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Abstract The Projective Clustering Ensemble (PCE) problem is a recent clustering advance
aimed at combining the two powerful tools of clustering ensembles and projective cluster-
ing. PCE has been formalized as either a two-objective or a single-objective optimization
problem. Two-objective PCE has been recognized as more accurate than its single-objective
counterpart, although it is unable to jointly handle the object-based and feature-based cluster
representations.

In this paper, we push forward the current PCE research, aiming to overcome the limita-
tions of all existing PCE formulations. We propose a novel single-objective PCE formulation
so that (i) the object-based and feature-based cluster representations are jointly considered,
and (ii) the resulting optimization strategy follows a metacluster-based methodology bor-
rowed from traditional clustering ensembles. As a result, the proposed formulation features
best suitability to the PCE problem, thus guaranteeing improved effectiveness. Experiments
on benchmark datasets have shown how the proposed approach achieves better average ac-
curacy than all existing PCE methods, as well as efficiency superior to the most accurate
existing metacluster-based PCE method on larger datasets.
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1 Introduction

After more than four decades, a large number of algorithms has been developed for data
clustering, focusing on different aspects such as data types, algorithmic features, and appli-
cation targets (Gan et al. 2007). In the last few years, there has been an increasing interest
in developing advanced tools for data clustering. In this respect, projective clustering and
clustering ensembles represent two of the most important directions of research.

The goal of projective clustering (or projected clustering) (Ng et al. 2005; Yiu and
Mamoulis 2005; Achtert et al. 2006; Domeniconi et al. 2007; Moise et al. 2008) is to dis-
cover projective clusters, i.e., subsets of the input data having different (possibly overlap-
ping) subsets of features (subspaces) associated with them. Projective clustering is closely
related to the subspace clustering problem (Agrawal et al. 1998; Parsons et al. 2004; Kriegel
et al. 2009; Moise et al. 2009), as both detect clusters that exist in different subspaces; how-
ever, the goal of subspace clustering is to search for all clusters in all meaningful subspaces,
whereas projective clustering methods output a single partition of the input dataset. Projec-
tive clustering aims to solve issues that typically arise in high-dimensional data, such as spar-
sity and concentration of distances (Beyer et al. 1999; Hinneburg et al. 2000; Tomasev et al.
2011). Existing projective clustering methods (Kriegel et al. 2009; Moise et al. 2009) can be
classified into four main approaches: bottom-up (it finds subspaces recognized as “interest-
ing” and assigns each data object to the most similar subspace, Moise et al. 2008; Sequeira
and Zaki 2004), top-down (it finds the subspaces starting from the full feature space, Ng
et al. 2005; Liu et al. 2000; Yip et al. 2004, 2005; Achtert et al. 2006; Aggarwal et al. 1999;
Woo et al. 2004; Böhm et al. 2004), soft (it produces soft data clusterings, Moise et al. 2008;
Chen et al. 2008, and/or clusterings having differently weighted feature-to-cluster assign-
ments, Domeniconi et al. 2007; Chen et al. 2008), and hybrid (it combines elements of both
projective and subspace clustering approaches, Procopiuc et al. 2002; Achtert et al. 2007;
Kriegel et al. 2005).

The problem of clustering ensembles (Strehl and Ghosh 2002; Topchy et al. 2005;
Domeniconi and Al-Razgan 2009; Ghosh and Acharya 2011), also known as consensus clus-
tering (Nguyen and Caruana 2007) or aggregation clustering (Gionis et al. 2007), is stated
as follows: given a set of clustering solutions, or ensemble, to derive a consensus cluster-
ing that properly summarizes the solutions in the ensemble. The input ensemble is typically
generated by varying one or more aspects of the clustering process, such as the clustering
algorithm, the parameter setting, and the number of features, objects or clusters. The ma-
jority of the existing clustering ensemble methods follow the instance-based approach or
the metacluster-based approach, or a combination of both (i.e., hybrid). In particular, the
metacluster-based approach lies in the principle “to cluster clusters” (Bradley and Fayyad
1998; Strehl and Ghosh 2002; Boulis and Ostendorf 2004), whereby a new dataset is in-
ferred whose objects are the clusters that belong to the clustering solutions in the ensemble.
This dataset is then partitioned in order to produce a set of metaclusters (i.e., sets of clus-
ters), and the consensus clustering is finally computed by assigning each data object to the
metacluster that optimizes a specific criterion (e.g., majority voting).

Projective clustering and clustering ensembles have been recently treated in a unified
framework (Gullo et al. 2009, 2013). The underlying motivation of that study is that many
real-world application problems are high dimensional and lack a-priori knowledge. Exam-
ples are: clustering of multi-view data, privacy preserving clustering, news or document re-
trieval based on pre-defined categorizations, and distributed clustering of high-dimensional
data. To address both issues simultaneously, the problem of projective clustering ensembles
(PCE) is hence formalized, whose goal is to compute a projective consensus clustering from
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Fig. 1 Illustration of a projective clustering ensemble and derived consensus clustering. Each gradient refers
to the cluster memberships over all objects. Colors denote different feature subspaces associated with the
projective clusters. (The color version of this figure is available only in the electronic edition)

an ensemble of projective clustering solutions. Intuitively, each projective cluster is char-
acterized by a distribution of memberships of the objects as well as a distribution over the
features that belong to the subspace of that cluster. Figure 1 illustrates a projective clustering
ensemble with three projective clustering solutions, which are obtained according to differ-
ent views over the same dataset. A projective cluster is graphically represented as a rectangle
filled with a color gradient, where higher intensities correspond to larger membership val-
ues of objects to the cluster. Clusters of the same clustering may overlap with their gradient
(i.e., objects can have multiple assignments with different degrees of membership), and col-
ors change to denote that different groupings of objects are associated with different feature
subspaces. In the figure, a projective consensus clustering is derived by suitably “aggregat-
ing” the ensemble members. In particular, the first projective consensus cluster is derived
by summarizing C ′

1, C ′′
2 , and C ′′′

2 , the second is derived from C ′
2, C ′′

3 , and C ′′′
3 , and the third

is derived from C ′
4, C ′′

1 , and C ′′′
1 . Note that the resulting color in each projective consensus

cluster resembles a merge of colors in the original projective clusters, which means that a
projective consensus cluster is associated with a subset of features shared by the objects in
the original clusters.

Two formulations of PCE have been proposed in Gullo et al. (2013), namely two-
objective PCE and single-objective PCE. The former consists in the optimization of two
objective functions, which separately consider the data object clustering and the feature-to-
cluster assignment. The latter embeds in one objective function the object-based and feature-
based representations of the various clusters. A heuristic developed for two-objective PCE,
called MOEA-PCE, has shown to be particularly accurate, although it has drawbacks con-
cerning efficiency, parameter setting, and interpretability of results. In contrast, the heuristic
developed for single-objective PCE, called EM-PCE, has shown better efficiency while be-
ing outperformed by two-objective PCE in terms of effectiveness. An attempt to improve the
accuracy of single-objective PCE has been proposed in Gullo et al. (2010); the approach is
based on a corrective term designed to achieve a better balance between the object-to-cluster
assignment and the feature-to-cluster assignment when measuring the error of a candidate
projective consensus clustering. Despite the achieved improvement in accuracy, the heuris-
tics in Gullo et al. (2010) are still outperformed by two-objective PCE, thus suggesting that
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the path indicated by the two-objective formulation is the one to be followed. Neverthe-
less, the two-objective PCE suffers from a major weakness: it does not take into considera-
tion the interrelation between the object-based and the feature-based cluster representations.
In a nutshell, according to the early two-objective PCE formulation, consensus clusterings
whose clusters have both object-based and feature-based representations that well comply
with the input ensemble but that are not correctly “coupled” with one another might mistak-
enly be recognized as ideal. This fact can lead to projective consensus clustering solutions
that contain conceptual flaws in their cluster composition. By preventing this scenario, one
can improve the two-objective PCE formulation and corresponding methods.

Contributions In this paper, we pursue a new approach to the study of PCE, which is mo-
tivated by our insights on the theoretical foundations of two-objective and single-objective
PCE formulations. Our aim is to provide a stronger tie between the PCE and the tradi-
tional clustering ensemble problem. By investigating the opportunity of adapting existing
approaches for clustering ensembles to the PCE problem, we propose a new single-objective
formulation of PCE which resembles a metacluster-based clustering ensemble approach and
extends our first attempt in this regard (Gullo et al. 2011). The key idea underlying our pro-
posal is to define a function that measures the distance of a projective clustering solution
from a given ensemble, in such a way that the object-based and the feature-based cluster
representations are considered as a whole. We show that the new PCE formulation is the-
oretically sound and has advantages over the ones proposed previously (Gullo et al. 2011,
2013). It enables the development of heuristic algorithms that can exploit the results obtained
by the majority of existing clustering ensemble methods. Specifically, we define a heuristic
that follows a metacluster-based approach, called Enhanced MetaCluster-Based Projective
Clustering Ensembles (E-CB-PCE), which computes the consensus clustering starting from
a partition (i.e., metaclustering) inferred from the set of clusters belonging to the ensemble
components. Compared to the previously developed metacluster-based heuristics in Gullo
et al. (2011), E-CB-PCE involves more constraints aimed to ensure a total coverage of the
ensemble components in terms of clusters selected for deriving the projective consensus
clustering solution. Experimental results have revealed that the proposed E-CB-PCE is on
average more accurate than all previous PCE methods, according to each of the selected
assessment criteria. Moreover, E-CB-PCE has shown to improve the efficiency of its most
direct competitor CB-PCE (Gullo et al. 2011) on larger datasets up to two orders of magni-
tude.

Organization of the paper The remainder of this paper is organized as follows. Sec-
tion 2 provides the background on the PCE problem and its early single-objective and two-
objective formulations. Section 3 focuses on the proposed metacluster-based PCE approach.
Section 4 presents the two developed heuristics for the metacluster-based PCE along with an
analysis of their computational complexity. Section 5 describes the experimental evaluation
and presents the results, and Sect. 6 concludes the paper. Finally, we give the proofs of all
the theoretical results of the paper in the Appendix.

2 Early Projective Clustering Ensembles (PCE)

Let D be a set of data objects, where each o ∈ D is an |F |-dimensional point defined over a
feature space F .1 A projective cluster C defined over D is a pair 〈�C,�C〉, where

1Vectorial notation here denotes row vectors.
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– �C denotes the object-based representation of C. It is a |D|-dimensional real-valued vec-
tor whose components ΓC,o ∈ [0,1], ∀o ∈ D, represent the object-to-cluster assignment
of o to C, i.e., the probability Pr(o|C) that the object o belongs to C;

– �C denotes the feature-based representation of C. It is an |F |-dimensional real-valued
vector whose components ΔC,f ∈ [0,1], ∀f ∈ F , represent the feature-to-cluster assign-
ments of the f -th feature to C, i.e., the probability Pr(f |C) that the feature f is informa-
tive for cluster C (f belongs to the subspace associated with C).

The object-based (�C ) and the feature-based (�C ) representations of a projective cluster
C implicitly define the projective cluster representation matrix (for short, projective matrix)
XC of C. XC is a |D|× |F | matrix that stores, ∀o ∈ D, f ∈ F , the probability of the intersec-
tion of the events “object o belongs to C” and “feature f belongs to the subspace associated
with C”. Under the assumption of independence between the two events, such a probability
is equal to Pr(C|o) = ΓC,o joint with Pr(f |C) = ΔC,f . Hence, given D = {o1, . . . ,o|D|} and
F = {1, . . . , |F |}, the matrix XC can formally be defined as:

XC = Γ T
C �C =

⎛
⎜⎝

ΓC,o1 × ΔC,1 . . . ΓC,o1 × ΔC,|F |
...

...

ΓC,o|D| × ΔC,1 . . . ΓC,o|D| × ΔC,|F |

⎞
⎟⎠ . (1)

A couple of interesting results put in relation the projective matrix and the object/feature-
based representation of a projective cluster. Such results are formalized in the following two
propositions. We will exploit them in the remainder of the paper.

Proposition 1 For any two projective clusters C, C ′ it holds that XC = XC′ if and only if
�C = �C′ and �C = �C′ .

Proposition 2 For any projective cluster C, its object-based representation �C = (ΓC,o1 ,

. . . ,ΓC,o|D|) and feature-based representation �C = (ΔC,1, . . . ,ΔC,|F |) can uniquely be de-
rived from its projective matrix XC as follows:

ΓC,oi
=

|F |∑
j=1

XC(i, j), ΔC,j = XC(1, j)

ΓC,o1

= · · · = XC(|D|, j)

ΓC,oD

,

where XC(i, j) denotes the element (i, j) of the matrix XC .

A projective clustering solution, denoted by C , is defined as a set of projective clusters that
satisfy the following conditions:

∑
C∈C

ΓC,o = 1, ∀o ∈ D, and
∑
f ∈F

ΔC,f = 1, ∀C ∈ C. (2)

The semantics of any projective clustering C is that for each projective cluster C ∈ C , the
objects belonging to C are close to each other if (and only if) they are projected onto the
subspace associated with C.

A projective ensemble E is defined as a set of projective clustering solutions. No in-
formation about the ensemble generation strategy (algorithms and/or setups), nor original
feature values of the objects within D are provided along with E . Moreover, each projective
clustering solution in E may contain in general a different number of clusters.

The goal of PCE is to derive a projective consensus clustering that properly summarizes
the projective clustering solutions within the input projective ensemble.
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2.1 Single-objective PCE

A first PCE formulation proposed in Gullo et al. (2013) is based on a single-objective func-
tion:

C∗ = arg min
C

∑
C∈C

∑
o∈D

Γ α
C,oXC,o, (3)

where

XC,o =
∑
f ∈F

(ΔC,f − Λo,f )2, (4)

Λo,f = 1

|E |
∑

Ĉ∈E

∑

Ĉ∈Ĉ

ΓĈ,oΔĈ,f , (5)

and α > 1 is a positive integer that ensures non-linearity of the objective function w.r.t. ΓC,o.
To solve the optimization problem based on the above function, the EM-based Projective
Clustering Ensembles (EM-PCE) heuristic is defined. EM-PCE iteratively looks for the op-
timal values of ΓC,o (resp. ΔC,f ) while keeping ΔC,f (resp. ΓC,o) fixed, until convergence.

Weaknesses of single-objective PCE The objective function at the basis of the problem
in (3) does not allow for a perfect balance between object- and feature-to-cluster assign-
ments when measuring the error of a candidate projective consensus clustering solution.
This weakness is formally shown in Gullo et al. (2010) and avoided by adjusting (3) with a
corrective term. The final form of the problem based on the corrected objective function is
the following:

C∗ = arg min
C

∑
C∈C

∑
o∈D

Γ α
C,o

(
1

2|E |XC,o + 1

|D| − 1
X′

C,o

)
, (6)

where

X′
C,o =

∑
o′ �=o

(
1 − ΓC,o′

|E |
∑

Ĉ∈E

∑

Ĉ∈Ĉ

ΓĈ,oΓĈ,o′

)
.

The above optimization problem is tackled in Gullo et al. (2010) by proposing two differ-
ent heuristics. The first one, called E-EM-PCE, follows the same scheme as the EM-PCE
algorithm for the early single-objective PCE formulation. The second heuristic, called E-
2S-PCE, consists of two sequential steps that handle the object-to-cluster and the feature-
to-cluster assignments separately.

2.2 Two-objective PCE

PCE is also formulated in Gullo et al. (2013) as a two-objective optimization problem,
whose functions take into account the object-based (function Ψo) and the feature-based
(function Ψf ) cluster representations of a given projective ensemble E , respectively:

C∗ = arg min
C

{
Ψo(C, E ),Ψf (C, E )

}
, (7)
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where the arg min function is over all possible projective clustering solutions C that satisfy
the conditions reported in (2) (this makes the searching space in principle infinite), and

Ψo(C, E ) =
∑

Ĉ∈E

ψo(C, Ĉ), Ψf (C, E ) =
∑

Ĉ∈E

ψf (C, Ĉ). (8)

Functions ψo and ψf are defined as ψo(C′, C′′) = 1
2 (ψo(C′, C′′)+ψo(C′′, C′)) and ψf (C′, C′′)

= 1
2 (ψf (C′, C′′) + ψf (C′′, C′)), respectively, where

ψo

(
C′, C′′) = 1

|C′|
∑
C′∈C′

(
1 − max

C′′∈C′′ J (�C′ ,�C′′)
)
,

ψf

(
C′, C′′) = 1

|C′|
∑
C′∈C′

(
1 − max

C′′∈C′′ J (�C′ ,�C′′)
)
,

and J (u,v) = (uvT)/(‖u‖2
2 + ‖v‖2

2 − uvT) ∈ [0,1] denotes the extended Jaccard similarity
coefficient (also known as Tanimoto coefficient) between any two real-valued vectors u and
v (Strehl et al. 2000).

The problem defined in (7) is solved by a heuristic, called MOEA-PCE, in which a
Pareto-based Multi-Objective Evolutionary Algorithm is exploited to avoid combining the
two objective functions into a single one.

Weaknesses of two-objective PCE Experimental evidence in Gullo et al. (2013) has shown
that the two-objective PCE formulation is much more accurate than the single-objective
counterpart. Nevertheless, the original two-objective PCE also suffers from an important
conceptual issue which has been firstly identified in Gullo et al. (2011), and we further
investigate in this paper. The existence of this issue proves that the accuracy of two-objective
PCE can still be improved, which is a major goal of this work. We unveil this issue in the
following example.

Example 1 Let E be a projective ensemble defined over a set D of data objects and a set F of
features. Suppose that E contains only one projective clustering solution C and that C in turn
contains two projective clusters C ′ and C ′′, whose object- and feature-based representations
are different from one another, i.e., ∃o ∈ D s.t. ΓC′,o �= ΓC′′,o, and ∃f ∈ F s.t. ΔC′,f �= ΔC′′,f .

Let us consider two candidate projective consensus clusterings C1 = {C ′
1,C

′′
1 } and C2 =

{C ′
2,C

′′
2 }. We assume that C1 = C , whereas C2 is defined as follows. Cluster C ′

2 has object-
and feature-based representations given by �C′ (i.e., the object-based representation of the
first cluster C ′ within C ) and �C′′ (i.e., the feature-based representation of the second cluster
C ′′ within C ), respectively; cluster C ′′

2 has object- and feature-based representations given by
�C′′ (i.e., the object-based representation of the second cluster C ′′ within C ) and �C′ (i.e.,
the feature-based representation of the first cluster C ′ within C ), respectively. According to
(8), it is easy to see that:

Ψo(C1, E ) = Ψo(C2, E ) = 0, and Ψf (C1, E ) = Ψf (C2, E ) = 0.

Thus, both candidates C1 and C2 minimize the objectives of the early two-objective PCE
formulation reported in (7), and hence, they are both recognized as optimal solutions. This
conclusion is conceptually wrong, because only C1 should be recognized as an optimal solu-
tion, since only C1 exactly corresponds to the unique solution of the ensemble. Conversely,
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C2 is not well-representative of the ensemble E , as the object- and the feature-based repre-
sentations of its clusters are inversely associated to each other w.r.t. the associations in C .
Indeed, in C2, C ′

1 = 〈�C′ ,�C′′ 〉 and C ′′
1 = 〈�C′′ ,�C′ 〉, whereas, the solution C ∈ E is such

that C ′ = 〈�C′ ,�C′ 〉 and C ′′ = 〈�C′′ ,�C′′ 〉.

The issue described in the above example arises because the two-objective PCE formu-
lation ignores that the object-based and the feature-based representations of a projective
cluster are strictly coupled to one another and, therefore, they need to be considered as a
whole. In other words, in order to effectively evaluate the quality of a candidate projective
consensus clustering, detecting the correct object-based and feature-based representations
of the various clusters in a standalone fashion is not enough; instead, a mapping between
the two (i.e., which object-based representation a feature-based representation should be
coupled with and vice versa) should be properly discovered as well. For this purpose, the
objective functions Ψo and Ψf should not be kept separated, but they should somehow be
put in relation to one another. We show next how this can be overcome by employing a
metacluster-based PCE formulation.

3 Metacluster-based PCE

3.1 Early metacluster-based PCE formulation

In our previous work (Gullo et al. 2011), we attempted to solve the main drawback of two-
objective PCE shown in Example 1 by proposing the following alternative formulation based
on a single-objective function:

C∗ = arg min
C

Ψof (C, E ), (9)

where Ψof is a function designed to measure the “distance” of any well-defined projective
clustering solution C from E in terms of both data clustering and feature-to-cluster assign-
ment. To define Ψof , we resorted to the early two-objective PCE formulation and adapted
the (asymmetric) measure therein involved to the new setting:

Ψof (C, E ) =
∑

Ĉ∈E

ψof (C, Ĉ), (10)

where

ψof

(
C′, C′′) = 1

2

(
ψof

(
C′, C′′) + ψof

(
C′′, C′)), (11)

and

ψof

(
C′, C′′) = 1

|C′|
∑
C′∈C′

(
1 − max

C′′∈C′′ Ĵ (XC′ ,XC′′)
)
. (12)

In order to measure the similarity between any pair C ′,C ′′ of projective clusters jointly in
terms of object-based representation and feature-based representation, the corresponding
projective matrices XC′ and XC′′ are compared to each other. To accomplish this, the two
matrices are first linearized as mono-dimensional vectors, and then compared by means of
some distance measure between real-valued vectors. We resorted to the Tanimoto similarity
coefficient (also known as extended Jaccard coefficient), as it represents a trade-off solution
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between Euclidean and Cosine measures in terms of scale/translation invariance (Strehl et al.
2000). Moreover, it has a fixed-range codomain ([0,1]), which is a desirable property in the
design of the proposed objective function. More precisely, the generalized definition of the
Tanimoto coefficient operating on real-valued matrices is as follows:

Ĵ (X, X̂) =
∑|rows(X)|

i=1 XiX̂T
i

‖X‖2
2 + ‖X̂‖2

2 − ∑|rows(X)|
i=1 XiX̂T

i

, (13)

where XiX̂T
i denotes the scalar product between the i-th rows of matrices X and X̂.

It is easy to note that the PCE formulation reported in (9) is well-suited to measure the
quality of a candidate consensus clustering in terms of both object-to-cluster and feature-to-
cluster assignments as a whole. As shown in Gullo et al. (2011), this allows for overcoming
the conceptual disadvantages of both early single-objective and two-objective PCE. Partic-
ularly, the issue described in Example 1 does not arise anymore with the PCE formulation
in (9). Indeed, considering again the two candidate projective consensus clusterings C1 and
C2 of Example 1, it is straightforward to see that:

Ψof (C1, E ) = 0, and Ψof (C2, E ) > 0.

and hence, C1 would be correctly recognized as an optimal solution, whereas C2 would not.

Weaknesses of early metacluster-based PCE formulation Although the early metacluster-
based PCE formulation in (9) mitigates the issues of two-objective PCE, we will show how
to further improve that formulation. For this purpose, next we provide a detailed analysis
of the theoretical properties of the formulation in (9), with the ultimate goal of defining an
enhanced metacluster-based PCE formulation that discards the controversial aspects of the
earlier formulation.

Let us denote the expression 1 − Ĵ (XC′ ,XC′′) with T (XC′ ,XC′′) or, more simply,
T (C ′,C ′′), for any two clusters C ′, C ′′. Since Ĵ ∈ [0,1], T (·, ·) is regarded as Tanimoto
distance (Gullo et al. 2011). Combining (10), (11), and (12), we have that:

Ψof (C, E ) =
∑

Ĉ∈E

ψof (C, Ĉ)

=
∑

Ĉ∈E

1

2

(
1

|C|
∑
C∈C

(
1 − max

Ĉ∈Ĉ
Ĵ (XC,XĈ )

)
+ 1

|Ĉ|
∑

Ĉ∈Ĉ

(
1 − max

C∈C
Ĵ (XĈ ,XC)

))
.

By discarding the constant terms and observing that

1 − max
C∈C

Ĵ (XC,XĈ ) = min
C∈C

(
1 − Ĵ (XC,XĈ )

) = min
C∈C

T (C, Ĉ),

we can rewrite Ψof as:

Ψof (C, E ) =
∑

Ĉ∈E

∑

Ĉ∈Ĉ

min
C∈C

T (C, Ĉ)

︸ ︷︷ ︸
Ψ ′

of (C,E)

+
∑
C∈C

∑

Ĉ∈E

min
Ĉ∈Ĉ

T (C, Ĉ)

︸ ︷︷ ︸
Ψ ′′

of (C,E)

. (14)

Thus, the objective function Ψof corresponds to a sum of two objective functions Ψ ′
of and

Ψ ′′
of , which are the focus of the following discussion. Let us introduce the variable x(Ĉ,C) ∈
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Fig. 2 (a) A projective ensemble where, for each projective cluster, different projective matrix representa-
tions are depicted with different color shades, (b) optimal projective consensus clustering according to the Ψ ′

of
objective function, (c) expected projective consensus clustering. (The color version of this figure is available
only in the electronic edition)

{0,1}, which is 1 if cluster Ĉ, belonging to any projective clustering solution within the
ensemble E , is “mapped” to the cluster C of the candidate projective consensus clustering
C , and 0 otherwise. The meaning of the “mapping” between clusters is clarified next.

Explaining the Ψ ′
of function The Ψ ′

of function models a modified version of the K-Means
problem (Jain and Dubes 1988), where (i) the input dataset for the clustering task corre-
sponds to the set of projective clusters belonging to all solutions in the ensemble E , i.e.,
the set {Ĉ | Ĉ ∈ Ĉ, Ĉ ∈ E }, (ii) each “object” in such a dataset is hence a projective cluster
represented by its projective matrix, (iii) the centers have the form of projective matrices
satisfying the constraints defined in (2), and (iv) the distance between objects and centers
is computed according to the Tanimoto distance T (·, ·), rather than the classic squared Eu-
clidean distance. Formally, the Ψ ′

of function models the following optimization problem:

C∗ = arg min
C

∑
C∈C

∑

Ĉ∈E

∑

Ĉ∈Ĉ

x(Ĉ,C)T (Ĉ,C) (15)

s.t. C satisfies (2),

x(Ĉ,C) ∈ {0,1}, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, ∀C ∈ C,
∑
C∈C

x(Ĉ,C) = 1, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ. (16)

Due to the analogies with K-Means, it is easy to see that the solution for the above problem is
a set of K “center” projective matrices (representing the various clusters in the optimal C∗)
that minimize the sum of the Tanimoto distances between each projective cluster in the
ensemble and its closest center. In the following example we show that such a problem
might not be particularly appropriate in the context of PCE.

Example 2 Figure 2(a) shows an ensemble composed by three projective clustering solu-
tions. Projective clusters in each solution are depicted as colored rectangles whose color
shade corresponds to a certain representation provided by its corresponding projective ma-
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trix. Similar shades denote similar projective matrices, and, therefore, similar clusters.2 In
this example, the clusters within the same projective clustering solution are highly similar
to each other, and are highly dissimilar from the clusters of the other solutions. Assuming
K = 3 clusters in the output projective consensus clustering, the optimal partition of the
ensemble of Fig. 2(a) according to the problem defined in (15)–(16) would correspond to
the one identified by the solutions in the ensemble themselves. This leads to the optimal
consensus clustering reported in Fig. 2(b), whose clusters C1, C2, and C3 take the colors
red, green, and blue as a result of the summarization of the sets {C ′

1,C
′
2,C

′
3}, {C ′′

1 ,C ′′
2 ,C ′′

3 },
{C ′′′

1 ,C ′′′
2 ,C ′′′

3 }, respectively. This solution is actually not very intuitive for PCE, since a good
projective consensus clustering is supposed to summarize the information available from the
ensemble by putting in relation clusters that belong to different solutions of the ensemble.
Therefore, it would be much more meaningful if a consensus clustering would have the form
reported in Fig. 2(c), whose grey-shaded clusters C∗

1 , C∗
2 , and C∗

3 derive from mixing the red,
green, and blue colors of the sets {C ′

1,C
′′
1 ,C ′′′

1 }, {C ′
2,C

′′
2 ,C ′′′

2 }, {C ′
3,C

′′
3 ,C ′′′

3 }, respectively.

Explaining the Ψ ′′
of function The optimization problem defined by the Ψ ′′

of function in (14)
can be rewritten as follows:

C∗ = arg min
C

∑
C∈C

∑

Ĉ∈E

∑

Ĉ∈Ĉ

x(Ĉ,C)T (Ĉ,C) (17)

s.t. C satisfies (2),

x(Ĉ,C) ∈ {0,1}, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, ∀C ∈ C,
∑

Ĉ∈Ĉ

x(Ĉ,C) = 1, ∀Ĉ ∈ E , ∀C ∈ C. (18)

Let us informally explain what is given above. Consider first the case where the number
K of clusters in the output consensus clustering is equal to 1 and consider all subsets C of
{Ĉ | Ĉ ∈ C, C ∈ E } that satisfy the following condition: each solution within the ensemble
E has exactly one cluster in C; also, for each C, let XC denote the projective matrix that
(i) satisfies (2), and (ii) minimizes the sum dC of the Tanimoto distances between itself and
(the projective matrices of) all members of C. The problem defined by Ψ ′′

of (for K = 1)
aims to find a matrix X∗

C such that dC is minimum; the final output would be a projective
clustering C∗ composed by only one cluster whose projective matrix corresponds to the
matrix X∗

C. This interpretation can easily be generalized to the case K > 1; indeed, in this
case, all K optimal solution matrices (i.e., projective clusters in C∗) would necessarily have
the same form, as formally stated in the next proposition.

Proposition 3 Given a projective ensemble E , let Υ denote the set of all clusterings ob-
tained by taking exactly one cluster from each ensemble member, i.e., Υ = {C | C ⊆ {Ĉ | Ĉ ∈
Ĉ ∧ Ĉ ∈ E }∧ |Ĉ ∩C| = 1,∀Ĉ ∈ E }. Moreover, let X∗ = arg minX̂ minC∈Υ

∑
C∈C T (X̂,XC) s.t.

X̂ satisfies (2). Given an integer K ≥ 1, it holds that the optimal projective consensus
clustering for the optimization problem defined in (17)–(18) is C∗ = {C∗

1 , . . . ,C∗
K} s.t.

XC∗
1
= · · · = XC∗

K
= X∗.

2The meaning of the colors here is different from Fig. 1, where different colors and gradients refer to the
distinct parts of the two-fold projective cluster representation, i.e., the feature-to-cluster assignment and the
object-to-cluster assignment, respectively. Here, instead, we focus on the unified view of the representation
provided by the projective matrix.
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Fig. 3 (a) A projective ensemble where, for each projective cluster, different projective matrix representa-
tions are depicted with different color shades, (b) optimal projective consensus clustering according to the Ψ ′′

of
objective function, (c) expected projective consensus clustering. (The color version of this figure is available
only in the electronic edition)

The above result provides a clearer explanation of the optimization problem based on the
objective function Ψ ′′

of . Some issues that may arise with Ψ ′′
of are discussed in the following

example.

Example 3 The ensemble illustrated in Fig. 3(a) contains three projective clustering so-
lutions whose clusters are very different from each other (different color shades), but are
similar to some clusters from other solutions in the ensemble. In particular, C ′

1, C ′′
1 , C ′′′

1 are
exactly the same (red shade), and the other groups of similar clusters are C ′

2, C ′′
2 , C ′′′

2 (green
shade), and C ′

3, C ′′
3 , C ′′′

3 (blue shade). According to Proposition 3, the optimal solution for
the optimization problem based on Ψ ′′

of with K = 3 is the one depicted in Fig. 3(b), as the
clusters in the red-shaded group are more similar to each other than the green-shaded and
blue-shaded groups. This solution is conceptually far away from the ideal one reported in
Fig. 3(c), which is expected to be composed by three different clusters, each one summariz-
ing a group of clusters with different shades.

3.2 Enhanced metacluster-based PCE formulation

We have discussed above the limitations due to the treatment of the functions Ψ ′
of and Ψ ′′

of
as separate (Gullo et al. 2011). Combining Ψ ′

of and Ψ ′′
of into a single function somehow

mitigates their respective undesired effects. Nevertheless, it is hard to understand to which
extent each one of the two objective functions really contributes to hide the weaknesses of
the other. Hence, it is more appropriate to have a problem formulation based on a single ob-
jective function which does not suffer from either of the drawbacks illustrated in Examples 2
and 3. We achieve this goal by proposing a modified metacluster-based PCE formulation,
whose details are discussed next.

Let us first consider again the issue due to the function Ψ ′
of described in Example 2. We

recall that a major problem in this case is that the summarization provided by the clusters
in the optimal consensus clustering might put in relation clusters from the same solutions
in the ensemble, rather than coupling clusters from different ensemble components. It can
be noted that this arises because the mappings of the various clusters in the ensemble to the
center matrices are unconstrained (cf. the formal definition of the problem in (15)–(16)).
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The issue can be overcome by defining such mappings so to guarantee that each center is
associated with (at least) one cluster from each different solution in the ensemble. These
constraints actually correspond to those defined in (18), which is indeed the optimization
problem based on function Ψ ′′

of .
Focusing now on the function Ψ ′′

of , a possible solution to the issue described in Example 3
is to constrain the clusters forming the output projective consensus clustering to be different
from each other. Alternatively, one can observe that the issue of Example 3 is mainly due
to the fact that not all clusters in the ensemble are required to be mapped to a cluster of
the projective consensus clustering. Based on this consideration, we can fix such an issue
by resorting to some constraints of the problem based on the other function Ψ ′

of , particu-
larly the constraints listed in (16). Thus, in conclusion, the constraints reported in (16) and
(18) represent a solution to the issues pertaining the functions Ψ ′

of and Ψ ′′
of , respectively. As

such, we define our enhanced metacluster-based PCE formulation by involving both these
constraints. We hereinafter refer to this problem as CB-PCE ENHANCED.

Problem 1 (CB-PCE enhanced) Given a projective ensemble E defined over a set D of
objects and a set F of features, and an integer K > 0, find a projective clustering solution
C∗ such that |C∗| = K and:

C∗ = arg min
C

∑
C∈C

∑

Ĉ∈E

∑

Ĉ∈Ĉ

x(Ĉ,C)T (Ĉ,C) (19)

s.t. C satisfies (2),

x(Ĉ,C) ∈ {0,1}, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, ∀C ∈ C,
∑
C∈C

x(Ĉ,C) ≥ 1, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ, (20)

∑

Ĉ∈Ĉ

x(Ĉ,C) ≥ 1, ∀Ĉ ∈ E , ∀C ∈ C. (21)

Note that the constraints (20) and (21) have been slightly modified w.r.t. the original ones in
(16) and (18), in order to handle the cases where the number of clusters of some ensemble
solutions is smaller or larger than the number of clusters in the output consensus clustering.
In summary, the constraints in (20) force each cluster Ĉ of the ensemble to be mapped to at
least one cluster in the candidate projective consensus clustering C , while the constraints in
(21) ensure that each cluster C ∈ C is coupled with at least one cluster from each ensemble
solution Ĉ .

4 Heuristics for CB-PCE enhanced

The CB-PCE ENHANCED problem can formally be shown to be NP-hard. The detailed
proof, which is reported in the Appendix, is based on a reduction from the JACCARD ME-
DIAN problem (Chierichetti et al. 2010). This reduction shows that CB-PCE ENHANCED

remains hard even on a restricted version of the problem where the input dataset is a single-
ton and the number of clusters in both the output projective consensus clustering and each
ensemble solution is 1.

Lemma 1 Let CB-PCE RESTRICTED be a special version of the CB-PCE ENHANCED

problem where (i) |D| = 1, (ii) K = 1 (K denotes the number of clusters in the output
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Algorithm 1 CB-PCE

Input: a projective ensemble E ; the number K of clusters in the output projective consensus clustering.
Output: the projective consensus clustering C∗.

1: P ← pairwiseClusterDistances(E )

2: M ← metaclusters(E ,P,K)

3: C∗ ← ∅
4: for all M ∈ M do
5: compute �∗

M according to Theorem 2

6: compute �∗
M according to Theorem 3

7: C∗ ← C∗ ∪ {〈�M,�M〉}
8: end for

projective consensus clustering), (iii) |Ĉ| = 1, ∀Ĉ ∈ E , (iv) n(�Ĉ ) = n(�Ĉ′) = nE , ∀Ĉ, Ĉ ′,
where n(�Ĉ ) = ∑

f ∈F I[ΔĈ,f > 0], and (v) ΔĈ,f = 1
nE

, ∀f ∈ F , ∀Ĉ ∈ Ĉ , ∀Ĉ ∈ E . CB-PCE
RESTRICTED is NP-hard.

Theorem 1 CB-PCE ENHANCED is NP-hard.

The above results prompted us to develop heuristics for approximating CB-PCE EN-
HANCED. In this respect, consider the formulation of CB-PCE ENHANCED reported in
(19)–(21) and suppose that, for any input ensemble E , the optimal mappings between the
clusters Ĉ within E and the clusters C of the output projective consensus partition are avail-
able, i.e., suppose we know in advance the optimal x(Ĉ,C) values, ∀Ĉ ∈ E , ∀Ĉ ∈ Ĉ , ∀C ∈ C .
Within this view, a metacluster might be derived for each C ∈ C that contains all clusters Ĉ

in the ensemble that are mapped to C (i.e., such that x(Ĉ,C) = 1). In this way, the optimum
for CB-PCE ENHANCED would be found by computing, for each metacluster, the projec-
tive matrix that minimizes the sum of the distances from all members of that metacluster
under the constraints in (2). Unfortunately, neither the optimal x(Ĉ,C) mappings can be
known in advance as they are part of the optimization process, nor the computation of the
optimal projective matrices given an optimal mapping is feasible, as it is easy to observe
from Lemma 1 that even this subproblem is NP-hard.

Nevertheless, the above reasoning interestingly reveals that CB-PCE ENHANCED can
conceptually be split into two different sub-problems: the first one concerning the mapping
of the clusters within the ensemble to the clusters in the output projective consensus cluster-
ing, and the second one consisting in finding optimal projective matrices given that mapping.
To tackle these sub-problems, we improve upon the CB-PCE heuristic originally introduced
in Gullo et al. (2011), as it still complies with the two-step nature of CB-PCE ENHANCED.

4.1 The CB-PCE heuristic

Algorithm 1 sketches the CB-PCE heuristic defined in Gullo et al. (2011). For clarity of
presentation, the following symbols are used in addition to the notation provided in Sect. 2:
M denotes a set of metaclusters (i.e., a set of sets of clusters), M ∈ M denotes a metaclus-
ter (i.e., a set of clusters), and M ∈ M denotes a cluster (i.e., a set of data objects). The
mapping of clusters in the ensemble to clusters in the output projective consensus cluster-
ing is approximated in CB-PCE by exploiting a basic idea in traditional metacluster-based
clustering ensembles, namely grouping all clusters in the ensemble in order to form a set of
metaclusters (cf. Sect. 2). This is achieved by invoking the function metaclusters (Line 2),
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which aims to cluster the set of clusters from all solutions within the input ensemble E . This
function exploits the matrix P of pairwise distances between all clusters in E (Line 1), which
are computed using the Tanimoto distance defined in (13).

The second conceptual step of the CB-PCE ENHANCED problem consists in finding a
suitable projective matrix representation for each cluster in the output consensus clustering,
given the various metaclusters (Lines 4–8). As shown above, the ideal solution concerning
the direct optimization of the sum of the Tanimoto distances is NP-hard. Therefore the idea
underlying CB-PCE is to derive projective matrices by focusing on the optimization of a
different criterion which is easier to solve and well-suited to find reasonable and effective
approximations. Specifically, the solution provided by CB-PCE is to adapt the widely used
majority voting (Strehl and Ghosh 2002) to the context at hand.

Deriving projective matrices from metaclusters For each metacluster we derive a projec-
tive matrix that optimizes the majority voting criterion. This is sufficient to obtain an ap-
proximation of the solution of the problem, since deriving the corresponding object- and
feature-based cluster representations given a projective matrix can be performed easily by
using Proposition 2. However, due to the use of the majority voting criterion, it is possi-
ble to derive object- and feature-based representation vectors directly, without requiring the
computation of the projective matrix.

The object- and feature-based representations of each projective cluster to be included
into the output consensus clustering C∗ are denoted as �∗

M and �∗
M , ∀M ∈ M, respectively.

More precisely, �∗
M (resp. �∗

M ) is the object-based (resp. feature-based) representation of
the projective cluster within C∗ corresponding to the metacluster M. Let us derive the values
of �∗

M first. Since the ensemble can in principle contain projective clusterings that are soft
at the clustering level, the majority voting criterion leads to the definition of the following
optimization problem:

{
�∗

M|M ∈ M
} = arg min

{�M|M∈M}
Q (22)

s.t.
∑

M∈M

ΓM,o = 1, ∀o ∈ D, (23)

ΓM,o ≥ 0, ∀M ∈ M, ∀o ∈ D, (24)

where

Q =
∑

M∈M

∑
o∈D

Γ α
M,oAM,o, AM,o = 1

|M|
∑

M∈M

(1 − ΓM,o),

and α > 1 is an integer that guarantees the non-linearity of the objective function Q w.r.t.
ΓM,o, needed to ensure Γ ∗

M,o ∈ [0,1] (rather than {0,1}).3 The final solution for such a
problem is stated in the next theorem. The details of its derivation are in the Appendix.

Theorem 2 The optimum of the problem defined in (22)–(24) is (∀M, ∀o):

Γ ∗
M,o =

[ ∑
M′∈M

(
AM,o

AM′,o

) 1
α−1

]−1

.

3An alternative way of obtaining Γ ∗
M,o ∈ [0,1] is to employ regularization terms (Li and Mukaidono 1999).
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A similar argument applies to �∗
M . In this case, the problem to be solved is as follows:

{
�∗

M|M ∈ M
} = arg min

{�M|M∈M}

∑
M∈M

∑
f ∈F

Δ
β

M,f BM,f (25)

s.t.
∑
f ∈F

ΔM,f = 1, ∀M ∈ M, (26)

ΔM,f ≥ 0, ∀M ∈ M, ∀f ∈ F , (27)

where BM,f = |M|−1
∑

M∈M 1 − ΔM,f and β plays the same role as α in the function Q.
The solution of such a problem is similar to that derived for Γ ∗

M,o.

Theorem 3 The optimum of the problem defined in (25)–(27) is (∀M, ∀f ):

Δ∗
M,f =

[∑
f ′∈F

(
BM,f

BM,f ′

) 1
β−1

]−1

.

4.2 The E-CB-PCE heuristic

Although CB-PCE provides an approximation to CB-PCE ENHANCED that reasonably ex-
ploits its intrinsic two-step nature, it does not take into account the new findings of this work.
In particular, a major issue of CB-PCE is due to the approximation of the optimal mappings
between clusters in the ensembles and clusters in the projective consensus clustering: it sat-
isfies only the constraints listed in (20), and it ignores the constraints in (21). Indeed, the
clustering of all the clusters in the ensemble in CB-PCE is carried out by using a standard
clustering algorithm, and this is clearly not sufficient to enforce that each output metacluster
must contain at least one cluster from each different projective clustering solution of the
ensemble, which is what the constraints in (21) require. For this purpose, we describe next
a modified version of CB-PCE, called Enhanced CB-PCE (E-CB-PCE). E-CB-PCE follows
the overall scheme of CB-PCE reported in Algorithm 1. The only difference is that it incor-
porates a well-suited (local-search) procedure to be used as the metaclusters subroutine in
Line 2, whose main goal is to produce metaclusters satisfying the constraints in (21) along
with those in (20).

The outline of the proposed method is given in Function 2. The set of metaclusters is
initialized in such a way that the constraints in (20)–(21) are satisfied (Line 1). A score V

for the set of metaclusters is computed, corresponding to the sum of all pairwise Tanimoto
distances between the clusters in the same metacluster (Line 2). The procedure performs
an iterative step aimed at improving the score V (Lines 3–20). In particular, we employ a
local search that moves a projective cluster M from its source metacluster Ms to a target
metacluster Mt �= Ms (Lines 7–15). The move that causes the largest decrease in the score
V is performed (Lines 16–19). The method terminates when no valid move that improves
the current score V is available, i.e., a local minimum of V has been reached.

The evaluation of the move of a cluster M from its source metacluster Ms to a target
metacluster Mt �= Ms is performed by the method evaluateMove presented in Function 3.
This method returns the relative score V̂ of the move along with a “swap” projective cluster
M̂ within Mt that aims to replace M in Ms . If no swapping is required, no swap cluster is
returned (i.e., M̂ = nil). The move is evaluated by distinguishing between two cases. Let us
denote with CM the projective clustering solution in the input ensemble which contains M .
If the source metacluster Ms contains one or more clusters of CM besides M , removing
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Function 2 metaclusters(E , P, K)

Input: a projective ensemble E ; a matrix P storing the pairwise distances between clusters in
⋃

Ĉ∈E Ĉ ;
the number K of output metaclusters.

Output: a set M of K metaclusters.

1: initialize M = {M1, . . . , MK } so to satisfy the constraints in (20)–(21)
2: compute initial V from P as V ← ∑

M∈M
∑

M1,M2∈M T (M1,M2)

3: V ′ ← V

4: repeat
5: V ← V ′
6: Mmove ← nil, Mswap ← nil, Mold ← nil, Mnew ← nil
7: for all Ms ∈ M, M ∈ Ms do
8: for all Mt ∈ M \ {Ms } do
9: 〈V̂ , M̂〉 ← evaluateMove(M, Ms , Mt ,P)

10: if V + V̂ < V ′ then
11: V ′ ← V + V̂

12: Mmove ← M , Mswap ← M̂ , Mold ← Ms , Mnew ← Mt

13: end if
14: end for
15: end for
16: if V ′ < V then
17: move Mmove from Mold to Mnew

18: if Mswap �= nil, move Mswap from Mnew to Mold

19: end if
20: until no M changes metacluster
21: return M

Function 3 evaluateMove(M , Ms , Mt , P)

Input: a projective cluster M ; a source metacluster Ms ; a target metacluster Mt ; a matrix P storing the
pairwise distances between clusters in

⋃
Ĉ∈E Ĉ .

Output: a pair 〈V̂ , M̂〉, where V̂ is a real value and M̂ is a projective cluster.

1: for any projective cluster M and metacluster M, let g(M, M) denote
∑

M ′∈M T (M,M ′)
2: M̂ ← nil
3: let CM the projective clustering in E s.t. M ∈ CM

4: if Ms ∩ CM \ {M} �= ∅ then
5: V̂ ← g(M, Mt ) − g(M, Ms )

6: else
7: M̂ ← arg minM ′∈Mt∩CM

[(g(M, Mt \ {M ′}) − g(M, Ms )) + (g(M ′, Ms \ {M}) − g(M ′, Mt ))]
8: V̂ ← [(g(M, Mt \ {M̂}) − g(M, Ms )) + (g(M̂, Ms \ {M}) − g(M̂, Mt ))]
9: end if

10: return 〈V̂ , M̂〉

M from Ms does not violate the constraints in (21). Therefore, in this case, the score V̂

is computed as the sum of the Tanimoto distances of M from all the clusters in the new
metacluster Mt minus the distances between M and all the members of the old metacluster
Ms (Lines 4–5). Otherwise, if Ms does not contain any other cluster of CM , the move
evaluation also takes into account that a “swap” is needed to ensure that the constraints in
(21) are satisfied (Lines 7–8). More precisely, M needs to be replaced with another cluster
from CM that currently belongs to the target metacluster Mt . Such a cluster from Mt is
chosen in such a way that the resulting score V̂ is minimized.
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4.3 Computational analysis

The bottleneck of the early CB-PCE heuristic is the computation of the pairwise Tanimoto
distances between the clusters in the ensemble (Line 1 in Algorithm 1). For any single pair of
clusters, the Tanimoto distance in principle takes O(|D||F |) time, as it requires to consider
all the elements of the |D|×|F | projective matrices of those clusters. Nevertheless, we show
in Proposition 4 that the Tanimoto distance formula can be rewritten in such a way that its
computation takes instead O(|D| + |F |) time.

Proposition 4 For any two projective clusters C, C ′ it holds that:

T (XC,XC′) = 1 − p(C,C ′)
q(C) + q(C ′) − p(C,C ′)

,

where

p
(
C,C ′) = (

�CΓ T
C′

) × (
�C�T

C′
)
, q(C) = (‖ΓC‖2

2

) × (‖ΔC‖2
2

)
.

Thanks to the above result, the proposed E-CB-PCE improves upon the efficiency of the
early CB-PCE. In particular, E-CB-PCE can now achieve a better time complexity for the
Tanimoto distance of a single pair of clusters without introducing any approximation, which
was the solution exploited in our previous work to obtain a speed-up (cf. FCB-PCE heuristic
in Gullo et al. 2011).

Time complexity of E-CB-PCE Next we discuss in detail the computational complexity of
the proposed E-CB-PCE. We are given: a set D of data objects, each one defined over a
feature space F , a projective ensemble E defined over D and F , and a positive integer K

representing the number of clusters in the output projective consensus clustering. It is also
reasonable to assume that the size |C| of each solution C in E is O(K). The complexity of
E-CB-PCE can be broken down into three stages:

1. Pre-processing: it concerns the computation of the pairwise distances between clusters,
by applying the Tanimoto distance T (·, ·) to projective matrices. According to Proposi-
tion 4, any single distance computation can be performed in O(|D| + |F |) time. Thus,
computing the overall pairwise matrix takes O(K2|E |2(|D| + |F |)) time;

2. Meta-clustering: it concerns the clustering of the O(K|E |) clusters of all the solutions
in the ensemble according to the procedure described in Function 2. This procedure is
based on a local-search optimization strategy of an objective function that is quadratic
in the number of all clusters within the input ensemble. Thus, its time complexity is
O(IK2|E |2), where I is the number of iterations to convergence.

3. Post-processing: it concerns the assignment of objects and features to the metaclusters
based on Theorems 2 and 3. According to those theorems, both the object and the feature
assignments need to look up all the clusters in each metacluster only once; thus, for each
object and for each feature, it takes O(K|E |) time. Performing this step for all objects
and features leads to a total cost of O(K|E |(|D| + |F |)) for the entire post-processing
step.

It can be noted that the first step is an offline phase, i.e., a phase to be performed only once
in case of a multi-run execution, whereas the second and third are online steps. Thus, as
summarized in Table 1 (where we also report the complexities of the earlier MOEA-PCE,
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Table 1 Computational complexities of PCE methods

Method Total Online Offline

MOEA-PCE
(Gullo et al.
2009, 2013)

O(I tK2|E |(|D| + |F |)) O(I tK2|E |(|D| + |F |)) –

EM-PCE
(Gullo et al.
2009, 2013)

O(K|E ||D||F |) O(IK|D||F |) O(K|E ||D||F |)

E-EM-PCE
(Gullo et al.
2010)

O(K|E ||D|(IK + |F |)) O(IK|D|(K|E | + |F |)) O(K|E ||D||F |)

E-2S-PCE
(Gullo et al.
2010)

O(K|E ||D|(|D| + |F |)) O(K|D|(I |D| + |E ||F |)) O(K|E ||D|(D + F |))

CB-PCE (Gullo
et al. 2011)

O(K2|E |2|D||F |) O(K|E |(K|E | + |D| + |F |)) O(K2|E |2|D||F |)

FCB-PCE
(Gullo et al.
2011)

O(K2|E |2(|D| + |F |)) O(K|E |(K|E | + |D| + |F |)) O(K2|E |2(|D| + |F |))

E-CB-PCE O(K2|E |2(I + |D| + |F |)) O(K|E |(IK|E | + |D| + |F |)) O(K2|E |2(|D| + |F |))

EM-PCE (Gullo et al. 2013), E-EM-PCE, E-2S-PCE (Gullo et al. 2010), and CB-PCE, FCB-
PCE (Gullo et al. 2011) methods),4 we can conclude that the offline, online, and total (i.e.,
offline + online) complexities of E-CB-PCE are O(K2|E |2(|D| + |F |)), O(K|E |(IK|E | +
|D| + |F |)), and O(K2|E |2(I + |D| + |F |)), respectively.

5 Experimental evaluation

We evaluated accuracy and efficiency of the proposed E-CB-PCE algorithm and compared
it with the early PCE methods, i.e., MOEA-PCE, EM-PCE (Gullo et al. 2009, 2013), E-
EM-PCE, E-2S-PCE (Gullo et al. 2010), and CB-PCE (Gullo et al. 2011). In the following,
we introduce our evaluation methodology which includes the selected datasets, the strategy
used for generating the projective ensembles, the setup of the proposed algorithms, and the
assessment criteria for the projective consensus clusterings. Finally, we discuss obtained
experimental results.

5.1 Evaluation methodology

5.1.1 Datasets

We selected 22 publicly available datasets with different characteristics in terms of number
of objects, features, and classes. In the summary provided in Table 2, the first fifteen datasets
are from the UCI Machine Learning Repository (Asuncion and Newman 2010), the next four
datasets are from the UCR Time Series Classification/Clustering Page (Keogh et al. 2003),
whereas the last three datasets are synthetically generated and selected from Müller et al.

4In Table 1, t denotes the population size for the genetic algorithm at the basis of MOEA-PCE.
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Table 2 Datasets used in the
experiments Dataset Objects Features Classes

Iris 150 4 3

Wine 178 13 3

Glass 214 10 6

Ecoli 327 7 5

Yeast 1,484 8 10

Multiple-Features 2,000 585 10

Segmentation 2,310 19 7

Abalone 4,124 7 17

Waveform 5,000 40 3

Letter 7,648 16 10

Isolet 7,797 617 26

Gisette 13,500 5,000 2

p53-Mutants 300 5,409 2

Amazon 120 10,000 4

Arcene 200 10,000 2

Shapes 160 1,614 9

Tracedata 200 275 4

ControlChart 600 60 6

Twopat 800 128 4

N30 1,356 20 8

D75 1,365 75 7

S2500 2,262 20 8

(2009). Note that the synthetic datasets originally had overlapping clusters. We selected for
each dataset the maximal subset of data objects forming a partition and the corresponding
natural subspace for each cluster in the partition.

5.1.2 Projective ensemble generation

We adopted a basic strategy for projective ensemble generation, which consists in select-
ing a (projective) clustering algorithm and varying the parameter(s) of that algorithm in
order to guarantee the diversity of the solutions within the projective ensemble. We were not
interested in comparing projective clustering algorithms and assessing the impact of their
performance on projective ensemble generation, since generating projective ensembles with
the highest quality is not a goal of this work; nevertheless, we resorted to a state-of-the-art
algorithm, LAC, whose effectiveness in the context of projective clustering has been al-
ready proven (Domeniconi et al. 2007). The diversity of the projective clustering solutions
was ensured by randomly choosing the initial centroids and varying the LAC’s parameter h.

Note that LAC yields projective clusterings that have hard object-to-cluster assignments
and have weighted feature-to-cluster assignments. Therefore, in order to test the ability of
the proposed algorithm to also deal with soft clustering solutions and with solutions having
unweighted feature-to-cluster assignments, we generated each projective ensemble E as a
composition of four equally-sized subsets, denoted as E1, E2, E3, and E4 and defined as
follows:



Mach Learn (2015) 98:181–216 201

– E1 contains solutions that have hard object-to-cluster assignments and weighted feature-
to-cluster assignments, i.e., solutions as provided by standard LAC;

– E2 contains solutions that have hard object-to-cluster assignments and unweighted
feature-to-cluster assignments. Starting from a LAC solution C defined over a set D of
data objects and a set F of features, a projective clustering C′ having unweighted feature-
to-cluster assignments is derived such that ΔC′,f = I[ΔC′,f ≥ |F |−1

∑
f ′∈F ΔC′,f ′ ],

∀C ′ ∈ C′, ∀f ∈ F , where I[A] is the indicator function, which is equal to 1 when the
event A is true, and 0 otherwise;

– E3 contains solutions that have soft object-to-cluster assignments and weighted feature-
to-cluster assignments. Starting from a LAC solution C , a soft projective clustering C′′ is
derived by computing the ΓC′′,o values (∀C ′′ ∈ C′′, ∀o ∈ D), proportionally to the distance
of o from the centroids C

′′
of the clusters C ′′:

ΓC′′,o =
∑

f ∈F (of − C
′′
f )2

∑
C∈C′′

∑
f ∈F (of − Cf )2

,

where the f -th feature Cf of the centroid of any cluster C is defined as Cf =
|C|−1

∑
o∈C of .

– E4 contains solutions that have soft object-to-cluster assignments and unweighted feature-
to-cluster assignments. The solutions are derived from standard LAC solutions according
to the methods employed for generating E2 and E3, respectively.

For each dataset, we generated 10 different projective ensembles; all results we present in
the following correspond to averages over these projective ensembles.

5.1.3 Assessment criteria

We assessed the quality of a projective consensus clustering C using both external and in-
ternal cluster validity criteria: the former is based on the similarity of C w.r.t. a reference
classification, whereas the latter is based on the average similarity w.r.t. the solutions in the
input projective ensemble E .

Similarity w.r.t. the reference classification (external evaluation) This evaluation stage ex-
ploits the availability of a reference classification, hereinafter denoted as C̃ , for any given
dataset D. Note that all the selected datasets are coupled with a reference classification that
provides information about the ideal object-to-cluster assignments ΓC̃,o (∀C̃ ∈ C̃ , ∀o ∈ D),
which are hard assignments. The ΔC̃,f feature-to-cluster assignments are instead defined
according to the following approaches:

– For the synthetic datasets N30, D75, and S2500, which already provide information about
the ideal subspaces assigned to each group of objects identified by the reference classi-
fication, these subspaces are directly used to define unweighted ΔC̃,f feature-to-cluster
assignments in C̃ .

– For the remaining datasets, the ΔC̃,f values are derived by applying the procedure sug-
gested in Domeniconi et al. (2007) to the reference classification C̃ : given the ΓC̃,o values
(∀C̃ ∈ C̃ , ∀o ∈ D) originally provided along with C̃ , the ΔC̃,f values are computed as:

ΔC̃,f = exp(−U(C̃, f )/h)∑
f ′∈F exp(−U(C̃, f ′)/h)

,
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where the LAC parameter h is set to 0.2 and:

U(C̃, f ) =
(∑

o∈D

ΓC̃,o

)−1 ∑
o∈D

ΓC̃,o(Cf − of )2, Cf =
(∑

o∈D

ΓC̃,o

)−1 ∑
o∈D

ΓC̃,o × of .

In order to compute the similarity between a projective consensus clustering C and a
reference classification C̃ , we resort to the popular F1-measure (van Rijsbergen 1979). Par-
ticularly, here we provide a definition of F 1-measure that enables a comparison between
projective clustering having soft object/feature-to-cluster assignments. Given a projective
cluster C ∈ C , the precision P (C) and the recall R(C) are defined as:

P (C) = maxC̃∈C̃ overlap(C̃,C)

size(C)
, R(C) = maxC̃∈C̃ overlap(C̃,C)

size(arg maxC̃∈C̃ overlap(C̃,C))
,

and the F1-measure is defined as:

F1(C̃, C) = 1

|C|
∑
C∈C

2P (C)R(C)

P (C) + R(C)
.

The values of the F1-measure belong to the interval [0,1], where larger values indicate
more accurate projective consensus clusterings. The overlap(·, ·) and size(·) functions quan-
tify the degree of overlap between two projective clusters and the size of a projective cluster,
respectively. Such functions are defined based on three ways of comparing the various pro-
jective clusters, namely object-based (o), feature-based (f), and object & feature-based (of),
which respectively account for the object-based representations only of the projective clus-
ters to be compared, the feature-based representation only, or both. We hence define variants
of the overlap(·, ·) and the size(·) functions to handle each of the three cases:

– Object-based (measure F1o): overlap(C ′,C ′′) = ∑
o∈D ΓC′,oΓC′′,o, size(C) = ∑

o∈D ΓC,o;
– feature-based (measure F1f ): overlap(C ′,C ′′) = ∑

f ∈F ΔC′,f ΔC′′,f , size(C) =∑
f ∈F ΔC,f ;

– object & feature-based (measure F1of ): overlap(C ′,C ′′) = (
∑

o∈D ΓC′,oΓC′′,o) ×
(
∑

f ∈F ΔC′,f ΔC′′,f ), size(C) = (
∑

o∈D ΓC,o)(
∑

f ∈F ΔC,f ).

Similarity w.r.t. the projective ensemble solutions (internal evaluation) Any valid projec-
tive consensus clustering C should comply with the information available from the input
projective ensemble E . In this respect, we carried out an evaluation stage to measure the
average similarity between a projective consensus clustering and the solutions within E . We
define the object & feature-based measure F1of (object-based F1o and feature-based F1f

are defined similarly) as follows:

F1of (C) = 1

|E |
∑

Ĉ∈E

max
{
F1(C, Ĉ),F1(Ĉ, C)

}
.

All these measures range from [0,1]; moreover, the larger the values F1of , F1o, or F1f

are, the larger the similarity between the projective consensus clustering C and the solutions
within the projective ensemble is, and hence the better the quality of C .
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Table 3 Evaluation w.r.t. the reference classification (F1of )

Dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris 0.649(0.025) 0.588(0.002) 0.532(0.046) 0.543(0.074) 0.640(0.071) 0.673(0.017)

Wine 0.345(0.025) 0.300(0.003) 0.303(0.001) 0.266(0.047) 0.327(0.028) 0.356(0.001)

Glass 0.279(0.009) 0.298(0.007) 0.307(0.009) 0.253(0.035) 0.311(0.042) 0.420(0.032)

Ecoli 0.518(0.020) 0.564(0.013) 0.573(0.007) 0.540(0.104) 0.599(0.063) 0.550(0.035)

Yeast 0.288(0.009) 0.237(0.004) 0.232(0.005) 0.202(0.025) 0.317(0.025) 0.308(0.008)

Mult.-Feat. 0.270(0.019) 0.300(0.015) 0.290(0.048) 0.405(0.041) 0.174(0.021) 0.180(0.001)

Segmentation 0.334(0.018) 0.400(0.008) 0.401(0.001) 0.382(0.026) 0.364(0.054) 0.452(0.029)

Abalone 0.116(0.003) 0.112(0.003) 0.111(0.004) 0.080(0.006) 0.116(0.004) 0.122(0.002)

Waveform 0.339(0.056) 0.338(0.006) 0.267(0.058) 0.296(0.012) 0.263(0.026) 0.253(0.012)

Letter 0.181(0.025) 0.155(0.007) 0.155(0.006) 0.141(0.021) 0.120(0.023) 0.185(0.012)

Isolet 0.141(0.004) 0.138(0.001) 0.138(0.001) 0.106(0.025) 0.140(0.017) 0.148(0.001)

Gisette 0.595(0.015) 0.532(0.006) 0.515(0.022) 0.541(0.002) 0.499(0.004) 0.545(0.001)

p53-Mutants 0.464(0.021) 0.411(0.020) 0.411(0.002) 0.397(0.001) 0.412(0.011) 0.418(0.001)

Amazon 0.441(0.019) 0.388(0.006) 0.388(0.019) 0.446(0.067) 0.437(0.011) 0.442(0.022)

Arcene 0.367(0.012) 0.142(0.002) 0.142(0.001) 0.153(0.007) 0.148(0.016) 0.165(0.002)

Shapes 0.243(0.009) 0.294(0.007) 0.297(0.005) 0.208(0.031) 0.281(0.025) 0.314(0.006)

Tracedata 0.438(0.010) 0.432(0.012) 0.432(0.001) 0.437(0.019) 0.491(0.031) 0.470(0.014)

ControlChart 0.092(0.013) 0.203(0.020) 0.195(0.008) 0.250(0.021) 0.063(0.008) 0.122(0.007)

Twopat 0.144(0.025) 0.070(0.002) 0.070(0.001) 0.071(0.005) 0.070(0.007) 0.073(0.002)

N30 0.098(0.005) 0.108(0.003) 0.107(0.005) 0.091(0.013) 0.110(0.015) 0.124(0.003)

D75 0.033(0.002) 0.038(0.001) 0.038(0.001) 0.032(0.003) 0.038(0.005) 0.039(0.002)

S2500 0.116(0.004) 0.122(0.005) 0.121(0.007) 0.098(0.010) 0.131(0.009) 0.127(0.004)

min 0.033 0.038 0.038 0.032 0.038 0.039

max 0.649 0.588 0.573 0.543 0.640 0.673

avg 0.295 0.280 0.274 0.270 0.275 0.295

5.1.4 Parameter setting

To set the parameters α and β of the proposed E-CB-PCE, we performed a leave-one-
dataset-out approach: for each dataset the performance of E-CB-PCE on the other datasets
was assessed for different values of the parameter(s), and the value(s) that achieved the max-
imum F1of was then used to obtain a projective clustering solution for the left-out dataset.
In general, we observed that the settings were scarcely influenced by any specific dataset,
which indicates that a relatively easy setup can be performed on new datasets for which a
reference classification or other a-priori knowledge is not available. Particularly, the best-
performance scores were mostly reached by setting both α and β to 2. For the competing
methods, we set the parameters as suggested in their respective papers.

5.2 Results

Accuracy Tables 3, 4, 5 give the results of the external evaluation w.r.t. the reference clas-
sification (assessment criteria F1of , F1o, and F1f , respectively), and Tables 6, 7, 8 give
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Table 4 Evaluation w.r.t. the reference classification (F1o)

Dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris 0.967(0.026) 0.880(0.002) 0.784(0.076) 0.733(0.158) 0.948(0.137) 1(0.027)

Wine 0.835(0.037) 0.731(0.009) 0.735(0.001) 0.639(0.152) 0.855(0.082) 0.957(0.003)

Glass 0.474(0.053) 0.509(0.012) 0.537(0.021) 0.433(0.052) 0.507(0.068) 0.571(0.038)

Ecoli 0.760(0.014) 0.667(0.021) 0.665(0.021) 0.641(0.127) 0.789(0.063) 0.761(0.007)

Yeast 0.417(0.007) 0.333(0.007) 0.328(0.014) 0.298(0.030) 0.424(0.034) 0.395(0.014)

Mult.-Feat. 0.319(0.069) 0.369(0.020) 0.363(0.053) 0.493(0.063) 0.326(0.035) 0.269(0.007)

Segmentation 0.443(0.062) 0.568(0.014) 0.567(0.007) 0.554(0.029) 0.523(0.082) 0.659(0.047)

Abalone 0.208(0.006) 0.169(0.005) 0.164(0.006) 0.152(0.014) 0.198(0.014) 0.210(0.004)

Waveform 0.515(0.070) 0.415(0.001) 0.387(0.056) 0.382(0.018) 0.437(0.027) 0.437(0.009)

Letter 0.331(0.030) 0.306(0.005) 0.308(0.002) 0.299(0.037) 0.307(0.031) 0.305(0.017)

Isolet 0.959(0.031) 0.978(0.001) 0.978(0.001) 0.722(0.208) 0.977(0.080) 1(0.002)

Gisette 0.728(0.015) 0.674(0.007) 0.658(0.030) 0.581(0.140) 0.667(0.003) 0.669(0.001)

p53-Mutants 0.728(0.038) 0.619(0.028) 0.642(0.031) 0.596(0.002) 0.650(0.054) 0.733(0.001)

Amazon 0.555(0.036) 0.488(0.009) 0.480(0.047) 0.553(0.071) 0.525(0.011) 0.518(0.029)

Arcene 0.705(0.009) 0.626(0.001) 0.614(0.001) 0.618(0.071) 0.647(0.021) 0.644(0.019)

Shapes 0.681(0.017) 0.693(0.015) 0.704(0.013) 0.531(0.052) 0.716(0.041) 0.786(0.017)

Tracedata 0.614(0.002) 0.628(0.059) 0.628(0.001) 0.619(0.032) 0.629(0.029) 0.617(0.010)

ControlChart 0.319(0.020) 0.332(0.003) 0.342(0.026) 0.345(0.040) 0.311(0.014) 0.321(0.019)

Twopat 0.355(0.011) 0.296(0.002) 0.296(0.002) 0.302(0.021) 0.313(0.007) 0.316(0.001)

N30 0.807(0.219) 0.884(0.013) 0.881(0.017) 0.752(0.117) 0.915(0.096) 0.997(0.028)

D75 0.857(0.146) 0.952(0.018) 0.955(0.022) 0.717(0.118) 0.931(0.103) 0.981(0.046)

S2500 0.880(0.156) 0.895(0.031) 0.889(0.056) 0.747(0.093) 0.983(0.070) 0.941(0.014)

min 0.208 0.169 0.164 0.152 0.198 0.210

max 0.967 0.978 0.978 0.752 0.983 1

avg 0.612 0.591 0.587 0.532 0.617 0.640

the results of the internal evaluation w.r.t. the projective ensemble solutions (assessment
criteria F1of , F1o, and F1f , respectively). All algorithms involved in the comparison are
nondeterministic, thus all tables contain average results over 50 different runs along with the
corresponding standard deviations (in parentheses). Moreover, to improve the readability of
the results, for each competitor and assessment criterion, we summarize the average gain of
E-CB-PCE w.r.t. the competing method in Table 9.

As observed in the summary reported in Table 9, E-CB-PCE achieved better average ac-
curacy performance w.r.t. both MOEA-PCE and CB-PCE, thus showing that the most recent
findings of this work incorporated into the proposed E-CB-PCE actually give the expected
outcome. E-CB-PCE was more accurate than both MOEA-PCE and CB-PCE on 16 out of 22
datasets on average, while achieving average gains up to 0.147 (F1of assessment criterion)
and 0.078 (F1f assessment criterion) w.r.t. MOEA-PCE and CB-PCE, respectively.

Larger improvements were produced by E-CB-PCE w.r.t. the early single-objective PCE
methods, i.e., EM-PCE, E-EM-PCE, and E-2S-PCE. The average gains achieved by E-CB-
PCE w.r.t. EM-PCE, E-EM-PCE, and E-2S-PCE reported in Table 9 were in general larger
than those observed w.r.t. the remaining competing methods MOEA-PCE and CB-PCE.
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Table 5 Evaluation w.r.t. the reference classification (F1f )

Dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris 0.974(0.019) 0.667(0.001) 0.667(0.001) 0.667(0.001) 0.829(0.044) 0.807(0.001)

Wine 0.643(0.051) 0.426(0.006) 0.432(0.022) 0.437(0.017) 0.472(0.058) 0.476(0.091)

Glass 0.804(0.023) 0.662(0.029) 0.671(0.037) 0.662(0.028) 0.748(0.086) 0.734(0.032)

Ecoli 0.906(0.021) 0.970(0.013) 0.983(0.027) 1(0.001) 0.880(0.035) 1(0.047)

Yeast 0.846(0.011) 0.774(0.010) 0.772(0.018) 0.726(0.025) 0.827(0.026) 0.956(0.018)

Mult.-Feat. 0.768(0.013) 0.795(0.001) 0.802(0.027) 0.887(0.003) 0.502(0.034) 0.567(0.026)

Segmentation 0.861(0.026) 0.747(0.029) 0.737(0.047) 0.706(0.001) 0.745(0.115) 0.971(0.056)

Abalone 0.822(0.023) 0.716(0.006) 0.713(0.007) 0.670(0.001) 0.750(0.008) 0.754(0.006)

Waveform 0.660(0.067) 0.792(0.001) 0.792(0.001) 0.792(0.001) 0.722(0.043) 0.700(0.036)

Letter 0.643(0.037) 0.595(0.008) 0.598(0.009) 0.580(0.001) 0.593(0.031) 0.686(0.027)

Isolet 0.171(0.004) 0.143(0.001) 0.144(0.005) 0.142(0.005) 0.149(0.005) 0.150(0.005)

Gisette 0.876(0.016) 0.797(0.001) 0.794(0.005) 0.797(0.001) 0.739(0.041) 0.818(0.001)

p53-Mutants 0.721(0.009) 0.671(0.001) 0.671(0.001) 0.673(0.001) 0.673(0.015) 0.692(0.001)

Amazon 0.890(0.005) 0.828(0.001) 0.828(0.001) 0.829(0.001) 0.840(0.013) 0.849(0.003)

Arcene 0.536(0.014) 0.264(0.003) 0.262(0.001) 0.260(0.001) 0.268(0.013) 0.483(0.010)

Shapes 0.428(0.011) 0.448(0.002) 0.449(0.001) 0.405(0.016) 0.451(0.018) 0.444(0.005)

Tracedata 0.787(0.010) 0.800(0.006) 0.811(0.015) 0.796(0.029) 0.795(0.027) 0.894(0.034)

ControlChart 0.322(0.044) 0.673(0.002) 0.673(0.003) 0.673(0.003) 0.263(0.027) 0.473(0.035)

Twopat 0.451(0.079) 0.233(0.001) 0.233(0.001) 0.233(0.001) 0.281(0.039) 0.339(0.021)

N30 0.131(0.002) 0.119(0.001) 0.120(0.002) 0.113(0.004) 0.119(0.003) 0.338(0.005)

D75 0.041(0.001) 0.039(0.001) 0.039(0.001) 0.036(0.001) 0.040(0.003) 0.045(0.001)

S2500 0.141(0.002) 0.124(0.002) 0.127(0.003) 0.125(0.005) 0.130(0.003) 0.343(0.001)

min 0.041 0.039 0.039 0.036 0.040 0.045

max 0.974 0.970 0.983 1 0.880 1

avg 0.610 0.558 0.560 0.555 0.537 0.615

Looking at the standard deviations reported in Tables 3–8, it can be observed that the
proposed E-CB-PCE was quite insensitive to its random component. The standard deviations
were in the order of 10−3 in most cases, while being in the order of 10−2 in the remaining
cases.

Efficiency Table 10 shows the runtimes (in milliseconds) of the various algorithms in-
volved in the comparison. As expected, the proposed E-CB-PCE was slower than EM-PCE
on most datasets, while clearly outperforming MOEA-PCE. The runtimes of E-CB-PCE
were one or two orders of magnitude smaller than those of MOEA-PCE on average, up
to four orders on Isolet. Only on one dataset, MOEA-PCE was more efficient than E-CB-
PCE (Glass), even though the runtimes of the two methods remained of the same order of
magnitude.

Compared to CB-PCE, the proposed E-CB-PCE was faster on 11 datasets, resulting in
one order faster on 3 of them (i.e., Multiple-Features, Waveform, Amazon), and two orders
faster on 4 datasets (i.e., Isolet, Gisette, p53-Mutants, Arcene). In general, we observed that
the performance of E-CB-PCE mainly depended on the number of iterations needed for
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Table 6 Evaluation w.r.t. the projective ensemble solutions (F1of )

Dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris 0.858(0.010) 0.830(0.002) 0.768(0.049) 0.638(0.153) 0.886(0.107) 0.961(0.004)

Wine 0.603(0.008) 0.569(0.002) 0.571(0.001) 0.498(0.085) 0.716(0.035) 0.765(0.001)

Glass 0.430(0.007) 0.437(0.009) 0.413(0.018) 0.438(0.035) 0.557(0.044) 0.613(0.020)

Ecoli 0.630(0.009) 0.625(0.004) 0.623(0.019) 0.496(0.052) 0.819(0.033) 0.846(0.009)

Yeast 0.610(0.008) 0.586(0.017) 0.589(0.024) 0.525(0.046) 0.768(0.017) 0.789(0.007)

Mult.-Feat. 0.221(0.008) 0.233(0.013) 0.221(0.033) 0.180(0.016) 0.237(0.014) 0.200(0.005)

Segmentation 0.269(0.009) 0.308(0.003) 0.308(0.003) 0.309(0.020) 0.320(0.026) 0.326(0.008)

Abalone 0.675(0.011) 0.541(0.011) 0.551(0.008) 0.571(0.034) 0.741(0.022) 0.772(0.013)

Waveform 0.146(0.004) 0.110(0.001) 0.105(0.005) 0.119(0.005) 0.462(0.003) 0.470(0.003)

Letter 0.196(0.005) 0.146(0.002) 0.146(0.002) 0.108(0.009) 0.337(0.011) 0.356(0.006)

Isolet 0.751(0.009) 0.790(0.001) 0.790(0.001) 0.593(0.155) 0.876(0.075) 0.914(0.001)

Gisette 0.597(0.003) 0.505(0.002) 0.483(0.022) 0.481(0.018) 0.622(0.003) 0.669(0.004)

p53-Mutants 0.628(0.005) 0.632(0.001) 0.588(0.060) 0.634(0.001) 0.671(0.014) 0.627(0.036)

Amazon 0.468(0.008) 0.444(0.015) 0.435(0.039) 0.520(0.023) 0.539(0.024) 0.518(0.022)

Arcene 0.589(0.009) 0.421(0.004) 0.419(0.001) 0.397(0.043) 0.800(0.027) 0.836(0.001)

Shapes 0.444(0.009) 0.468(0.009) 0.475(0.009) 0.307(0.045) 0.713(0.026) 0.764(0.002)

Tracedata 0.723(0.008) 0.716(0.001) 0.716(0.001) 0.603(0.079) 0.830(0.074) 0.909(0.008)

ControlChart 0.186(0.005) 0.037(0.002) 0.037(0.001) 0.049(0.001) 0.334(0.015) 0.270(0.006)

Twopat 0.370(0.012) 0.144(0.001) 0.144(0.001) 0.154(0.007) 0.526(0.045) 0.501(0.001)

N30 0.323(0.013) 0.301(0.003) 0.302(0.004) 0.276(0.025) 0.462(0.029) 0.510(0.014)

D75 0.423(0.014) 0.429(0.004) 0.429(0.004) 0.362(0.034) 0.573(0.039) 0.596(0.014)

S2500 0.442(0.013) 0.449(0.010) 0.439(0.020) 0.345(0.036) 0.604(0.015) 0.605(0.004)

min 0.146 0.037 0.037 0.049 0.237 0.200

max 0.858 0.830 0.790 0.638 0.886 0.961

avg 0.481 0.442 0.434 0.391 0.609 0.628

Function 2 to converge. In particular, due to the nature of the local-search moves performed
at each iteration, the runtime of Function 2 could negatively compensate the performance
gain achieved by E-CB-PCE w.r.t. CB-PCE in the other steps of the heuristic. However, as
observed in the measurements reported, this mostly affected the smaller datasets.

6 Conclusion

In our previous work (Gullo et al. 2009) we introduced a framework in which projective
clustering and clustering ensembles are addressed simultaneously. This resulted in the for-
mulation of a new problem called projective clustering ensembles (PCE). Since the origi-
nal formulation, research efforts have been made to design a single-objective function that
keeps the object-based and the feature-based cluster representations joined together, and
at the same time facilitates the adaptation of a conventional clustering ensemble approach
to the PCE problem. In this paper, we presented the latest advance of PCE by proposing
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Table 7 Evaluation w.r.t. the projective ensemble solutions (F1o)

Dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris 0.915(0.007) 0.842(0.002) 0.785(0.044) 0.684(0.142) 0.886(0.093) 0.954(0.004)

Wine 0.723(0.010) 0.662(0.005) 0.667(0.003) 0.575(0.105) 0.716(0.067) 0.766(0.004)

Glass 0.513(0.008) 0.511(0.010) 0.482(0.021) 0.505(0.046) 0.557(0.055) 0.600(0.029)

Ecoli 0.810(0.013) 0.804(0.005) 0.816(0.034) 0.697(0.093) 0.819(0.029) 0.852(0.006)

Yeast 0.754(0.011) 0.681(0.017) 0.682(0.026) 0.609(0.059) 0.768(0.023) 0.790(0.008)

Mult.-Feat. 0.216(0.009) 0.262(0.015) 0.249(0.040) 0.186(0.020) 0.237(0.015) 0.176(0.008)

Segmentation 0.313(0.008) 0.343(0.005) 0.345(0.002) 0.346(0.019) 0.320(0.039) 0.356(0.015)

Abalone 0.749(0.015) 0.592(0.011) 0.601(0.009) 0.628(0.036) 0.741(0.022) 0.771(0.012)

Waveform 0.489(0.008) 0.473(0.001) 0.444(0.028) 0.433(0.041) 0.462(0.008) 0.477(0.004)

Letter 0.324(0.005) 0.309(0.004) 0.308(0.002) 0.274(0.025) 0.337(0.011) 0.364(0.005)

Isolet 0.876(0.010) 0.875(0.001) 0.875(0.001) 0.669(0.176) 0.876(0.064) 0.908(0.001)

Gisette 0.693(0.004) 0.615(0.003) 0.595(0.020) 0.516(0.133) 0.622(0.018) 0.603(0.031)

p53-Mutants 0.720(0.006) 0.679(0.001) 0.611(0.106) 0.677(0.001) 0.671(0.033) 0.649(0.045)

Amazon 0.519(0.008) 0.473(0.017) 0.459(0.049) 0.551(0.026) 0.539(0.033) 0.514(0.030)

Arcene 0.840(0.007) 0.800(0.001) 0.799(0.002) 0.754(0.142) 0.800(0.008) 0.805(0.002)

Shapes 0.692(0.010) 0.701(0.012) 0.708(0.009) 0.547(0.056) 0.713(0.028) 0.762(0.002)

Tracedata 0.829(0.008) 0.830(0.001) 0.831(0.001) 0.732(0.093) 0.830(0.063) 0.890(0.008)

ControlChart 0.347(0.004) 0.307(0.004) 0.311(0.011) 0.342(0.007) 0.334(0.012) 0.367(0.006)

Twopat 0.528(0.006) 0.463(0.002) 0.463(0.001) 0.488(0.030) 0.526(0.047) 0.573(0.001)

N30 0.435(0.013) 0.469(0.004) 0.470(0.006) 0.430(0.039) 0.462(0.042) 0.501(0.009)

D75 0.551(0.015) 0.580(0.005) 0.579(0.006) 0.507(0.043) 0.573(0.039) 0.595(0.016)

S2500 0.562(0.015) 0.575(0.011) 0.567(0.019) 0.504(0.043) 0.604(0.029) 0.594(0.006)

min 0.216 0.262 0.249 0.186 0.237 0.176

max 0.915 0.875 0.875 0.754 0.886 0.954

avg 0.609 0.584 0.575 0.530 0.609 0.630

a metacluster-based formulation and related heuristics, which are theoretically and experi-
mentally proven to best fit the PCE problem.

We expect that alternative approaches to the PCE problem will be developed in the next
few years. One general direction we envision is moving the burden of the computation
from the clustering side to a proper representation model. In this respect, we argue that
an approach worth exploring is tensorial models and related tensor decomposition meth-
ods (Kolda and Bader 2009). In a nutshell, a tensor model (e.g., a third-order tensor) can
provide an integrated representation of the relevant dimensions in the input ensemble (i.e.,
the objects, the features, and the clusters); in addition, during the tensor decomposition, a
consensus clustering, or even multiple consensus clusterings, can be induced in a straight-
forward manner. Interestingly, the ability of some existing tensor decomposition methods
to generate an unfolding of the tensor in which the correlations among all dimensions (i.e.,
aspects in the ensemble) are preserved, might play an important role in establishing natu-
ral mappings between the clusters in the input ensemble and the clusters of the consensus
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Table 8 Evaluation w.r.t. the projective ensemble solutions (F1f )

Dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris 0.964(0.008) 0.989(0.001) 0.989(0.001) 0.986(0.002) 0.990(0.004) 0.992(0.001)

Wine 0.861(0.008) 0.856(0.002) 0.857(0.003) 0.852(0.006) 0.910(0.023) 0.905(0.034)

Glass 0.833(0.007) 0.843(0.003) 0.844(0.006) 0.849(0.013) 0.871(0.030) 0.846(0.016)

Ecoli 0.848(0.007) 0.818(0.006) 0.814(0.004) 0.804(0.001) 0.884(0.010) 0.893(0.021)

Yeast 0.870(0.005) 0.890(0.005) 0.888(0.006) 0.907(0.011) 0.909(0.018) 0.912(0.010)

Mult.-Feat. 0.656(0.008) 0.662(0.001) 0.665(0.014) 0.697(0.004) 0.715(0.046) 0.695(0.010)

Segmentation 0.854(0.014) 0.815(0.005) 0.812(0.013) 0.824(0.001) 0.942(0.071) 0.935(0.023)

Abalone 0.944(0.004) 0.976(0.002) 0.979(0.004) 0.994(0.001) 0.977(0.010) 0.984(0.007)

Waveform 0.266(0.013) 0.279(0.001) 0.279(0.001) 0.279(0.001) 0.323(0.004) 0.341(0.008)

Letter 0.604(0.011) 0.453(0.009) 0.448(0.009) 0.401(0.001) 0.686(0.061) 0.644(0.019)

Isolet 0.838(0.004) 0.891(0.001) 0.891(0.001) 0.861(0.019) 0.897(0.012) 0.903(0.001)

Gisette 0.750(0.005) 0.771(0.001) 0.770(0.002) 0.771(0.001) 0.751(0.010) 0.771(0.010)

p53-Mutants 0.858(0.002) 0.920(0.001) 0.920(0.001) 0.918(0.001) 0.908(0.007) 0.916(0.001)

Amazon 0.874(0.002) 0.945(0.001) 0.945(0.001) 0.943(0.001) 0.932(0.005) 0.939(0.001)

Arcene 0.664(0.010) 0.546(0.006) 0.544(0.003) 0.534(0.006) 0.558(0.029) 0.592(0.001)

Shapes 0.641(0.005) 0.629(0.004) 0.631(0.002) 0.585(0.009) 0.679(0.011) 0.693(0.002)

Tracedata 0.853(0.003) 0.848(0.003) 0.849(0.001) 0.820(0.011) 0.894(0.028) 0.930(0.007)

ControlChart 0.510(0.022) 0.154(0.001) 0.154(0.001) 0.154(0.001) 0.556(0.038) 0.396(0.022)

Twopat 0.685(0.024) 0.342(0.001) 0.343(0.005) 0.343(0.001) 0.599(0.105) 0.472(0.073)

N30 0.810(0.005) 0.670(0.010) 0.668(0.019) 0.676(0.015) 0.842(0.055) 0.808(0.052)

D75 0.799(0.008) 0.741(0.006) 0.743(0.004) 0.717(0.017) 0.832(0.040) 0.832(0.009)

S2500 0.803(0.007) 0.772(0.009) 0.770(0.028) 0.673(0.028) 0.818(0.049) 0.864(0.012)

min 0.266 0.154 0.154 0.154 0.323 0.341

max 0.964 0.989 0.989 0.994 0.990 0.992

avg 0.763 0.719 0.718 0.709 0.794 0.785

Table 9 Average gains of
E-CB-PCE w.r.t. the competing
methods

Criterion MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE

F1of 0 0.014 0.021 0.025 0.020

F1o 0.029 0.049 0.054 0.108 0.023

F1f 0.005 0.056 0.055 0.060 0.078

F1of 0.147 0.186 0.194 0.237 0.019

F1o 0.021 0.046 0.055 0.100 0.021

F1f 0.022 0.066 0.067 0.076 −0.010

avg 0.037 0.070 0.074 0.101 0.025

clustering. Moreover, the common problem due to the unavailability of feature relevance
values could be relaxed in a tensor modeling, thus enabling a new generation of clustering
ensemble methods.
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Table 10 Execution times (milliseconds)

Dataset MOEA-PCE EM-PCE E-EM-PCE E-2S-PCE CB-PCE E-CB-PCE

Iris 2,056 37 109 253 74 1,492

Wine 2,558 29 88 163 144 1,223

Glass 7,712 56 615 248 500 9,177

Ecoli 14,401 59 685 625 1,147 9,337

Yeast 227,878 757 20,438 21,560 30,384 83,008

Mult.-Feat. 490,602 116,334 151,582 88,713 1,562,139 114,368

Segmentation 233,951 1,854 17,385 40,014 25,692 31,780

Abalone 3,411,116 4,105 156,959 430,974 275,053 857,164

Waveform 125,247 4,912 15,905 91,844 10,487 2,179

Letter 2,248,695 9,591 126,222 772,883 70,458 135,832

Isolet 20,676,754 10,100 10,000 8,488 66,136 1,447

Gisette 966,108 34,260 38,216 29,700 93,148 1,450

p53-Mutants 58,695 22,209 22,168 19,347 65,501 1,490

Amazon 395,988 21,556 21,619 20,914 135,446 12,737

Arcene 120,537 21,557 21,499 17,405 81,433 2,413

Shapes 211,654 17,752 19,152 12,473 282,857 106,180

Tracedata 12,777 1,062 1,108 960 9,000 4,716

ControlChart 50,798 1,522 5,397 2,801 13,900 20,708

Twopat 31,850 2,946 5,706 4,606 9,788 5,344

N30 164,969 1,340 13,781 16,243 22,904 44,517

D75 135,297 4,558 13,414 15,477 32,938 30,631

S2500 290,408 2,717 29,223 44,008 39,039 55,607

Appendix: Proofs

A.1 Proofs of Sect. 2

Proposition 1 For any two projective clusters C, C ′ it holds that XC = XC′ if and only if
�C = �C′ and �C = �C′ .

Proof Let us prove both the directions of the implication. Proving XC = XC′ ⇐ �C = �C′ ∧
�C = �C′ is immediate: by definition, XC = �T

C�C and XC′ = �T
C′�C′ . Regarding XC =

XC′ ⇒ �C = �C′ ∧ �C = �C′ , we first note that:

XC = XC′ ⇒ XC(i, j) = XC′(i, j), ∀i,∀j

⇒ ΓC,oi
× ΔC,j = ΓC′,oi

× ΔC′,j , ∀i,∀j . (28)

By summing the statements in (28) over j , we obtain:

ΓC,oi
× ΔC,j = ΓC′,oi

× ΔC′,j , ∀i,∀j

⇒
|F |∑
j=1

ΓC,oi
× ΔC,j =

|F |∑
j=1

ΓC′,oi
× ΔC′,j , ∀i
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⇒ ΓC,oi

|F |∑
j=1

ΔC,j = ΓC′,oi

|F |∑
j=1

ΔC′,j , ∀i,

which implies ΓC,oi
= ΓC′,oi

,∀i, since
∑|F |

j=1 ΔC,j = ∑|F |
j=1 ΔC′,j = 1 by definition. Simi-

larly, by summing the statements in (28) over i leads to:

ΓC,oi
× ΔC,j = ΓC′,oi

× ΔC′,j , ∀i,∀j

⇒
|D|∑
i=1

ΓC,oi
× ΔC,j =

|D|∑
i=1

ΓC′,oi
× ΔC′,j , ∀j

⇒ ΔC,j

|D|∑
i=1

ΓC,oi
= ΔC′,j

|D|∑
i=1

ΓC′,oi
, ∀j

⇒ ΔC,j = ΔC′,j , ∀j,

where the last derivation holds since the result ΓC,oi
= ΓC′,oi

,∀i, shown above clearly im-
plies

∑|D|
i=1 ΓC,oi

= ∑|D|
i=1 ΓC′,oi

. �

Proposition 2 For any projective cluster C, its object-based representation �C = (ΓC,o1 ,

. . . ,ΓC,o|D|) and feature-based representation �C = (ΔC,1, . . . ,ΔC,|F |) can uniquely be de-
rived from its projective matrix XC as follows:

ΓC,oi
=

|F |∑
j=1

XC(i, j), ΔC,j = XC(1, j)∑|F |
j=1 XC(1, j)

= · · · = XC(|D|, j)∑|F |
j=1 XC(|D|, j)

,

where XC(i, j) denotes the element (i, j) of the matrix XC .

Proof The first statement holds since:

|F |∑
j=1

XC(i, j) =
|F |∑
j=1

ΓC,oi
× ΔC,j = ΓC,oi

|F |∑
j=1

ΔC,j = ΓC,oi
.

Once derived the expression for ΓC,oi
, the second statement is immediate, because each

element XC(i, j) is by definition equal to ΓC,oi
× ΔC,j . �

A.2 Proofs of Sect. 3

Proposition 3 Given a projective ensemble E , let Υ denote the set of all clusterings obtained
by taking exactly one cluster from each ensemble member, i.e., Υ = {C | C ⊆ {Ĉ | Ĉ ∈ Ĉ ∧
Ĉ ∈ E }∧ |Ĉ ∩ C| = 1,∀Ĉ ∈ E }. Moreover, let X∗ = arg minX̂ minC∈Υ

∑
C∈C T (X̂,XC) s.t. X̂

satisfies (2). Given an integer K ≥ 1, it holds that the optimal projective consensus cluster-
ing for the optimization problem defined in (17)–(18) is C∗ = {C∗

1 , . . . ,C∗
K} s.t. XC∗

1
= · · · =

XC∗
K

= X∗.

Proof The constraints in (18) imply that each cluster C of the optimal projective consensus
clustering should be associated with exactly one cluster Ĉ of each ensemble solution, but no
limitations are imposed about associations of Ĉ to multiple C, which are therefore allowed.
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Within this view, the set Υ identifies a sound and complete searching space for the mappings
x(Ĉ,C). This implies that the matrix X∗, which is the matrix that minimizes the sum of
the Tanimoto distances between itself and all clusters within a set of clusters C, over all
matrices satisfying (2) and all C ∈ Υ , would represent an optimal solution for the case
K = 1. The generalization to the case K > 1 is straightforward, as C∗ = {C∗

1 , . . . ,C∗
K} s.t.

XC∗
1
= · · · = XC∗

K
= X∗ represents a feasible solution to the problem and any other solution

where XC∗
i
�= X∗ for some i ∈ [1..K] would have a non-smaller objective function value due

to the optimality of X∗. �

A.3 Proofs of Sect. 4

Lemma 2 Given an m-dimensional, binary vector u, let u′ denote the vector 1
n(u)

u, where

n(u) = ∑m

j=1 uj . For any two m-dimensional binary vectors u and v, it holds that J (u′,v′) =
J (u,v).

Proof

J
(
u′,v′) =

∑m

j=1 u′
j v

′
j∑m

j=1(u
′
j )

2 + ∑m

j=1(v
′
j )

2 − ∑m

j=1 u′
j v

′
j

=
∑m

j=1
uj

n(u)

vj

n(v)∑m

j=1(
uj

n(u)
)2 + ∑m

j=1(
vj

n(v)
)2 − ∑m

j=1
uj

n(u)

vj

n(v)

=
1

n(u)n(v)

∑m

j=1 ujvj

1
n(u)2

∑m

j=1 u2
j + 1

n(v)2

∑m

j=1 v2
j − 1

n(u)n(v)

∑m

j=1 ujvj

.

Since u and v are binary vectors, it holds that
∑m

j=1 u2
j = ∑m

j=1 uj = n(u) and
∑m

j=1 v2
j =∑m

j=1 vj = n(v); thus, it results that:

J
(
u′,v′) =

1
n(u)n(v)

∑m

j=1 ujvj

1
n(u)2

∑m

j=1 u2
j + 1

n(v)2

∑m

j=1 v2
j − 1

n(u)n(v)

∑m

j=1 ujvj

=
1

n(u)n(v)

∑m

j=1 ujvj

1
n(u)

+ 1
n(v)

− 1
n(u)n(v)

∑m

j=1 ujvj

=
1

n(u)n(v)

∑m

j=1 ujvj

1
n(u)n(v)

(n(u) + n(v) − ∑m

j=1 ujvj )

=
∑m

j=1 ujvj∑m

j=1 u2
j + ∑m

j=1 v2
j − ∑m

j=1 ujvj

= J (u,v).

�

Lemma 1 Let CB-PCE RESTRICTED be a special version of the CB-PCE ENHANCED

problem where (i) |D| = 1, (ii) K = 1 (K denotes the number of clusters in the output
projective consensus clustering), (iii) |Ĉ| = 1, ∀Ĉ ∈ E , (iv) n(�Ĉ ) = n(�Ĉ′) = nE , ∀Ĉ, Ĉ ′,
where n(�Ĉ ) = ∑

f ∈F I[ΔĈ,f > 0], and (v) ΔĈ,f = 1
nE

, ∀f ∈ F , ∀Ĉ ∈ Ĉ , ∀Ĉ ∈ E . CB-PCE
RESTRICTED is NP-hard.
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Proof First, it is easy to note that, due to the restrictions w.r.t. the general CB-PCE EN-
HANCED, the projective matrix of each cluster Ĉ within a valid input ensemble for CB-
PCE RESTRICTED corresponds to its (mono-dimensional) feature-based representation �Ĉ .
To show that CB-PCE RESTRICTED is NP-hard, we define a reduction from the JACCARD

MEDIAN problem, which has been proven to be NP-hard in Chierichetti et al. (2010). JAC-
CARD MEDIAN is defined as follows: given a set U of m-dimensional, binary vectors, find
a (possibly new) binary vector x such that

∑
u∈U(1 − J (u,x)) is minimized. The corre-

sponding decision problem is: given a set U of m-dimensional binary vectors and a real
value r , check whether a binary vector x exists such that

∑
u∈U(1 − J (u,x)) ≤ r . Given a

set U of vectors in input to JACCARD MEDIAN, we define a valid instance of our problem
by building a new set U ′ = {u′ | u′ = 1

n(u)
u,u ∈ U}. It is easy to see that U ′ is a valid in-

put for CB-PCE RESTRICTED, as all vectors in U ′ represent valid projective matrices as
their values sum to one, and this is the only condition to satisfy for an ensemble E having
|Ĉ| = 1, ∀Ĉ ∈ E and |D| = 1. The key point is to show that, for each r , U has a solution
for the decision version of JACCARD MEDIAN if and only if U admits a solution for the
decision version of CB-PCE RESTRICTED. Let us prove the first side of the implication,
i.e., if U is a yes instance for JACCARD MEDIAN then U ′ is a yes instance for CB-PCE
RESTRICTED, for all r . To this end, let x denote the binary vector that makes U a yes in-
stance for JACCARD MEDIAN, i.e., the binary vector such that

∑
u∈U(1 − J (u,x)) ≤ r .

According to Lemma 2, the Jaccard similarities, and therefore the Jaccard distances defined
as 1 − J , are preserved if each input vector u is scaled up by a factor n(u). This implies that∑

u∈U(1 − J (u,x)) = ∑
u′∈U ′(1 − J (u′,x′)) ≤ r . Thus, x′ = 1

n(x)
x makes U ′ a yes instance

for CB-PCE RESTRICTED (note that, like each vector u′ ∈ U ′, x′ satisfies the constraints of
CB-PCE RESTRICTED on the output format because it represents a valid projective matrix).
The second side of the implication, i.e., if U is a no instance for JACCARD MEDIAN then
U ′ is a no instance for CB-PCE RESTRICTED, for all r , can be proved similarly. Indeed,
according to Lemma 2 again, if no binary vector is within a distance r from the vectors in
U , then no vector can exist with such a property for U ′ either. �

Theorem 1 CB-PCE ENHANCED is NP-hard.

Proof Straightforward, since CB-PCE ENHANCED is a more general version of CB-PCE
RESTRICTED, which has been proven to be NP-hard in Lemma 1. �

Theorem 2 The optimum of the problem P defined in (22)–(24) is (∀M, ∀o):

Γ ∗
M,o =

[ ∑
M′∈M

(
AM,o

AM′,o

) 1
α−1

]−1

.

Proof The optimal Γ ∗
M,o can be found by means of the conventional Lagrange multipliers

method. We first consider the relaxed problem P ′ of P obtained by temporarily discarding
the inequality constraints from the constraint set of P (i.e., the constraints defined in (24)).

We define the new unconstrained objective function Q′ for P ′ as follows:

Q′ = Q +
∑
o∈D

λo

( ∑
M′∈M

ΓM′,o − 1

)
. (29)
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The optimal Γ ∗
M,o is computed by first retrieving the stationary points of Q′, i.e., the

points for which

∇Q′ =
(

∂Q′

∂ΓM,o
,
∂Q′

∂λo

)
= 0.

Thus, we solve the following system of equations:

∂Q′

∂ΓM,o
= αAM,o(ΓM,o)

α−1 + λo = 0, (30)

∂Q′

∂λo
=

∑
M′∈M

ΓM′,o − 1 = 0. (31)

By solving (30) w.r.t. ΓM,o and substituting the solution in (31), we obtain:

∑
M′∈M

( −λo

αAM′,o

) 1
α−1 = 1. (32)

By solving (32) w.r.t. λo and substituting such a solution in (30), we obtain:

αAM,o(ΓM,o)
α−1 −

[ ∑
M∈M

(
1

αAM′,o

) 1
α−1

]−(α−1)

= 0. (33)

Finally, by solving (33) w.r.t. ΓM,o, we obtain a stationary point whose expression is exactly
equal to that reported in the claim of the theorem:

Γ ∗
M,o =

[ ∑
M′∈M

(
AM,o

AM′,o

) 1
α−1

]−1

. (34)

As it holds that (i) the stationary points of the Lagrangian function Q′ are also stationary
points of the original objective function Q, (ii) the feasible region of P , and hence the
feasible region of P ′, is a convex set, and (iii) Q is convex w.r.t. ΓM,o, it follows that
such a stationary point represents a global minimum of Q, and, accordingly, the optimal
solution of P ′. Moreover, as AM,o ≥ 0, ∀M, ∀o, it is trivial to observe that Γ ∗

M,o ≥ 0, ∀M,
∀o. Therefore, the solution in (34) satisfies the inequality constraints that were temporarily
discarded in order to define the relaxed problem P ′ (cf. (24)); thus, it represents the optimal
solution of the original problem P , which proves the theorem. �

Theorem 3 The optimum of the problem defined in (25)–(27) is (∀M, ∀f ):

Δ∗
M,f =

[∑
f ′∈F

(
BM,f

BM,f ′

) 1
β−1

]−1

.

Proof Analogous to Theorem 2. �

Proposition 4 For any two projective clusters C, C ′ it holds that:

T (XC,XC′) = 1 − p(C,C ′)
q(C) + q(C ′) − p(C,C ′)

,
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where

p
(
C,C ′) = (

�CΓ T
C′

) × (
�C�T

C′
)
, q(C) = (‖ΓC‖2

2

) × (‖ΔC‖2
2

)
.

Proof The Tanimoto distance T (XC,XC′) is equal to 1 − Ĵ (X, X̂). Regarding Ĵ , it holds
that:

Ĵ (X, X̂) =
∑|rows(X)|

i=1 XT
i · X̂i

‖X‖2
2 + ‖X̂‖2

2 − ∑|rows(X)|
i=1 XT

i · X̂i

=
(∑

o∈D

∑
f ∈F

ΓC,oΔC,f ΓC′,oΔC′,f

)
×

(∑
o∈D

∑
f ∈F

ΓC,oΔC,f

+
∑
o∈D

∑
f ∈F

ΓC′,oΔC′,f −
∑
o∈D

∑
f ∈F

ΓC,oΔC,f ΓC′,oΔC′,f

)−1

=
((∑

o∈D

ΓC,oΓC′,o

)
×

(∑
f ∈F

ΔC,f ΔC′,f

))
×

((∑
o∈D

ΓC,o

)
×

(∑
f ∈F

ΔC,f

)

+
(∑

o∈D

ΓC′,o

)
×

(∑
f ∈F

ΔC′,f

)
−

(∑
o∈D

ΓC,oΓC′,o

)
×

(∑
f ∈F

ΔC,f ΔC′,f

))−1

= (�C�T
C′) × (�C�T

C′)

(‖�C‖2
2) × (‖�C‖2

2) + (‖�C′ ‖2
2) × (‖�C′ ‖2

2) − (�T
C · �C′) × (�C�T

C′)

= p(C,C ′)
q(C) + q(C ′) − p(C,C ′)

.

�
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