〈Qθ1−, . . . , Qθ J−〉 of incorrect
answers. We use a log loss with L2 regularization of the parameter weights. Hence the final
function to be minimized is

−
( I∑

k=1

log pv0
[uk+] +

J∑

k=1

log(1 − pv0
[uk−])

)

+ μ||w||22

To optimize this loss, we use stochastic gradient descent (SGD), rather than the quasi-Newton
method of Backstrom and Leskovic. Weights are initialized to 1.0 + δ, where δ is randomly
drawn from [0, 0.01]. We set the learning rate β of SGD to be β = η

epoch2
where epoch is

the current epoch in SGD, and η, the initial learning rate, defaults to 1.0.
We implemented SGD because it is fast and has been adapted to parallel learning tasks

(Zinkevich et al. 2010; Recht et al. 2011). Local grounding means that learning for ProPPR is
quitewell-suited to parallelization. The step of locally grounding each Qi is “embarrassingly”
parallel, as every grounding can be done independently. To parallelize the weight-learning
stage, we use multiple threads, each of which computes the gradient over a single grounding
ĜQi , and all of which access a single shared parameter vectorw. The shared parameter vector
is a potential bottleneck (Zinkevich et al. 2009); while it is not a severe one on moderate-
size problems, contention for the parameters does become increasingly important with many
threads.

4 Inference in a noisy KB

In this section, we focus on improving the state-of-the-art in learning inference rules for a
noisy KB using ProPPR. The road map is as follows:

– first, we introduce the challenges of inference in a noisy KB in the next subsection;
– second, in Sect. 4.2, we describe the background of PRA (Lao et al. 2011), which is a

state-of-the-art algorithm that learns non-recursive theories of a particular type;
– finally, we then show in Sect. 4.3 how one can use ProPPR to form a recursive theory of

PRA’s learned rules to improve this learning scheme.

4.1 Challenges of inference in a noisy KB

A number of recent efforts in industry (Singhal 2012) and academia (Suchanek et al. 2007;
Carlson et al. 2010; Hoffmann et al. 2011) have focused on automatically constructing large
knowledge bases (KBs). Because automatically-constructed KBs are typically imperfect and
incomplete, inference in such KBs is non-trivial.
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We situate our study in the context of the Never Ending Language Learning (NELL)
research project, which is an effort to develop a never-ending learning system that operates
24 h per day, for years, to continuously improve its ability to extract structured facts from
the web (Carlson et al. 2010). NELL is given as input an ontology that denotes hundreds
of categories (e.g., person, beverage, athlete, sport) and two-place typed relations among
these categories [e.g., athletePlaysSport (Athlete, Sport)], which it must learn to extract
from the web. NELL is also provided a set of 10–20 positive seed examples of each such
category and relation, along with a downloaded collection of 500 million web pages from the
ClueWeb2009 corpus (Callan et al. 2009) as unlabeled data, and access to 100,000 queries
each day to Google’s search engine. NELL uses a multi-strategy semi-supervised multi-view
learning method to iteratively grow the set of extracted “beliefs”.

This task is challenging for two reasons. First, the extensional knowledge inference is not
only incomplete, but also noisy, since it is extracted imperfectly from the web. For example,
a football team might be wrongly recognized as two separate entities, one with connections
to its team members, and the other with a connection to its home stadium. Second, the
sizes of inference problems are large relative to those in many other probabilistic inference
tasks. Given the very large broad-coverage KBs that modern information extraction systems
produce (Suchanek et al. 2007; Carlson et al. 2010), even a grounding of size that is only
linear in the number of facts in the database, |DB|, would be impractically large for inference
on real-world problems.

Pastwork on first-order reasoning has sought to address the first problemby learning “soft”
inference procedures, which are more reliable than “hard” inference rules, and to address the
second problem by learning restricted inference procedures. In the next sub-section, we will
recap a recent development in solving these problems, and draw a connection to the ProPPR
language.

4.2 Inference using the path ranking algorithm (PRA)

Lao et al. (2011) use the path ranking algorithm (PRA) to learn an “inference” procedure
based on a weighted combination of “paths” through the KB graph. PRA is a relational
learning system which generates and appropriately weights rules, which accurately infer
new facts from the existing facts in the noisy knowledge base. As an illustration, PRA might
learn rules such as those in Table 5, which correspond closely to Horn clauses, as shown in
the table.

PRA only considers rules which correspond to “paths”, or chains of binary, function-free
predicates. Like ProPPR, PRA will weight some solutions to these paths more heavily than

Table 5 Example PRA rules learned from NELL, written as Prolog clauses

PRA Paths for inferring athletePlaysSport:

athletePlaysSport(A,S):- factAthletePlaysForTeam(A,T),factTeamPlaysSport(T,S).

PRA Paths for inferring teamPlaysSport:

teamPlaysSport(T,S):-

factMemberOfConference(T,C),factConferenceHasMember(C,T’),factTeamPlaysSport(T’,S).

teamPlaysSport(T,S):-

factTeamHasAthlete(T,A),factAthletePlaysSport(A,S).
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others: specifically, weights of the solutions to a PRA “path” are based on random-walk
probabilities in the corresponding graph. For instance, the last clause of Table 5, which
corresponds to the “path”

T
teamHasAthlete−−−−−−−−−−−→ A

athletePlaysSport−−−−−−−−−−−−→ S

can be understood as follows:

1. Given a team T , construct a uniform distribution A of athletes such that A ∈ A is a
athlete playing for team T .

2. Given A , construct a distribution of sports S such that S ∈ S is played by A.

This final distributionS is the result: thus the path gives aweighted distribution over possible
sports played by a team.

The paths produced by PRA, together with their weighting scheme, corresponds precisely
to ProPPR clauses. More generally, the output of PRA corresponds roughly to a ProPPR
program in a particular form—namely, the form

p(S, T ) ← r1,1(S, X1), r1,2(X1, X2), . . . , r1,k1(Xk1−1, T ).

p(S, T ) ← r2,1(S, X1), r2,2(X1, X2), . . . , r2,k2(Xk2−1, T ).
...

where p is the binary predicate being learned, and the ri, j ’s are other predicates defined
in the database. In Table 5, we emphasize that the ri, j ’s are already extensionally defined
by prefixing them with the string “fact”. PRA generates a very large number of such rules,
and then combines them using a sparse linear weighting scheme, where the weighted solu-
tions associated with a single “path clause” are combined with learned parameter weights
to produce a final ranking over entity pairs. More formally, following the notation of Lao
and Cohen (2010), we define a relation path P as a sequence of relations r1, . . . , r�. For any
relation path P = r1, . . . , r�, and seed node s, a path constrained random walk defines a
distribution h as hs,P (e) = 1 if e = s, and hs,p(e) = 0 otherwise. If P is not empty, then
P ′ = r1, . . . , r�−1, such that:

hs,P (e) =
∑

e′∈P ′
hs,P ′(e′) · P(e|e′; r�) (1)

where the term P(e|e′; r�) is the probability of reaching node e from node e′ with a one-step
random walk with edge type r�; that is, it is 1

k , where k = |{e′ : r�(e, e′)}|, i.e., the number
of entities e′ related to e via the relation r�.

Assume we have a set of paths P1, . . . , Pn . The PRA algorithm treats each entity-pair
hs,P (e) as a path feature for node e, and ranks entities using a linear weighting scheme:

w1hs,P1(e) + w2hs,P2(e) + · · · + wnhs,Pn (e) (2)

where wi is the weight for the path Pi . PRA then learns the weights w by performing elastic
net-like regularized maximum likelihood estimation of the following objective function:

∑

i

ji (w) − μ1||w||1 − μ2||w||22 (3)

Here μ1 and μ2 are regularization coefficients for elastic net regularization, and the loss
function ji (w) is the per-instance objective function. The regularization on ||w||1 tends to
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Table 6 Example recursive Prolog rules constructed from PRA paths

Rules for inferring athletePlaysSport:

athletePlaysSport(A,S):- factAthletePlaysSport(A,S).

athletePlaysSport(A,S):- athletePlaysForTeam(A,T),teamPlaysSport(T,S).

Rules for inferring teamPlaysSport:

teamPlaysSport(T,S):- factTeamPlaysSport(T,S).

teamPlaysSport(T,S):- memberOfConference(T,C),conferenceHasMember(C,T’),teamPlaysSport(T’,S).

teamPlaysSport(T,S):- teamHasAthlete(T,A),athletePlaysSport(A,S).

drive weights to zero, which allows PRA to produce a sparse classifier with relatively small
number of path clauses. More details on PRA can be found elsewhere (Lao and Cohen 2010).

4.3 From non-recursive to recursive theories: joint inference for multiple relations

One important limitation of PRA is that it learns only programs in the limited form given
above. In particular, PRA can not learn or even execute recursive programs, or programs with
predicates of arity more than two. PRA also must learn each predicate definition completely
independently.

To see why this is a limitation consider the program in Table 5, which could be learned
by PRA by invoking it twice, once for the predicate athletePlaysSport and once for team-
PlaysSport.We call this formulation thenon-recursive formulation for a theory.An alternative
would be to define two mutually recursive predicates, as in Table 6. We call this the recursive
formulation. Learning weights for theories written using the recursive formulation is a joint
learning task, since several predicates are considered together. In the next section, we ask the
question: can joint learning, via weight-learning of mutually recursive programs of this sort,
improve performance for a learned inference scheme for a KB?

5 Experiments in KB inference

To understand the locally groundable first-order logic in depth, we investigate ProPPR on
the difficult problem of drawing reliable inferences from imperfectly extracted knowledge.
In this experiment, we create training data by using NELL’s KB as of iteration 713, and
test, using as positive examples new facts learned by NELL in later iterations. Negative
examples are created by sampling beliefs from relations that are mutually exclusive with the
target relation. Throughout this section, we set the number of SGD optimization epochs to
10. Since PRA has already applied the elastic net regularizer when learning the weights of
different rules, and we are working with multiple subsets with various sizes of input, μ was
set to 0 in ProPPR’s SGD learning in this section.

For experimental purposes, we construct a number of varying-sized versions of the KB
using the following procedure. First, we construct a “knowledge graph”, where the nodes
are entities and the edges are the binary predicates from NELL. Then, we pick a seed entity
s, and find the M entities that are ranked highest using a simple untyped random walk with
restart over the full knowledge graph from seed s. Finally, we project the KB to just these M
entities: i.e., we select all entities in this set, and all unary and binary relationships from the
original KB that concern only these M entities.
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This process leads to a well-connected knowledge base of bounded size, and by picking
different seeds s, we can create multiple different knowledge bases to experiment on. In the
experiments below, we used the seeds “Google”, “The Beatles”, and “Baseball” obtaining
KBs focused on technology, music, and sports, respectively.

In this section, we mainly look at three types of rules:

– KB non-recursive: the simple non-recursive KB rules that do not contain PRA paths
(e.g. teamPlaysSport(T,S):- factTeamPlaysSport(T,S).);

– PRA non-recursive: the non-recursive PRA rules (e.g. rules in Table 5);
– PRA recursive: the recursive formulation of PRA rules (e.g. rules in Table 6).

At the time of writing, there is no structure-learning component for ProPPR, we construct
a program by taking the top-weighted k rules produced PRA for each relation, for some
value of k, and then syntactically transforming them into ProPPR programs, using either the
recursive or non-recursive formulation, as described in Tables 5 and 6 respectively. Again,
note that the recursive formulation allows us to do joint inference on all the learned PRA
rules for all relations at once.

5.1 Varying the size of the graph

To explore the scalability of the system on large tasks, we evaluated the performance of
ProPPR on NELL KB subsets that have M = 100,000 and M = 1,000,000 entities. In
these experiments, we considered only the top-weighted PRA rule for each defined pred-
icate. On the 100K subsets, we have 234, 180, and 237 non-recursive KB rules, and 534,
430, and 540 non-recursive/recursive PRA rules in the Google, Beatles, and Baseball KBs,
respectively.12 On the 1M subsets, we have 257, 253, and 255 non-recursive KB rules, and
569, 563, and 567 non-recursive/recursive PRA rules for the three KBs. We set ε = 0.01
and α = 0.1. For example, here queries are in the form of “headquarterInCity(Google,?)”,
where as positive/negative examples are “+headquarterInCity(Google,MountainView)”, and
“−headquarterInCity(Google,Pittsburgh)”.

First we examine the AUC13 of non-recursive KB rules, non-recursive PRA and recursive
PRA ProPPR theories, after weight-learning, on the 100K and 1M subsets. From Table 7,
we see that the recursive formulation performs better in all subsets. Performance on the 1M
KBs are similar, because it turns out the largest KBs largely overlap. (This version of the
NELL KB has only a a little more than one million entities involved in binary relations.)
When examining the learned weights of the recursive program, we notice that the top-ranked
rules are the recursive PRA rules, as we expected.

In the second experiment, we consider the training time for ProPPR, and in particular,
how multithreaded SGD training affects the training time. Table 8 shows the runtime for the
multithreaded SGD on the NELL 100K and 1M datasets. Learning takes less than twominute
for all the data sets, even on a single processor, and multithreading reduces this to less than 20
s. Hence, although we have not observed perfect speedup (probably due to parameter-vector
contention) it is clear that SGD is fast, and that parallel SGD can significantly reduce the
training time for ProPPR.

12 Note that because of the additional recursive rules, the number of rules in non-recursive/recursive case is
much larger than using non-recursive only.
13 Throughout this section, all the AUCs are areas under the ROC curve.
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Table 7 Comparing the learning
algorithm’s AUC among
non-recursive KB, non-recursive
PRA, and recursive formulation
of ProPPR on NELL 100K and
1M datasets

The best results are highlighted in
bold

Methods Google Beatles Baseball

ProPPR 100K KB non-recursive 0.699 0.679 0.694

ProPPR 100K PRA non-recursive 0.942 0.881 0.943

ProPPR 100K PRA recursive 0.950 0.884 0.952

ProPPR 1M KB non-recursive 0.701 0.701 0.700

ProPPR 1M PRA non-recursive 0.945 0.944 0.945

ProPPR 1M PRA recursive 0.955 0.955 0.955

Table 8 Runtime (seconds) for
parallel SGD while training the
recursive formulation of ProPPR
on NELL 100K and 1M datasets

#Threads Google Beatles Baseball

100K

1 54.9 20.0 51.4

2 29.4 12.1 26.6

4 19.1 7.4 16.8

8 12.1 6.3 13.0

16 9.6 5.3 9.2

1M

1 116.4 87.3 111.7

2 52.6 54.0 59.4

4 31.0 33.0 31.3

8 19.0 21.4 19.1

16 15.0 17.8 15.7

5.2 Comparing ProPPR and MLNs

Next we quantitatively compare ProPPR’s inference time, learning time, and performance
with MLNs, using the Alchemy toolkit.14 We train with a KB with M = 1000 entities,15 and
test with a KB with M = 10,000. The number of non-recursive KB rules is 95, 10, and 56
respectively, and the corresponding number of non-recursive/recursive PRA rules are 230,
29, and 148. The number of training queries are 466, 520, and 130, and the number of testing
queries are 3143, 2552, and 4906. We set ε = 0.01 and α = 0.1. Again, we only take the
top-1 PRA paths to construct ProPPR programs in this subsection.

In the first experiment, we investigate whether inference in ProPPR is sensitive to the size
of graph. Using MLNs and ProPPR non-recursive KB programs trained on the 1K training
subsets, we evaluate the inference time on the 10K testing subsets by varying the number
of entities in the database used at evaluation time. Specifically, we use a fixed number of
test queries, and increase the total number of entities in the KB by a factor of X , for various
values of X . In Fig. 3, we see that ProPPR’s runtime is independent of the size of the KB.
In contrast, when comparing to MC-SAT, the default and most efficient inference method in
MLN, we observe that inference time slows significantly when the database size grows.

14 http://alchemy.cs.washington.edu/.
15 We were unable to train MLNs with more than 1000 entities.
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Fig. 3 Run-time for non-recursive KB inference on NELL 10K subsets the using ProPPR (with a single
thread) as a function of increasing the total entities by X times in the database. Total test queries are fixed in
each subdomain. Left the Google 10K dataset; middle, the Beatles 10K dataset; right the Baseball 10K dataset

Table 9 Comparing the learning
algorithm’s runtime between
ProPPR and MLNs on the NELL
1K subsets

Method Google Beatles Baseball

ProPPR SGD KB non-recursive 2.6 2.3 1.5

MLN conjugate gradident 8604.3 1177.4 5172.9

MLN voted perceptron 8581.4 967.3 4194.5

ProPPR SGD PRA non-recursive 2.6 3.4 1.7

ProPPR SGD PRA recursive 4.7 3.5 2.1

Table 10 Comparing the
learning algorithm’s AUC
between recursive formulation of
ProPPR and MLNs

The best results are highlighted in
bold

Methods Google Beatles Baseball

ProPPR SGD KB non-recursive 0.568 0.510 0.652

MLN conjugate gradident 0.716 0.544 0.645

MLN voted perceptron 0.826 0.573 0.672

ProPPR SGD PRA non-recursive 0.894 0.922 0.930

ProPPR SGD PRA recursive 0.899 0.899 0.935

In the second experiment, we compare ProPPR’s SGD training method with MLNs most
efficient discriminative learning methods: voted perceptron and conjugate gradient (Lowd
and Domingos 2007). To do this, we fixed the number of iterations of discriminative training
inMLN to 10, and also fixed the number of SGD passes in ProPPR to 10. In Table 9, we show
the runtime of various approaches on the three NELL subdomains.When running on the non-
recursive KB theory, ProPPR has averages 1–2 s runtime across all domains, whereas training
MLNs takes hours. When training on the non-recursive/recursive PRA theories, ProPPR is
still efficient.16

We now examine the accuracy of ProPPR, in particular, the recursive formulation, and
compare with MLN’s popular discriminative learning methods: voted perceptron and conju-
gate gradient. In Table 10, we see that MLNs outperform ProPPR’s using the non-recursive
formulation. However, ProPPR’s recursive formulation outperforms all other methods, and
shows the benefits of joint inference with recursive theories.

We should emphasize that the use of AUC means that we are evaluating only the ranking
of the possible answers to a query; in other words, we are not measuring the quality of the
actual probability scores produced by ProPPR, only the relative scores for a particular query.

16 We were unable to train MLNs with non-recursive or recursive PRA rules.
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Table 11 AUCs for using top-k
PRA paths for recursive
formulation of ProPPR on NELL
100K and 1M datasets

The best results are highlighted in
bold

Methods Google Beatles Baseball

ProPPR 100K top-1 recursive 0.950 0.884 0.952

ProPPR 100K top-2 recursive 0.954 0.916 0.950

ProPPR 100K top-3 recursive 0.959 0.953 0.952

ProPPR 1M top-1 recursive 0.955 0.955 0.955

ProPPR 1M top-2 recursive 0.961 0.960 0.960

ProPPR 1M top-3 recursive 0.964 0.964 0.964

ProPPR’s random-walk scores tend to be very small for all potential answers, and are not
well-suited to estimating probabilities in its current implementation.

5.3 Varying the size of the theory

So far, we have observed improved performance using the recursive theories of ProPPR,
constructed from top k = 1 PRA paths for each relation. Here we consider further increasing
the size of the ProPPR program by including more PRA rules in the theory. In particular, we
also extract the top-2 and top-3 PRA paths, limiting ourselves to rules with positive weights.
On the 100K datasets, this increased the number of clauses in the recursive theories to 759,
624, and 765 in the Google, Beatles, and Baseball subdomains in the top-2 condition, and
to 972, 806, and 983 in the top-3 condition. On the 1M datasets, we have now 801, 794, and
799 clauses in the top-2 case, and 1026, 1018, and 1024 in the top-3 setup. From Table 11,
we observe that using more PRA paths improves performance on all three subdomains.

6 Experiments on other tasks

As a further test of generality, we now present results using ProPPR on two other, smaller
tasks. Our first sample task is an entity resolution task previously studied as a test case for
MLNs (Singla and Domingos 2006a). The program we use in the experiments is shown
in Table 12: it is approximately the same as the MLN(B+T) approach from Singla and
Domingos.17 To evaluate accuracy, we use the Cora dataset, a collection of 1295 bibliography
citations that refer to 132 distinct papers. We set the regularization coefficientμ to 0.001 and
the number of epochs to 5.

Our second task is a bag-of-words classification task, which was previously studied as a
test case for both ProbLog (Gutmann et al. 2010) and MLNs (Lowd and Domingos 2007).
In this experiment, we use the following ProPPR program:

class(X,Y):- has(X,W), isLabel(Y), related(W,Y).
related(W,Y):- true # w(W,Y).

which is a bag-of-words classifier that is approximately18 the same as the ones used in prior
work (Gutmann et al. 2010; Lowd and Domingos 2007). The dataset we use is the WebKb

17 The principle difference is that we do not include tests on the absence of words in a field in our clauses,
and we drop the non-horn clauses from their program.
18 Note that we do not use the negation rule and the link rule from Lowd and Domingos.
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Table 12 ProPPR program used for entity resolution

samebib(BC1,BC2):-

author(BC1,A1),sameauthor(A1,A2),authorinverse(A2,BC2) # author

samebib(BC1,BC2):-

title(BC1,A1),sametitle(A1,A2),titleinverse(A2,BC2) # title

samebib(BC1,BC2):-

venue(BC1,A1),samevenue(A1,A2),venueinverse(A2,BC2) # venue

samebib(BC1,BC2):-

samebib(BC1,BC3),samebib(BC3,BC2) # tcbib

sameauthor(A1,A2):-

haswordauthor(A1,W),haswordauthorinverse(W,A2),keyauthorword(W) # authorword

sameauthor(A1,A2):-

sameauthor(A1,A3),sameauthor(A3,A2) # tcauthor

sametitle(A1,A2):-

haswordtitle(A1,W),haswordtitleinverse(W,A2),keytitleword(W) # titleword

sametitle(A1,A2):-

sametitle(A1,A3),sametitle(A3,A2) # tctitle

samevenue(A1,A2):-

haswordvenue(A1,W),haswordvenueinverse(W,A2),keyvenueword(W) # venueword

samevenue(A1,A2):-

samevenue(A1,A3),samevenue(A3,A2) # tcvenue

keyauthorword(W):- true # authorWord(W)

keytitleword(W):- true # titleWord(W)

keyvenueword(W):- true # venueWord(W)

Table 13 Performance of the
approximate
PageRank–Nibble–Prove method
on the Cora dataset, compared to
the grounding by running
personalized PageRank to
convergence (power iteration)

In all cases α = 0.1

ε MAP Time (s)

0.0001 0.30 28

0.00005 0.40 39

0.00002 0.53 75

0.00001 0.54 116

0.000005 0.54 216

Power iteration 0.54 819

dataset, which includes a set of web pages from four computer science departments (Cornell,
Wisconsin, Washington, and Texas). Each web page has one or multiple labels: course,
department, faculty, person, research project, staff, and student. The task is to classify the
given URL into the above categories. This dataset has a total of 4165 web pages. Using our
ProPPR program, we learn a separate weight for each word for each label.

6.1 Efficiency

For these smaller problems, we can evaluate the cost of the PageRank–Nibble–Prove infer-
ence/grounding technique relative to a power-iteration based prover. Table 13 shows the time
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Fig. 4 Run-time for inference when using ProPPR (with a single thread) as a function of the number of
entities in the database. The base of the log is 2. Left the Cora dataset; right the WebKB dataset

Co. Wi. Wa. Te. Avg.
1 1190.4 504.0 1085.9 1036.4 954.2
2 594.9 274.5 565.7 572.5 501.9
4 380.6 141.8 404.2 396.6 330.8
8 249.4 94.5 170.2 231.5 186.4
16 137.8 69.6 129.6 141.4 119.6

Fig. 5 Performance of the parallel SGD method on the Cora and WebKB datasets. The x axis is the number
of threads on a multicore machine, and the y axis is the speedup factor over a single-threaded implementation.
Co. test on the Cornell subset,Wi. test on the Wisconsin subset,Wa. test on the Washington subset, Te. test on
the Texas subset

required for inference with uniformweights for a set of 52 randomly chosen entity-resolution
tasks from the Cora dataset, using a Python implementation of the theorem-prover. We report
the time in seconds for all 52 tasks, as well as the mean average precision (MAP) of the
scoring for each query. It is clear that PageRank–Nibble–Prove offers a substantial speedup
on these problems with little loss in accuracy: on these problems, the same level of accuracy
is achieved in less than a tenth of the time.

While the speedup in inference time is desirable, the more important advantages of the
local grounding approach are that (1) grounding time, and hence inference, need not grow
with the database size and (2) learning can be performed in parallel, by usingmultiple threads
for parallel computations of gradients in SGD. Figure 4 illustrates the first of these points:
the scalability of the PageRank–Nibble–Prove method as the database size increases. For
comparison, we also show the inference time for MLNs with three inference methods: Gibbs
refers to Gibbs sampling, Lifted BP is the lifted belief propagation method, and MAP is the
maximum a posteriori inference approach. In each case the performance task is inference
over 16 test queries.
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Table 14 AUC results on Cora
citation-matching

The best results are highlighted in
bold

Cites Authors Venues Titles

MLN (Fig. 1) 0.513 0.532 0.602 0.544

MLN (S&D) 0.520 0.573 0.627 0.629

ProPPR (w = 1) 0.680 0.836 0.860 0.908

ProPPR 0.800 0.840 0.869 0.900

Note that ProPPR’s runtime is constant, independent of the database size: it takes essen-
tially the same time for 28 = 256 entities as for 24 = 16. In contrast, lifted belief propagation
is up to 1000 times slower on the larger database.

Figure 5 explores the speedup in learning due to multi-threading. The weight-learning is
using a Java implementation of the algorithm which runs over ground graphs. For Cora, the
speedup is nearly optimal, even with 16 threads running concurrently. For WebKB, while
learning time averages about 950s with a single thread, it can be reduced to about 120 s if
16 threads are used. For comparison, Lowd and Domingos report that around 10,000 s were
needed to obtain the best results for MLNs.

6.2 Effectiveness of learning

We finally consider the effectiveness of weight learning. For Cora, we train on the first four
sections of the Cora dataset, and report results on the fifth. Table 14 showsAUC on the test set
used by Singla and Domingos for several methods. The line for MLN (Fig. 1) shows results
obtained by anMLN version of the program of Fig. 1. The lineMLN (S&D) shows analogous
results for the best-performingMLN from Singla and Domingos (2006a). Compared to these
methods, ProPPR does quite well even before training (with unit feature weights,w = 1); the
improvement here is likely due to the ProPPR’s bias towards short proofs, and the tendency
of the PPR method to put more weight on shared words that are rare, and hence have lower
fanout in the graph walk. Training ProPPR improves performance on three of the four tasks,
and gives the most improvement on citation-matching, the most complex task.

The results in Table 14 all use the same data and evaluation procedure, and theMLNswere
trained with the state-of-the-art Alchemy system using the recommended commands for this
data, which is distributed with Alchemy.19 However, we should note that the MLN results
reproduced here are not identical to previous-reported ones (Singla and Domingos 2006a).
Singla and Domingos used a number of complex heuristics that are difficult to reproduce—
e.g., one of these was combining MLNs with a heuristic, TFIDF-based matching procedure
based on canopies (McCallum et al. 2000). While the trained ProPPR model outperforms
the reproduced MLN model in all prediction tasks, it outperforms the reported results from
Singla and Domingos only on venue, and does less well than the reported results on citation
and author.20

On the Webkb dataset, we use the usual cross-validation method (Lowd and Domingos
2007; Gutmann et al. 2010): in each fold, for the four universities, we train on three, and
report result on the fourth. In Table 15, we show the detailed AUC results of each fold,
as well as the averaged results. If we do not perform weight learning, the averaged result
is equivalent to a random baseline. As reported by Gutmann et al. the ProbLog approach

19 http://alchemy.cs.washington.edu.
20 Performance on title matching is not reported by Singla and Domingos.
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obtains an AUC of 0.606 on the dataset (Gutmann et al. 2010), and as reported by Lowd
and Domingos, the results for voted perceptron algorithm (MLN VP, AUC ≈ 0.605) and the
contrastive divergence algorithm (MLN CD, AUC ≈ 0.604) are in same range as ProbLog
(Lowd and Domingos 2007). ProPPR obtains an AUC of 0.797, which outperforms the prior
results reported by ProbLog and MLN.

7 Related work

Although we have chosen here to compare mainly to MLNs (Richardson and Domingos
2006; Singla and Domingos 2006a), ProPPR represents a rather different philosophy toward
language design: rather than beginning with a highly-expressive but intractable logical core,
we begin with a limited logical inference scheme and add to it a minimal set of extensions
that allow probabilistic reasoning, while maintaining stable, efficient inference and learning.
While ProPPR is less expressive than MLNs (for instance, it is limited to definite clause
theories) it is also much more efficient. This philosophy is similar to that illustrated by
probabilistic similarity logic (PSL) (Brocheler et al. 2010); however, unlikeProPPR,PSLdoes
not include a “local” grounding procedure. Our work also aligns with the lifted personalized
PageRank (Ahmadi et al. 2011) algorithm, which can be easily incorporated as an alternative
inference algorithm in our language.

Technically, ProPPR is most similar to stochastic logic programs (SLPs) (Cussens 2001).
The key innovation is the integration of a restart into the random-walk process, which, as we
have seen, leads to very different computational properties.

ProbLog (De Raedt et al. 2007), like ProPPR, also supports approximate inference, in
a number of different variants. An extension to ProbLog also exists which uses decision
theoretic analysis to determine when approximations are acceptable (Van den Broeck et al.
2010). Although this paper does present a very limited comparison with ProbLog on the
WebKB problem (in Table 15) a further comparison of speed and utility of these different
approaches to approximate inference is an important topic for future work.

There has also been somepriorwork on reducing the cost of grounding probabilistic logics:
notably, Shavlik and Natarajan (2009) describe a preprocessing algorithm called FROG that
uses various heuristics to greatly reduce grounding size and inference cost, and Niu et al.
(2011) describe a more efficient bottom-up grounding procedure that uses an RDBMS. Other
methods that reduce grounding cost and memory usage include “lifted” inference methods
(e.g., Singla and Domingos 2008) and “lazy” inference methods (e.g., Singla and Domingos

Table 15 AUC results on the WebKb classification task. ProbLog results are from Gutmann et al. (2010),
and MLN results are from Lowd and Domingos (2007)

Co. Wi. Wa. Te. Avg.

ProbLog – – – – 0.606

MLN (VP) – – – – 0.605

MLN (CD) – – – – 0.604

MLN (CG) – – – – 0.730

ProPPR(w = 1) 0.501 0.495 0.501 0.505 0.500

ProPPR 0.785 0.779 0.795 0.828 0.797

The best results are highlighted in bold
Co. Cornell, Wi. Wisconsin, Wa.Washington, Te. Texas
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2006b); in fact, the LazySAT inference scheme for Markov networks is broadly similar
algorithmically to PageRank–Nibble–Prove, in that it incrementally extends a network in
the course of theorem-proving. However, there is no theoretical analysis of the complexity
of these methods, and experiments with FROG and LazySAT suggest that they still lead to
groundings that grow with DB size, albeit more slowly.

As noted above, ProPPR is also closely related to the PRA, learning algorithm for link
prediction (Lao and Cohen 2010). Like ProPPR, PRA uses random walk processes to define
a distribution, rather than some other forms of logical inference, such as belief propagation.
In this respect PRA and ProPPR appear to be unique among probabilistic learning methods;
however, this distinction may not be as great as it first appears, as it is known there are
close connections between personalized PageRank and traditional probabilistic inference
schemes.21 PRA is less expressive than ProPPR, as noted above. However, unlike PRA, we
do not consider here the task of searching for paths, or logic program clauses.

8 Conclusions

We described a new probabilistic first-order language which is designed with the goal of
highly efficient inference and rapid learning. ProPPR takes Prolog’s SLD theorem-proving,
extends it with a probabilistic proof procedure, and then limits this procedure further, by
including a “restart” stepwhich biases the system to short proofs. Thismeans that ProPPR has
a simple polynomial-time proof procedure, based on the well-studied personalized PageRank
(PPR) method.

Following prior work on approximate PPR algorithms, we designed a local grounding
procedure for ProPPR, based on local partitioning methods (Andersen et al. 2006, 2008),
which leads to an inference scheme that is an order of magnitude faster than the conventional
power-iteration approach to computing PPR, taking time O( 1

εα′ ), independent of database
size. This ability to “locally ground” a query also makes it possible to partition the weight
learning task into many separate gradient computations, one for each training example, lead-
ing to aweight-learningmethod that can be easily parallelized. In our current implementation,
an additional order-of-magnitude speedup in learning is made possible by parallelization. In
addition to this, ProPPR’s novel feature vector representation also extends SLP’s semantics,
and it is useful for learning to direct the proof search. Experimentally, we showed that ProPPR
performs well on an entity resolution task, and a classification task. It also performs well
on a difficult problem involving joint inference over an automatically-constructed KB, an
approach that leads to improvements over learning each predicate separately. Most impor-
tantly, ProPPR scales well, taking only a few seconds on a conventional desktop machine
to learn weights for a mutually recursive program with hundreds of clauses, which define
scores of interrelated predicates, over a substantial KB containing one million entities.

In future work, we plan to explore additional applications of, and improvements to,
ProPPR. One improvement would be to extend ProPPR to include “hard” logical predi-
cates, an extension whose semantics have been fully developed for SLPs (Cussens 2001).
Also, in the current learning process, the grounding for each query actually depends on the
ProPPR model parameters. We can potentially get improvement by making the process of
grounding more closely coupled with the process of parameter learning. Finally, we note
that further speedups in multi-threading might be obtained by incorporating newly devel-

21 For instance, it is known that personalized PageRank can be used to approximate belief propagation on
certain graphs (Cohen 2010).
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oped approaches to loosely synchronizing parameter updates for parallel machine learning
methods (Ho et al. 2013).
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