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Abstract A multi-class classifier based on the Bradley-Terry model predicts the multi-class
label of an input by combining the outputs from multiple binary classifiers, where the com-
bination should be a priori designed as a code word matrix. The code word matrix was
originally designed to consist of +1 and −1 codes, and was later extended into deal with
ternary code {+1,0,−1}, that is, allowing 0 codes. This extension has seemed to work ef-
fectively but, in fact, contains a problem: a binary classifier forcibly categorizes examples
with 0 codes into either +1 or −1, but this forcible decision makes the prediction of the
multi-class label obscure. In this article, we propose a Boosting algorithm that deals with
three categories by allowing a ‘don’t care’ category corresponding to 0 codes, and present
a modified decoding method called a ‘ternary’ Bradley-Terry model. In addition, we pro-
pose a couple of fast decoding schemes that reduce the heavy computation by the existing
Bradley-Terry model-based decoding.

Keywords Multi-class classification · Bradley-Terry model · Ensemble learning ·
Decoding

1 Introduction

Development of classification methods is one of the major research topics in the fields of
machine learning and pattern recognition (Hastie et al. 2001). While methods for binary
classification, such as classical linear discriminant analysis (LDA), support vector machine
(SVM) (Vapnik 1995) and AdaBoost (Freund and Schapire 1997), are well established,
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multi-class classification remains challenging, and methods to achieve it are still being de-
veloped. There are two major types of approaches to multi-class classification problems.
One tries to directly construct discriminant functions for multiple classes, for example, by
estimating conditional probability density for each class. Recently, several multi-class ex-
tensions of SVM (Weston and Watkins 1999; Crammer and Singer 2001) and AdaBoost
(AdaBoost-M2 and so on) (Freund and Schapire 1997) have also been proposed. The other
approach decomposes an original multi-class problem into multiple binary classification
problems and rather indirectly makes a multi-class discriminant function so as to integrate
results of constituent binary classifiers.

In this study, we take the latter approach. Dietterich and Bakiri presented a general frame-
work called error-correcting output coding (ECOC), in which an original multi-class prob-
lem was decomposed into an arbitrary number of binary classification problems (Dietterich
and Bakiri 1995), and the simplest decoding method, Hamming decoding, was employed to
obtain a multi-class decision. Although the original ECOC did not allow the code matrix to
contain zero components, Allwein et al. extended the ECOC framework to allow the code
matrix to have zero components and presented a more general loss-based decoding (Allwein
et al. 2001). A decoding method based on probabilistic modeling of the noise process con-
stituted by the trained binary classifiers was also proposed by the authors (Takenouchi and
Ishii 2009).

On the other hand, Hastie and Tibshirani presented a different approach to the ECOC
decoding problem (Hastie and Tibshirani 1998), which integrates the results of binary clas-
sifiers designed as the 1–1 code word matrix into a single estimate of class membership
probabilities, based on a probabilistic model of 1–1 matches of two classes, called the
Bradley-Terry model (BT) (Bradley and Terry 1952). Zadrozny (2001) extended this prob-
abilistic decoding method so as to be applicable to arbitrary code matrices including zero
components. We previously proposed an analog ECOC coding scheme whose code values
are optimized based on the multi-class classification performance (Yukinawa et al. 2008).

Although these BT model-based approaches have seemed to work well, application of
the BT model to ECOC in fact contains a big problem; a feature vector whose real code
is 0 is forcibly categorized into either +1 or −1, but this meaningless decision is harmful
because it may make decisions by other binary classifiers obscure. There have been several
studies to deal with ternary categories, +1, 0 and −1. A simple two-stage approach was
taken in Moreira and Mayoraz (1998): the first-stage discriminates whether an input feature
vector has code 0 or not, and the second-stage discriminates whether an input has code +1
or −1. A tri-class SVM that applies constraints to feature vectors with code 0 was also pro-
posed (Angulo and Català 2000; Angulo et al. 2006) and was employed for the multi-class
classification. In Cutzu (2003), an influence of feature vectors with code 0 was implicitly
considered in the decoding process. On the other hand, the BT model-based methods require
an optimization process to obtain a probability membership estimate for each feature vec-
tor, (i.e. to perform decoding), whose implementation due to iterative calculations requires
much computation time. In addition, when dealing with ternary code +1,0,−1,1 decoding
of multi-class labels has often been implemented by a (weighted) voting scheme, which is
simple but cannot consider the reliability of each binary classifier. A main objective of our
current study is to propose a computationally feasible method for multi-class classification,
based on an appropriate treatment of ternary code.

In this article, we propose a Boosting algorithm to deal with ternary code and a fast
decoding method under the formulation of a ‘ternary’ BT model, in order to solve the above

1In this article, we call a triplet {+1,0,−1} a ternary code.
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difficulties. In Sect. 2, basic settings are described and a conventional decoding method
based on the BT model is reviewed. In Sect. 3, we propose a ‘ternary’ Boosting algorithm
and a couple of new decoding methods that substantially reduce the computational cost.
In Sect. 4, performance of the proposed methods is compared with those of the existing
multi-class classification methods using various benchmark problems.2

2 Settings and methods

In this section, we define multi-class classification problems according to the framework of
ECOC (Sect. 2.1) and then introduce a classification (decoding) method based on the BT
model (Sect. 2.2).

2.1 Multi-class classification in the ECOC framework

Let x be a feature (input) vector to be classified and y ∈ Y = {1, . . . ,G} a multi-class
(G-class) label of the feature vector x, provided that a dataset consisting of n examples
{xi , yi}n

i=1 has been given for making a multi-class classifier.
We consider the decomposition of an original G-class classification problem into multi-

ple binary classification problems. Let W ∈ {+1,0,−1}J×G be a code word matrix, which
is assumed to be given a priori, and z(y) = (z1(y), . . . , zJ (y))′ ∈ {+1,0,−1}J the y-th col-
umn vector of W , where ′ denotes a transpose. The vector z(y) equivalently represents the
multi-class label y, and we call it the ‘code word’ of y. For a given code word matrix, W , the
original multi-class classification problem is decomposed into J binary classification prob-
lems and the j -th row of the code word matrix, Wj , defines a binary classification problem;
if Wjk = +1, where Wjk is the (j, k) component of W , then the feature vector belonging
to class k is regarded as a positive example for the j -th binary classification problem, but
as a negative example if Wjk = −1. Examples belonging to the k-th class with zero code
(Wjk = 0) are not used for training of the j -th classifier. The j -th binary classifier is thus
trained by examples regarded as positive and negative. After training of all binary classifiers
associated with the code word matrix, the class of a new input vector is predicted by an
appropriate decoding method by integrating the outputs from the trained binary classifiers.

Let a binary classification problem designated by the j -th row of W ideally discriminate
between the positive class set C+1

j and the negative class set C−1
j . By definition, C+1

j and

C−1
j are non-empty and disjoint subsets of Y = {1, . . . ,G}:

C+1
j ∪ C−1

j ⊂ {1, . . . ,G}, C+1
j �= ∅, C−1

j �= ∅, C+1
j ∩ C−1

j = ∅. (1)

Let C0
j be the complementary set of C+1

j ∪C−1
j . The j -th binary classifier is therefore trained

using examples whose supervised labels are in C+1
j ∪C−1

j , while examples with labels in C0
j

2A short version of this article has been presented as a conference paper (Takenouchi and Ishii 2008). While
our fast decoder in the previous version used some approximations, we examine in the current study the
properties of the improved fast decoder which is solved strictly by the quadratic programming technique. An-
other major difference between the current version and the short version are in the part of experiments, where
properties and performance of the proposed method are intensively investigated to clarify the advantage and
disadvantage of the proposed methods. Moreover, we compared the proposed methods with a previously pro-
posed ECOC-based multi-class classification method (Angulo et al. 2006) and the state-of-the-art Boosting
methods, which further show the properties of our methods.
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are not used. As a constituent binary classifier, we can employ any one, e.g., SVM (Vapnik
1995) and AdaBoost (Freund and Schapire 1997). The discriminant function of the j -th
trained binary classifier is denoted by fj (x) ∈ R.

2.2 Bradley-Terry model-based method

A BT model-based decoding method integrates outputs from multiple binary classifiers into
multi-class classification. Each binary classifier is required to output a probabilistic guess
rather than a binary one. One well-established way to output a probabilistic guess is to
employ the logistic model, which transforms a discriminant function value to a probabilistic
value (Platt 1999). For an input x whose discriminant function value by the j -th binary
classifier is fj (x) ∈ R, the probabilistic guess for binary assignment, qj (x), is given by

qj (x) = (q+1
j (x), q−1

j (x))′, q−1
j (x) = 1 − q+1

j (x),

q+1
j (x) = 1

1 + exp(−aj + bjfj (x))
, (2)

where aj and bj are regression parameters; by maximizing the log-likelihood

n∑

i=1

∑

k∈{+1,−1}
I(yi ∈ Ck

j ) logqk
j (xi ), (3)

maximum likelihood (ML) estimation of the parameters, âj and b̂j , is performed. The func-
tion I(R) takes 1 if a conditional expression R is true and 0 otherwise. After the parameter
estimation, the probabilistic guess is obtained as q̂j (x).

For a new input vector x, let

p(x) = (p1(x), . . . , pG(x))′,
∑

y∈Y

py(x) = 1

be the multinomial assignment vector, each of whose components represents the conditional
probability of y given x. Given any assignment vector p(x), the binary assignment proba-
bility into either C+1

j or C−1
j is written as

π j (x) = (π+1
j (x),π−1

j (x))′, π−1
j (x) = 1 − π+1

j (x), (4)

π+1
j (x) =

∑
y∈C+1

j
py(x)

∑
y∈C+1

j
∪C−1

j
py(x)

. (5)

We assume that q̂j (x) is a noisy observation of π j (x). Therefore, by approximating q̂j (x)

by π j (x), which is dependent on p(x), for all j in some sense, the assignment vector p(x)

can be estimated, which corresponds to the multi-class classification. In the existing stud-
ies (Hastie et al. 2001; Zadrozny 2001), the weighted sum of the Kullback-Leibler (KL)
divergence between q̂j (x) and π j (x) was employed:

D(p) =
J∑

j=1

wj

∑

k∈{+1,−1}
q̂k

j (x) log
q̂k

j (x)

πk
j (x)

, (6)
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where wj is the weight for the j -th classification problem. wj can be set simply to 1 or
to the number of examples nj in the set C+1

j ∪ C−1
j . Alternatively, the weight wj can be

estimated such that a pre-defined utility of the target multi-class classification is maximized
(Yukinawa et al. 2008). By minimizing (6), the hidden assignment vector is estimated as

p̂(x) = argmin
p

D(p) subject to py(x) ≥ 0 (y = 1, . . . ,G),
∑

y∈Y

py(x) = 1, (7)

and the multi-class label is predicted as corresponding to the largest component of p̂(x).
Note that the optimization problem (7) is usually non-convex and then difficult to solve.

Since such a non-convex problem should be solved for each input x, moreover, the compu-
tational cost linearly increases as the number of input vectors to be classified increases. To
reduce the computational cost, an iterative algorithm was formerly presented in Hastie et al.
(2001).

3 Classification based on ternary BT model

Consider that the j -th row of the code word matrix W includes some zero codes. If a new
input x to be classified in fact belongs to the set C0

j , the class membership probability esti-
mated by the j -th classifier does not have any information because the code associated with
x is 0 rather than +1 or −1, and then the relation between π j (x) and q̂j (x) is obfuscated.
In other words, output from the j -th binary classifier disturbs the estimation of the assign-
ment vector p(x) in the decoding process. To deal with this problem, one possible idea is
to re-define π j (x) and q̂j (x) as ternary vectors, so as to categorize the input x into either
C+1

j , C−1
j or C0

j . For an appropriate estimation of the ternary probabilistic guess, three-class
classifiers are essential. The use of a three-class classifier makes the encoding and decoding
based on the general ECOC framework (i.e., allowing 0 codes) consistent with each other. To
achieve this in a computationally efficient manner, in this study, we present a ‘ternary’ Ad-
aBoost algorithm described in Sect. 3.1. In Sect. 3.2, we propose a ‘ternary’ BT model-based
decoding method. In Sect. 3.3, a couple of schemes for further reducing the computational
cost are presented.

3.1 Ternary AdaBoost algorithm

In this subsection, we present an AdaBoost-type algorithm by modifying the loss function
of the original AdaBoost into one dealing with the category of ‘don’t care’ (i.e. code 0).
Let a training dataset contain N examples, {xi , ξi}N

i=1, where ξi ∈ {+1,0,−1} is the ternary
code of the i-th example (feature vector). Let N1 be the number of examples coded +1 or
−1, and N2 that of examples coded 0. According to the existing BT model-based method,
examples coded +1 or −1 are used for training of the binary classifier and the correspond-
ing probabilistic guess, but examples coded 0 are just ignored. To obtain an appropriate
ternary probabilistic guess, the information associated with examples coded 0 should be
incorporated into the binary classifier, in particular, AdaBoost. For this purpose, we put a
constraint due to the ternary nature of examples on AdaBoost’s discriminant function F(x):
the absolute value of the discriminant function for the examples coded 0 is constrained to be
small, while the absolute value for the examples coded ±1 is maximized as in the original
AdaBoost. Such a constraint is achieved by the following loss function:

L(F) =
N∑

i=1

U(F(xi ); ξi), (8)
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where

U(z, ξ) = I(ξ �= 0) exp(−zξ) + I(ξ = 0)
λ

2
(exp(z) + exp(−z)), (9)

and 0 ≤ λ ≤ 1 is a hyper-parameter that controls the balance between the cost from code
±1 and that from code 0. Note that the function (9) corresponds to the cost function of the
conventional AdaBoost when λ = 0. A ternary AdaBoost algorithm can be obtained so as
to sequentially minimize the loss function (8) using a set of weak classification machines,
F , each of which is a weak binary classifier that outputs +1 or −1. When the discriminant
function Ft−1 is given, the function is updated as

Ft(x) = Ft−1(x) + αtft (x), (10)

where ft ∈ F is a weak machine selected as to minimize

εt (f ) =
∑

i:ξi �=0 exp(−Ft−1(xi )ξi) I(f (xi ) �= ξi) + λ
2

∑
i:ξi=0 exp(Ft−1(xi )f (xi ))∑n

i=1 U(Ft−1(xi ); ξi)
, (11)

and αt = 1
2 log 1−εt (ft )

εt (ft )
is a coefficient of ft .

If we set the hyper-parameter λ to 0, the above algorithm is reduced to the original
AdaBoost training algorithm. In the proposed algorithm, the quantity εt (f ) becomes small
when the weak classifier f (x) correctly predicts the code for an x with code ±1, or the
sign of f (x) is different from that of the previous discriminant function Ft−1(x) for an x

with code 0. This latter character of εt (f ) allows the updated discriminant function Ft(x) to
output a small value for the x with code 0. This modification of the AdaBoost algorithm is
the key to improving the ternary BT model-based decoding, which is described in the next
subsection.

Note that the second term of (9) can be regarded as a regularization term defined by only
examples with code 0 (Dekel et al. 2005), and the hyper-parameter λ controls the degree of
emphasis on code 0. Then the function Ft(x) gets to ignore information of code ±1 when
λ is set to a large value. When the number of examples with code 0 is large compared with
these coded ±1, the effect of the regularization term also becomes large.

Here, we define the risk as the expectation of the loss function (8). When we know
the joint distribution p(x)p(ξ |x) of a pair (x, ξ), implying that the sample size n goes to
infinite, the minimizer of the risk has a kind of consistency as the binary classifier.

Proposition 1 The population minimizer F ∗ of the risk is given by

F ∗(x) ≡ argmin
F

E[L(F)]

≡ argmin
F

∫ ∑

ξ∈{+1,0,−1}
p(x)p(ξ |x)U(F (x), ξ)dx

= 1

2
log

p(+1|x) + λ
2 p(0|x)

p(−1|x) + λ
2 p(0|x)

, (12)

where p(ξ |x) denotes the conditional distribution of ξ given x.

Equation (12) can be obtained by a straightforward variational calculation as in Murata
et al. (2004). From (12), we see that the decision boundary between classes +1 and −1
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associated with F ∗ does not depend on the value of λ, which is a preferable character of our
ternary classifier.

Proposition 2 For any x in {x|0 = argmaxξ∈{+1,0,−1} p(ξ |x)}, where the Bayes optimal de-
cision (classification) becomes 0, |F ∗(x)| ≤ 1

2 log λ+2
λ

holds.

Proof The function F ∗(x) is a monotonically increasing function with respect to p(+1|x)

and a monotonically decreasing function with respect to p(−1|x). Because we have as-
sumed 0 = argminξ∈{+1,0,−1} p(ξ |x) for x, then for any p(0|x), we observe that

F ∗(x) ≤ 1

2
log

p(0|x) + λ
2 p(0|x)

0 + λ
2 p(0|x)

= 1

2
log

λ + 2

λ
, (13)

F ∗(x) ≥ 1

2
log

0 + λ
2 p(0|x)

p(0|x) + λ
2 p(0|x)

= −1

2
log

λ + 2

λ
, (14)

showing

|F ∗(x)| ≤ 1

2
log

λ + 2

λ
. (15)

�

Note that the converse is not necessarily the case, which means that there may exist an
x satisfying |F ∗(x)| ≤ 1

2 log λ+2
λ

but not being in {x|0 = argminξ∈{+1,0,−1} p(ξ |x)}. We here
stress that this ternary AdaBoost algorithm outputs nothing but a binary classifier, but its
discriminant function incorporates the information that there are three classes, positive, neg-
ative and ‘don’t care’. A similar attempt for SVMs (tri-class SVM) was made in Angulo et
al. (2006). The tri-class SVM is defined with an (n−n0)n0 × (n−n0)n0 Gram matrix where
n0 is the number of examples with code 0, and then may require large memory: O(n4) in the
worst case in which n0 is around n/2. In such a situation, the tri-class SVM requires much
more computational cost than the ordinary SVM, and then needs an approximation for prob-
lems with large n (and n0) values, while our ternary AdaBoost can be easily employed even
for large-scale problems. When employing the tri-class SVM for multi-class classification,
integration of binary classifiers into multi-class classification was performed by a simple
majority vote method (Angulo et al. 2006). This majority vote method is sometimes prob-
lematic, because all binary classifiers are equally treated regardless of their performance.
Moreover, we cannot make a decision when outputs of the constituent binary classifiers are
split. To resolve these problems which may degrade classification performance, in the fol-
lowing subsection, we will propose an efficient decoding method, a combination of ternary
AdaBoost and the ternary BT model-based decoding, which is suitable when the ECOC-
based encoding includes 0 codes.

3.2 Ternary BT model-based decoding

From the discriminant function of the ternary AdaBoost, we obtain membership probabil-
ities of three categories, ‘positive’ (C+1

j ), ‘negative’ (C−1
j ) and ‘don’t care’ (C0

j ), so as to
correspond respectively to the j -th code zj (y) being +1, −1 and 0. A logistic model can
model such ternary probabilistic membership as

qj (x) = (q+1
j (x), q0

j (x), q−1
j (x))′ =

(
e

a+1
j

+b+1
j

F (x)

Z(x)
,

1

Z(x)
,
e

a−1
j

+b−1
j

F (x)

Z(x)

)′
, (16)
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where a+1
j , b+1

j , a−1
j , b−1

j are regression parameters and Z(x) is the normalization constant.
Those parameters are estimated such to maximize the following log-likelihood:

n∑

i=1

∑

k∈{+1,0,−1}
I(yi ∈ Ck

j ) logqk
j (xi ). (17)

For the multinomial assignment vector p(x), we can assume the three-class membership
probabilities as

π j (x) = (π+1
j (x),π0

j (x),π−1
j (x))′ (18)

=
( ∑

y∈C+1
j

py(x),
∑

y∈C0
j

py(x),
∑

y∈C−1
j

py(x)

)′
. (19)

Note that in this ‘ternary’ formulation, π j (x) does not require any normalization term which
was necessary in (5) when the j -th row of W contains zero codes. In the special case where
a row of W contains no zero codes, π j (x) in (19) is the same as in the original model (5).

By minimizing the weighted sum of the KL divergence between q̂j (x) and π j (x),

D(p) =
J∑

j=1

wj

∑

k∈{+1,0,−1}
q̂k

j (x) log
q̂k

j (x)

πk
j (x)

, (20)

with constraints
∑

y∈Y py(x) = 1 and py(x) ≥ 0 (y ∈ Y), we obtain an estimator p̂(x) =
(p̂1(x), . . . , p̂G(x))′. A multi-class label for the input x is predicted by argmaxy p̂y(x). Al-
though we do not have a closed-form solution of the optimization problem (20), this is a
convex problem so that the unique solution can be efficiently obtained by an appropriate
optimization method such as a quasi-Newton method. Note that the optimization (20) is
necessary for each input as in the original BT model-based decoding.

3.3 Reduction of computational cost

The decoding for the ternary BT models needs to minimize the (weighted) KL divergence for
each input x, as can be seen in (20). While (20) can be efficiently solved, the computational
cost is not small when the number of input vectors whose labels are to be estimated is
large. To overcome this problem, one possible idea is to simplify the optimization problem
as linear (Windeatt and Ghaderi 2003). For this purpose, we consider here the following
alternative objective function:

Dsq(p) =
J∑

j=1

wj

∑

k∈{+1,0,−1}
(πk

j (x) − qk
j (x))2 (21)

= (t(x) − Rp(x))′V (t(x) − Rp(x)). (22)

t(x) is a vector of
∑J

j=1 |qj (x)| dimension, in which vectors q1(x), . . . ,qJ (x) are aligned
as

t(x) = (q1(x)′,q2(x)′, . . . ,qJ (x)′)′. (23)
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Here, |s| is the dimensionality of vector s. V is a |t(x)| × |t(x)| diagonal matrix, each of
whose diagonal components is the weight wj associated with qj (x). The weight wj of the
j -th classifier is typically set to 1. R is a |t(x)| × G matrix and its j -th row corresponding
to qk

j (x) is written as

(I(Wj,1 = k), I(Wj,2 = k), . . . , I(Wj,G = k)). (24)

In the existing BT model-based decoding method (Zadrozny 2001), the squared loss function
like (21) does not make the problem linear. Because the definition (5) of π j (x) includes the
normalization term due to the zero codes, the squared loss function like (21) becomes non-
quadratic with respect to p(x).

With the objective function (22), we consider the following optimization problem:

Q1: min
p

Dsq(p), subject to py(x) ≥ 0 (y = 1, . . . ,G),
∑

y∈Y

py(x) = 1. (25)

Because this is a quadratic programming problem, it is efficiently solved. Moreover, a further
simplification can be applied in order to reduce the computational cost more, in which the
constraint of the positivity of py(x) is removed as:

Q2: min
p

Dsq(p), subject to
∑

y∈Y

py(x) = 1. (26)

This problem is explicitly solved. The Lagrangian is written as

L = (t − Rp(x))′V (t − Rp(x)) − γ (1′p(x) − 1), (27)

where 1 = (1, . . . ,1)′ is a G-dimensional all 1’s vector and γ is a Lagrange multiplier. The
solution is given by

p̂(x) = (R′V R)−1

(
R′V t(x) + 1 − 1′(R′V R)−1R′V t(x)

1′(R′V R)−11
1
)

. (28)

Here, R′V R is a G × G matrix, but its inverse can be calculated relatively easily because
the number G of classes are typically several tens at most. Moreover, calculations of the
terms that do not depend on t in (28), including (R′V R)−1, are necessary just once before
decoding of the multi-class label of each input x, while the decoder in Sect. 3.2 needs the
optimization of (20) for each sample, i.e., n times in total.

In addition, we omit the constraint 1′p(x) = 1, which requires the total volume to be 1
for the probability distribution p(x). This simplification allows γ = 0 in (27), and hence we
obtain the estimator

p̂(x) = (R′V R)−1R′V t(x). (29)

In (29), the quantity (R′V R)−1R′V does not depend on the input x, then decoding for
an arbitrary input x is easy. Because these estimators (28) and (29) do not require p(x)

to satisfy the definition of the probability distribution, positivity or constant volume, they
are not suitable for estimating the conditional probability p(y|x). In the classification task,
however, we are usually interested in the class ŷ that maximizes p̂y(x) and then omission of
constraints corresponding to requirements of the probabilistic distribution of p(x) are not
very critical. In the next experiment section, we actually see that these estimators suffice for
various multi-class classification tasks. For the estimator (29), we remark the following fact.
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Remark 1 If the weight wj is set to 1 and the set of binary classification problems defined by
the code word matrix W is invariant for arbitrary permutation of classes, then the estimator
(29) is equivalent to the estimator (28).

For example, such code word matrices as “all pairs” and “1 vs all” (Allwein et al. 2001)
satisfy the invariant condition in Remark 1. Then, there is no need to calculate (28) since the
estimator (29) requires less computation cost.

4 Experiments

We examined performance of the proposed methods by comparing with the existing BT
model-based decoding method using a synthetic dataset and real benchmark datasets. Since
the proposed ternary modification is effective especially when the code word matrix contains
a lot of 0 codes, we prepared such a code word matrix W that contains G rows randomly se-
lected from the all pairs code matrix. Note that in each row of the all pairs code matrix, there
is only one 1 code and one −1 code, and the others are all 0’s. Although this setting includes
the special case that W is the all pairs code matrix, the training of binary classifiers in that
case may be difficult, especially when the number of classes (G) is large. If we can employ
full all pairs code matrix by sacrificing the efficiency to some extent, the performance of
the proposed method increases more, which will be briefly examined in Appendix C. As the
weak classifier of AdaBoost and ternary AdaBoost, we employed the decision stump, the
simplest linear classifier. The step number T of each of the two Boosting-type algorithms
was determined by validation technique, in order to avoid overfitting, as follows: we ran-
domly divided the original dataset into an 80% training subset and a 20% validation subset,
and determined the step number so as to minimize the loss function for the validation subset.
Throughout the experiments, λ in ternary AdaBoost was fixed to 1, and for all the decoding
methods, the weight wj for the j -th classifier was simply set to 1.

We compared the following combinations of binary classifier, probabilistic guess and
decoder.

A: Binary probabilistic guess by AdaBoost and the existing BT model-based decoding with
the KL-divergence (Zadrozny 2001).

B: Ternary probabilistic guess by AdaBoost and ternary BT model-based decoding with the
KL-divergence.

C: Ternary probabilistic guess by ternary AdaBoost and the existing BT model-based de-
coding with the KL-divergence (Zadrozny 2001).

D: Ternary probabilistic guess by ternary AdaBoost, and ternary BT model-based decoding
with the KL-divergence (decoder with (25)).

E: Ternary probabilistic guess by ternary AdaBoost, and ternary BT model-based decoding
with the squared loss and quadratic programing (decoder with (26)).

F: Ternary probabilistic guess by ternary AdaBoost, and ternary BT model-based decoding
with the squared loss. The positiveness of py(x) was ignored (decoder with (28)).

G: Ternary probabilistic guess by ternary AdaBoost, and ternary BT model-based decoding
with the squared loss. Constraints of the positiveness of py(x) and the total volume
1′p(x) = 1 were ignored (decoder with (29)).

Method A is the well-established method (Zadrozny 2001; Yukinawa et al. 2008). By eval-
uating methods B and C, we independently examine the effect of ternary BT model-based
decoding and ternary AdaBoost (training algorithm), respectively. Method D is the proposed
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Fig. 1 A typical synthetic
dataset. Each class label is
signified by a different symbol
(◦, �, +, ×, ♦)

method and methods E, F and G are its simplified versions. Also as reference, comparison
of the proposed methods with tri-class SVM (Angulo et al. 2006) was done with an small
synthetic dataset in Appendix B.

4.1 Synthetic dataset

We applied the methods above, A–G, to five-class synthetic datasets each consisting of two-
dimensional input feature vectors. A typical dataset is shown in Fig. 1. Note that in this
simulation, only the second dimensionality x2 of the feature vector x is informative for the
classification task. We repeatedly generated 100 pairs of a training dataset and a test dataset
each containing 300 and 3,000 samples, respectively, and examined the average performance
of each method over the 100 pairs (trials). The validation subset was prepared within the
training subset in the previously described manner, and the step number of Boosting-type
algorithms was determined using the validation subset.

We first investigated difference between AdaBoost and ternary AdaBoost. AdaBoost and
ternary AdaBoost were applied for binary classification problems defined by the all pairs
code word matrix over the 100 pairs of the training datasets. In each binary problem, we
calculated the Spearman’s rank correlation coefficient between resultant values of discrim-
inant function and ternary codes for examples, whose box-whisker plot is shown in Fig. 2.
We observe that ternary AdaBoost attained higher correlation with the ternary code than the
original AdaBoost; the difference between the two methods was statistically significant by
the Wilcoxon matched-pair signed rank two-sided test, such that the p-value was less than
2.2 × 10−16. Next, to observe detailed behaviors of AdaBoost and ternary AdaBoost, we ex-
amined a simple binary classification problem defined by a code word matrix (0,1,0,0,−1)

for the synthetic dataset. Figure 3 shows the obtained discriminant functions of AdaBoost
and ternary AdaBoost, which are plotted against x2. Our newly proposed ternary AdaBoost
could construct an appropriate discriminant function by incorporating information of exam-
ples with code 0. On the other hand, AdaBoost inconsistently predicted the code of class 3
as +1 or −1, for example; this occurred because AdaBoost emphasized discrimination be-
tween class 2 and class 5 and then failed to incorporate the information of examples coded 0.
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Fig. 2 Boxplots of the
Spearman’s rank correlation
coefficient between ternary codes
and values of the two
discriminant functions
constructed by AdaBoost and
ternary AdaBoost

Fig. 3 Discriminant functions obtained by ternary AdaBoost (left panel) and AdaBoost (right panel) are
plotted against x2. The codes of the five classes were defined as (0,1,0,0,−1)

Figure 4 shows box-whisker plots of the training error (left panel) and the test error (right
panel) over the 100 trials. These results suggest that the proposed methods, D, E, F and G,
outperform the existing method (method A) and the incomplete implementations (methods
B and C) are not sufficient. Additionally, one can see that performances of the decoder
based on the squared loss (method E) and its simplified variants (methods F and G) are also
comparable to that based on the KL-divergence (method D), while the computation time of
decoders with the squared loss has been substantially reduced compared with that with the
KL-divergence. Figure 5 shows box-whisker plots of the computational time for the train-
ing dataset over the 100 trials. In this figure, the upper left panel shows the computational
time of processes except for decoding, which includes training of (ternary) AdaBoost and
output of (ternary) probabilistic guess, and the upper right panel shows that for the decoding
process, in each method. In the lower panel, we compared the computational time for all
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Fig. 4 Boxplots of the training error (left panel) and the test error (right panel) over the 100 simulation trials

the processes in each method. As we can observe from the upper left panel, the considera-
tion of the ternary code in the binary classification and the probabilistic guess requires more
computational time than that without considering them, because the numbers of examples
and parameters for probabilistic guess have increased by explicitly dealing with code 0. As
shown in the upper right panel of Fig. 5, however, the computational time of methods E,
F and G using the quadratic loss has been drastically reduced and consequently that for
all the processes has also considerably improved (lower panel). Note that the optimization
problems associated with methods B and D, which are defined with the KL-divergence and
ternary probabilistic guess, respectively, are convex, then the computational time is reduced
compared with methods A and C. Methods A, B, C and D were optimized by the quasi-
Newton method registered in a library in the R language (R Development Core Team 2010)
and method E was solved by a quadratic programming solver also implemented in the R
language.

4.2 Real datasets

We examined the performance of our ternary BT model-based classification method by using
real benchmark datasets, whose features are summarized in Table 1. Datasets except for the
“Bioinfo” dataset were from the UCI repository (Blake and Merz 1998) and the “Bioinfo”
dataset was for studying lung cancers registered at Harvard University (Bhattacharjee et al.
2001).

Since there were 8 examples with missing attributes in the Dermatology dataset, those
examples were just removed; this simple heuristic method is due to the complete case analy-
sis, whose underlying assumption of missing completely at random (MCAR) assures no
bias caused by the example removal (Allison 2001).3 Note that in our experiments, all of
the methods were compared under the same condition, implying that the comparison is fair
regardless of the data prepossessing including the missing entry imputation. We divided the

3If the MCAR assumption does not hold, any intelligent imputation method for the missing attributes would
improve the classification performance. Since, however, there is no way to know whether the MCAR assump-
tion holds or not in most real datasets, we introduced the MCAR assumption here. The detailed treatment of
missing attributes is not in the scope of the current study.
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Fig. 5 Boxplots of the computational time of the pre-decoding process (training of the binary classifier and
performing of probabilistic guess) (upper left panel), that of the decoding process (upper right panel) and
that of all the processes for the training dataset (lower panel), over the 100 simulation trials

original dataset into a training dataset and a test dataset with the ratios of 80% and 20%,
respectively, and evaluated the generalization performance by using the test dataset; we re-
peated this procedure 100 times by changing the dataset division and observed the average
performance.

Like in the simulation experiment, we subdivided the training dataset into a training
subset and a validation subset with the ratios of 80% and 20%, respectively, and set the
step number of the boosting algorithm so as to minimize the loss function for the validation
subset.

Tables 2 and 3 show averaged performance of each method for training datasets and test
datasets over the 100 trials, respectively. For each dataset, the upper row shows the mean
(and the standard deviation) of error in %, and the lower row the mean of performance ratio
(accuracy of each method divided by the best (bolded) one) in %. The best performance in
the sense of the averaged error and standard deviation for each dataset is boldfaced. The
asterisk ∗ (∗∗) is attached when the error of the marked algorithm is significantly worse
than that of the best method with the level of 5% (1%); we used the Wilcoxon matched-
pair signed rank one-sided test. We observe that the proposed methods have drastically im-
proved the performance over the existing BT model-based method except for few datasets.
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Table 1 Information of the real
datasets Dataset #Total #Attributes #Classes

Balance 625 4 3

Bioinfo 203 2883 5

Car eva. 1728 6 4

Dermatology 358 34 6

Glass 214 9 6

Iris 150 4 3

Sat. image 6435 36 6

Thyroid 7200 21 3

Vehicle 846 18 4

Waveform 5000 21 3

Wine 178 13 3

For some datasets whose class number is small, although the existing method attained the
best performance, the proposed methods also showed comparable performance. Since the
median test error would be more appropriate for evaluating the expected performance of
classifiers, it is shown in Table 4 of Appendix A; in terms of the median performance, our
methods further outperformed the existing method. For the dataset ‘Thyroid’, our proposed
methods were inferior to the existing method, possibly because of the unbalanced number of
examples between the three classes. Actually, there are 166,368, and 6666 examples in the
three classes; when code 0 was assigned to class 3 with 6666 examples, ternary AdaBoost
failed to construct an appropriate discriminant function due to the too strong regularization
coming from class 3 of the large population. To deal with such an imbalanced situation,
ternary AdaBoost requires an appropriate tuning of the hyper-parameter λ: we can employ
the validation technique for this purpose, while it requires more computational cost being
proportional to the number of binary classifiers. In most cases, the fixed value λ = 1 works
well and then this setting suffices. We note that the computational cost of the decoder with
the squared loss was much less than that with the KL-divergence, while the performance of
the decoders with the squared loss was not degraded in spite of ignoring the constraints of
the probabilistic distribution, the positiveness and the total volume. If we perform validation
to appropriately tune the hyper-parameter λ, the advantage of our decoder, low computation
time, may be hurt to some extent. Although we have not discussed simple but stable tuning
methodologies of the hyper-parameter in this study, theoretical consideration of asymptotic
statistics (Van der Vaart 1998) would be of help, which is our future work. In addition, we
compared the multi-class classification performance of our methods with simple Boosting-
type methods that ignore the 0 codes as reference; the results are shown in Appendix C.

As a summary of experiments, our ECOC-based multi-class decoder based on the com-
bination of ternary AdaBoost and ternary BT model provides a fairly accurate and sub-
stantially efficient classification performance. This has been confirmed by comparison with
existing ECOC-based decoders (Table 3), tri-class SVM (Fig. 7 in Appendix B) for a small-
scale problem, and Boosting-type algorithms (Table 5 in Appendix C).

5 Conclusions

In this article, we first discussed the difficulty in applications of the BT model-based decod-
ing to the ECOC encoding for multi-class classification tasks when the code word matrix
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includes zero codes. Because in such cases the estimated class membership probability does
not have any information of the input feature vector belonging to classes with zero codes,
the outputs from the trained binary classifiers would disturb the decoding of the multi-class
label of the input vector to be estimated. Although this is an essential problem in the ECOC
framework, it has been ignored by many ECOC-based classification studies, especially those
employing BT model-based decoders. To overcome this difficulty, in this study, we proposed
a ternary AdaBoost algorithm, which enables us to estimate the membership probabilities as
three categories: ‘positive,’ ‘negative’ and ‘don’t care’. In addition, we proposed modified
decoding methods using the squared loss within the framework of the ‘ternary’ BT model,
which substantially reduced the computational cost while preserving the superior classifi-
cation performance over the naive BT model-based decoding method. Based on intensive
experiments using benchmark datasets, we concluded that our decoders have both of high
classification performance and less computation time when the code word matrix has a fairly
amount of zero codes, in comparison to the existing ECOC-based multi-class classification
methods. While in the current study the weight wj in the proposed decoder was fixed, the
weight can be optimized based on a pre-defined utility such as the accuracy (Yukinawa et
al. 2008); the optimization with a sparse constraint such as Lasso (Tibshirani 1996) corre-
sponds to optimizing the code word matrix, and is an interesting issue to be studied as a
future work.
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Appendix B: Comparison of proposed method with tri-class SVM

A tri-class SVM that can deal with ternary code in the framework of SVMs has been pro-
posed and employed for multi-class classification problems (Angulo et al. 2006). Since the
tri-class SVM can be used for the decoder of ECOC-based multi-class classification, in-
stead of the ternary AdaBoost we proposed, we compare the proposed classification method
with the one with the tri-class SVM in this Appendix section. The tri-class SVM is defined
by means of a (n − n0)n0 × (n − n0)n0 Gram matrix where n0 is the number of examples
with code 0, and then may require a large amount of memory. Because of the limitation in
computational resource, we compared the performance by using a small synthetic dataset as
shown in Fig. 6. The tri-class SVM has two things to be tuned: the kernel function and the
regularization term C which controls the degree of emphasis on code 0 like λ of the ternary
AdaBoost. In our experiment, the kernel function was fixed to the Gaussian kernel

k(xi ,xj ) = exp

(
−‖xi − xj‖2

2

)
,

and the term C was selected from a set {20, . . . ,210} based on a validation technique. We
repeatedly generated 100 pairs of a training dataset and a test dataset each containing 100
and 1,000 samples, respectively, and examined the average performance of each method
over the 100 pairs (trials). The code word matrix was a subset of all pairs code. A validation
subset was prepared within the training subset, so that hyper-parameters such as the step
number of Boosting-type algorithms and the regularization term C of the tri-class SVM
were determined based on the validation subset.

Although in the original work (Angulo et al. 2006), the multi-class classification was
performed based on a simple majority vote method, we also implemented a combination
of the tri-class SVM and our BT model-based decoder to compare the performance of the
decoder; we then compared the proposed methods (D, E, F and G) with the following H
and I:

H: Ternary classification by tri-class SVM, and the majority vote method.

Fig. 6 A typical synthetic
dataset. Each class label is
signified by a different symbol
(◦, �, +, ×, ♦)
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Fig. 7 Boxplots of the test error
over the 100 simulation trials

I: Ternary probabilistic guess by tri-class SVM, and ternary BT model-based decoding
with the squared loss. Constraints of the positiveness of py(x) and the total volume
1′p(x) = 1 were ignored (decoder with (29)).

Figure 7 shows box-whisker plots of the test error over the 100 trials, suggesting that the
proposed methods, D, E, F and G, outperform the methods based on the tri-class SVM
(methods H and I), at least in this simple problem’s case. Also we observe that performance
of the tri-class SVM was improved by our BT-model-based decoding method.

Appendix C: Comparison of proposed methods with Boosting-type algorithms

The main scope of this study is to propose an efficient method which can appropriately han-
dle the ternary code that may appear in ECOC-based multi-class classification problems.
For this purpose, in Sect. 4, we have investigated detailed behaviors of the proposed meth-
ods and conventional methods in the situation where the code word matrix contains a lot of
0 codes so that 0 codes cannot be easily ignored. In this Appendix, on the other hand, we
compare our methods with multi-class versions of Boosting-type classifiers, AdaBoost.M2
and AdaBoost.OC (Schapire and Singer 1999; Schapire 1997) just for reference. Although
these Boosting-type methods also decompose the original multi-class problem into multiple
binary problems and adaptively combine binary classifiers, its decomposition is different
from that in our methods; actually, the Boosting-type methods does not use 0 codes. We ap-
plied the two Boosting-type algorithms to the same datasets described in Sect. 4.2. Averaged
performance of the Boosting-type algorithms is shown in the first two column of Table 5,
where we can see the Boosting-type algorithms can provide better results than those by the
proposed method (Table 3) except for some datasets. This is because the number J of bi-
nary classifiers used by the proposed methods was restricted to G in the experiments of
Sect. 4.2, to know the basic performance of our methods by comparing the existing ECOC-
based decoders which ignore zero codes. Although this restriction was preferable in the
point of efficiency, it in fact avoided full performance of the proposed methods. Actually,
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when employing the all pairs (1 vs 1) code matrix, the proposed methods outperform the
Boosting-type methods in many datasets (last four columns in Table 3), with sacrificing the
efficiency to some extent. However, because the proposed methods are efficient by them-
selves, even with the all pairs code matrix, their computation time is comparable to that of
the two Boosting-type algorithms.
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