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Abstract Using string kernels, languages can be represented as hyperplanes in a high di-
mensional feature space. We discuss the language-theoretic properties of this formalism with
particular reference to the implicit feature maps defined by string kernels, considering the
expressive power of the formalism, its closure properties and its relationship to other for-
malisms. We present a new family of grammatical inference algorithms based on this idea.
We demonstrate that some mildly context-sensitive languages can be represented in this way
and that it is possible to efficiently learn these using kernel PCA. We experimentally demon-
strate the effectiveness of this approach on some standard examples of context-sensitive
languages using small synthetic data sets.

Keywords Kernel methods · Grammatical inference

1 Introduction

A large percentage of data comes in the form of strings of symbols, sets of such strings
make up a (formal) language. A natural machine learning problem is to infer a definition
of a language from a set of positive examples of strings. The research field concerned with
this type of problem is known as grammatical inference. This type of problem occurs in
many areas. In data mining, for example, there may be a need to learn to recognise strings in
particular flexible formats. Simple cases are email addresses or page formatting commands;
more complex cases might be price-lists, postal addresses, or stock upgrades in free-text
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broker reports. Many similar problems occur in bioinformatics and other branches of com-
putational biology. A well-known example is finding rules for protein folding: the relation
between a chain of amino acids that make up a polypeptide and the way it folds into a
three-dimensional structure is still not completely understood.

The types of languages that we are interested in are in general infinite or very large, and
thus the problem is one of finding a compact representation for the language. The most well-
known and well-studied classes of representations are those in the Chomsky-Schützenberger
hierarchy (Chomsky 1956): regular grammars, context-free grammars, context-sensitive
grammars and unrestricted rewriting systems.

Grammatical inference algorithms for regular languages are now well understood, either
using state merging algorithms for deterministic finite state automata (Clark and Thollard
2004), or using Hidden Markov Models (HMMs), the non-deterministic equivalent, with the
EM algorithm. For context-free languages, some recent approaches have had some limited
success (Starkie et al. 2004; Clark 2006, 2007; Clark and Eyraud 2007). However, it is
known that the class of context-free grammars is extremely powerful and it is unlikely that
algorithms exists that can learn the whole class of such languages. For context-sensitive
languages, there are only a few positive theoretical results and no practical algorithms.

The particular problem domain that we are concerned with is that of natural language,
and here the problem is much more acute. It is well-known that certain features of natural
language cannot be described by context-free grammars but require the power of mildly
context-sensitive grammars.

Rather than searching for algorithms to learn this whole class, which seems unlikely to
be a successful research strategy, we follow another route: we consider an entirely different
family of representations for which straightforward learning algorithms exist. The represen-
tation we use is a feature map from the set of strings into a Hilbert space. A language is
then identified with the set of strings whose images lie in some region of this space. More
specifically, in this paper we restrict ourselves to those languages defined by hyperplanes in
the feature space.

We present and discuss computational experiments on a range of synthetic examples
of languages chosen to be at different levels of the Chomsky hierarchy. We compare the
performance of the new techniques with HMMs and PCFGs.

Our experiments may appear non-standard to machine learning researchers. We learn
from just positive examples for two reasons: first, this is a standard approach in linguis-
tically motivated theories of language learning, and second, because informative negative
examples—“near misses”—may be difficult to generate, and they are rare in practice. We
do of course generate negative examples as part of the test data.

A second way in which we depart from the conventions of kernel learning experiments
is that we seek language descriptions as hyperplanes in the feature space, rather than as
the more conventional half-spaces or clusters. Equality constraints are easy to interpret in
simple cases, and can represent many of the particular languages we are interested in, though
in other cases inequality constraints are necessary.

Thirdly, we use synthetic data generated from languages of known structure, rather than
naturally occurring data. Our experiments are designed to explore the sorts of languages that
this technique can learn rather than to demonstrate the utility of these methods on practical
problems, an issue that we will address in future work. Still, our results are already highly
relevant to some issues in language learnability (Gentner et al. 2006).

We seek learnable representations that are sufficiently expressive to represent these
mildly context-sensitive languages. A key example which we shall return to is from Swiss
German (Shieber 1985; Huybregts 1984), though similar phenomena occur in Dutch. Ab-
stracting away from some details, Swiss German has some subordinate clauses where a
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sequence of nounphrases can be followed by a sequence of verbs, of the same length, but
where there are agreement constraints between the nouns and the verbs. Particular verbs
require their corresponding nouns to be marked as a particular case, accusative or dative.
Thus if we represent verbs by Vacc,Vdat where the subscript indicates the required case
of the argument, and the nouns by Nacc,Ndat , the grammatical sentences are of the form
NaccNdatNdatVaccVdatVdat , i.e. the sequence of nouns must agree with the sequence of verbs
in the same order. No other orders are allowed, and there is no strict upper bound on the
length of this construction, which is known as (serial) crossing dependencies. It is easy to
see that this is not a context-free language through the application of a pumping lemma.
It currently appears that all known non context-free phenomena in language1 lie within
the class of mildly context-sensitive languages, a class of languages defined by a number
of weakly equivalent formalisms such as linear indexed grammars, tree adjoining grammars
etc. These languages also include other non-context-free languages such as {anbncn | n > 0}.

Modeling the acquisition of natural languages by children, or acquiring representations
of natural language for NLP tasks will eventually require formalisms that can represent
these structures, together with learning algorithms capable of acquiring them from observ-
able data. It is also worth noting that some phenomena in computational biology, such as
pseudoknots, also require expressive power beyond CFGs (Uemura et al. 1999).

Formally we situate our work in the context of classical grammatical inference from
positive data: given an unknown language, and a finite sample of strings drawn from that
language, and without any negative data, i.e., strings not in the language and marked as
such, we wish to have an algorithm that can acquire a representation of the language that
will enable us to determine whether a new string is in the language or not. The desiderata
for such an algorithm include: reasonable observed sample complexity under natural distri-
butions, polynomial computational complexity, insensitivity to small amounts of noise, and
convergence over a sufficiently large class of languages.

1.1 Techniques

The familiar representations of languages are rewriting systems and automata of various
types. These two families of representations converge at various points to yield the well-
known Chomsky hierarchy. Unfortunately even low levels of the hierarchy are sufficiently
powerful to represent cryptographically hard problems when considered as learning prob-
lems (Kearns and Valiant 1989).

A completely different approach is to represent languages through linear constraints on
the substrings (Salomaa 2005). As a trivial example, consider the language over the alphabet
{a, b} consisting of equal numbers of as and bs in any order: example strings are bbaa,
ab, ababba etc. This is a context-free language, and can be defined either as a pushdown
automaton or a more complicated context-free grammar.2 However, we can also clearly
represent this directly as the set of all strings that satisfy a certain linear equation on the
occurrences of the symbols a and b, L = {u ∈ {a, b}∗ | |u|a = |u|b} where we write |u|a for
the number of times a occurs in u.

Given this representation, a grammatical inference algorithm instantly suggests itself:
map the strings into a certain vector space, and look for a low-dimensional subspace that

1We note a few exceptions whose status is questionable, such as suffix stacking in Old Georgian and a fraction
of the Chinese number system.
2In fact, Asveld (2006) shows that the size of context-free grammars that generate just all permutations of n

different symbols grows by a function exponential in n.
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the data lie in. In this case the Parikh map (Parikh 1966) is sufficient, but other languages
will require the use of counts of substrings of length greater than one. In this case we can
use the implicit feature map defined by a string kernel, and, where appropriate, work in the
dual representation. Our technique combines two well-understood techniques: kernel PCA
(Schölkopf et al. 1998) together with string kernels (Watkins 2000; Lodhi et al. 2002).

1.2 Previous work

Complementary ideas are explored in Kontorovich et al. (2006), Cortes et al. (2007), how-
ever their approach is based on half-spaces. In contrast to our approach, the setting is super-
vised learning (using an SVM), so both positive and negative data is required. A generaliza-
tion of the kernel used in Kontorovich et al. (2006), the regular finite cover embedding, has
been shown to restrict the learnable class of languages to the regular languages. By contrast,
our approach allows unsupervised learning of more expressive languages, more specifically
of mildly context-sensitive languages.

1.3 Outline

The rest of the paper is arranged as follows. In Sect. 2 we will introduce some notation and
define the various string kernels we will use. In Sect. 3 we will discuss the representational
power of these hyperplanes, defined in terms of several different kernels, in language the-
oretic terms. In Sect. 4 we will discuss the formal learnability of the formalism in both a
PAC learning framework and an identification in the limit framework and in Sect. 5 we will
present some empirical work we have done, showing the effectiveness of our approach on
several synthetic data sets.

2 Preliminaries

An alphabet � is a non-empty finite set of symbols, often called letters. The set of all strings
over �, written �∗, is defined as the free monoid over � with null, the empty string, written
as ε. The length of a string is |w|. A language L is a subset of �∗. We will write �k = {w ∈
�∗ | |w| = k}.

We will use the terminology and notation of Shawe-Taylor and Christianini (2004). Here
i refers to a strictly ordered list of indices; i.e. i is a tuple (i1, i2, . . . , in) of positive integers,
where i1 < i2 < · · · < in. We will write |i| = n for the length of the tuple.

If u is of length n we can refer to the individual symbols as u = u1 . . . un. If u,v ∈ �∗,
u is a subsequence of v if there are indices i = (i1, . . . i|i|) with 1 ≤ i1 < · · · < i|u| ≤ |v|,
such that uj = vij for j = 1 . . . |u|. Given a list of indices i we will define v[i] to be the
subsequence vi1vi2 . . . vi|i| of v.

We write uR = un . . . u1 for the reversal or mirror image of u.

2.1 Kernels

We will consider maps into Hilbert spaces of various types. Given a space X, in this case
the set of strings �∗, and a mapping φ from X → H , we define the kernel as the function
from X × X �→ R:

K(u,v) = 〈φ(u),φ(v)〉. (1)
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Alternatively, the choice of kernel, which must be symmetric and positive definite, im-
plicitly defines the mapping to the feature space. We used a number of different string ker-
nels in our experiments, mainly using standard ones. Each kernel implicitly maps a string
into a finite or infinite-dimensional feature space, typically indexed by substrings. The image
of a string has coordinates that will correspond to a, possibly weighted, sum of the number
of occurrences of that substring.

Fixed length subsequences kernel Features correspond to all non-contiguous subsequences
of length k; where k is a hyperparameter of the kernel. The feature map is φu(w) = |{i :
u = w[i]}|, where u ∈ �k .

Parikh kernel This is the special case of the fixed-length subsequences kernel with k = 1.
The feature space thus has dimension |�|.

Gap weighted subsequences kernel All non-contiguous subsequences of length k where the
gaps are weighted by the decay factor λ. φu(s) = ∑

i:u=s(i) λ
l(i) where |u| = k. l(i) is defined

as 1 + i|i| − i1.

In the experiments reported here, we use k = 2 or k = 1.

3 Representations

We shall start by defining formally the class of planar languages, and examining the repre-
sentational power of this formalism. For any given string kernel κ we can define the class
of languages which are the preimages of finite-dimensional hyperplanes in the induced fea-
ture space. We call these the κ-planar languages, or φ-planar languages, where φ is the
associated feature map.

Consider again the trivial language over the two letter alphabet � = {a, b}; Lab = {u ∈
�∗ | |u|a = |u|b}. This is an infinite language, which consists of all strings with equal num-
bers of as and bs. Example strings in the language are ab, ba, aaaabbbabb, bbaa, . . . . It is
easy to show that this is not a regular language by applying a pumping lemma. Note that we
have defined it explicitly as a linear relationship between two substring counts. If we con-
sider the feature mapping defined by the Parikh kernel, which has exactly two dimensions,
we can see that φ(Lab) = {(x, x)|x ≥ 0}. Clearly these points lie in a hyperplane (a line in
this case) in the feature space R

2. Moreover, the preimage of the minimal hyperplane con-
taining all the points of the language is exactly Lab . More formally, we can define for any
language L and feature map φ : �∗ → H , where H is some Hilbert space, the hyperplane
defined by (all affine combinations of) L as

H(L) =
{

∑

i

αiφ(ui) ∈ H | ∃ui ∈ L, αi ∈ R, such that
∑

i

αi = 1

}

and the language L̂ as the preimage of this hyperplane

L̂ = {w ∈ �∗ | φ(w) ∈ H(L)}.

A slight modification of this approach would be to consider all linear combinations: i.e.
removing the constraint that the coefficients sum to one. This would make the dimension of
the subspace 1 higher, and for some kernels would also change the representational power.
For the Parikh kernel, all such languages would have to include the empty string.



356 Mach Learn (2011) 82: 351–373

Since we are interested in finite representations, we will say that for a finite set of strings
S = {w1, . . . ,wn}:

Lφ(S) =
{

w ∈ �∗|∃α1 . . . αn ∈ R

∑

i

αi = 1 : φ(w) =
∑

i

αiφ(wi)

}

. (2)

Note that S ⊆ Lφ(S). We can now say that a language L is φ-planar if and only if there
is a finite set of strings S such that L = Lφ(S). Given a kernel κ we can define a planar
language similarly. Note that for a given kernel κ the choice of feature map is of course
arbitrary; however, for any two feature maps φ1, φ2 such that for all strings u,v ∈ �∗ we
have 〈φ1(u),φ1(v)〉 = 〈φ2(u),φ2(v)〉. We will also have that for all S, Lφ1(S) = Lφ2(S),
thus there is no ambiguity in using the terminology κ-planar languages.

For a given κ and a planar language L, we define the rank of the language to be the
cardinality of the smallest set S such that Lφ(S) = L.

Example 1 An important and obvious point to note is the dependence of the class on the
kernel. Consider an arbitrary language L. Define a kernel κL as follows

κL(u, v) = 1 iff u,v ∈ L,

κL(u, v) = 0 otherwise.

It is easy to verify that the language L is κL-planar. The implicit feature map here has
one dimension and maps all strings in the language to the point (1) and all strings not in the
language to the point (0). The hyperplane in this case is thus of dimension 0: a single point.

As is often the case with kernel methods, the selection of the kernel is of prime impor-
tance since it represents the prior knowledge about the problem. In this extreme case the
question of learnability is of course trivial, but it generalizes to the case of more powerful
kernels, which can be used to define larger and more interesting classes of languages.

Different kernels will enable different classes of languages to be defined. An important
distinction is between kernels where the implicit feature map is injective, and those where it
is not. The k-subsequence kernel is not injective, for any k. When k = 1, the two strings ab

and ba are equivalent, when k = 2, the two strings abba and baab are equivalent, and such
examples can be generated for any k. In practice, for sufficiently large values of k, the pro-
portion of strings that are mapped to the same point in feature space is small (exponentially
small in k).

The gap-weighted kernel weights features by polynomials in a parameter λ, correspond-
ing to the numbers of gaps. Ignoring numerical issues, we can ensure that it is injective by
setting the value of λ to be a suitable transcendental number, say 1/e, which since it will not
be the solution of any polynomial, means that the feature values will coincide only when the
strings are identical.

We now discuss some elementary properties of the class of planar languages, focussing
on language-theoretic rather than computational or learnability issues.

It is worth noting that the class of planar languages does not have nice closure properties.
For example, the Parikh-planar languages are not closed under concatenation: both a∗ and
b∗ are Parikh-planar, but {a∗b∗} is not. Planar languages are closed under intersection, as we
now demonstrate:

Proposition 1 (Clark et al. 2006b) The intersection of two κ-planar languages is κ-planar.
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Proof Suppose that L1 and L2 are κ-planar for some kernel κ . Consider H(L1 ∩ L2), the
least plane that contains the image of the intersection of L1 and L2.

Suppose w ∈ L1 and w ∈ L2. Clearly φ(w) ∈ H(L1 ∩ L2). Conversely, suppose we have
a w such that φ(w) ∈ H(L1 ∩ L2). Now H(L1 ∩ L2) ⊂ H(L1) so φ(w) ∈ H(L1). Since L1

is planar, w ∈ L1. Similarly w ∈ L2. So, φ(w) ∈ H(L1 ∩ L2) if and only if w ∈ L1 ∩ L2.
Since L1 and L2 are planar, H(L1) has finite dimension, and thus so does H(L1 ∩ L2).
Therefore L1 ∩ L2 is planar. �

Obviously, the resulting hyperplane will be of lower dimensionality than the intersecting
planes, unless these are identical.

Planar languages are generally not closed under reversal: one can construct a counterex-
ample using a kernel that has features for initial substrings but not for terminal ones. For
some kernels the corresponding class of planar languages is closed under reversal, the trivial
case being the Parikh kernel, since it does not take the order of symbols into account. More
interesting are kernels that are based on counts of all substrings, since for such kernels it is
possible to find a bijection of the feature space that maps features ab to ba. Note that all the
kernels considered in this paper fall into this category.

We now define the schema kernel, which has not been discussed before. We do not use it
directly but just as a means to prove the injectivity of another kernel.

Definition 1 Let �′ = � ∪ {?}. A schema is any sequence σ ∈ �′+. A gapped schema is an
element of � × {?}∗ × �, or an element of �.

Given a string u and a schema σ the count of the schema in a string is the number of
times it matches, more formally |{i|∀j = 1, . . . |σ |, σ [i] =? or σ [i] = u[i + j ]}|.

Definition 2 (The gapSchemas kernel) The gapped schema feature map (gapSchemas)
maps strings to vectors, where each feature is indexed by a gapped schema, and the value of
the feature is the count of the schema in the string. The gapped schema kernel is the kernel
based on the gapped schema feature map.

Example 3 For the gapSchemas kernel,

φ(abba) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a : 2
b : 2

aa : 0
ab : 1
ba : 1
bb : 1

a?a : 0
a?b : 1
b?a : 1
b?b : 0

a??a : 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Definition 4 The gap-weighted subsequences feature map (gapWeighted): All non-
contiguous subsequences of length p where each occurrence is weighted exponentially
by the number of gaps. This is adjusted by a hyperparameter λ. φu(s) = ∑

i:u=s(i) λ
l(i) where

|u| = p. l(i) is defined as 1 + i|i| − i1.



358 Mach Learn (2011) 82: 351–373

The gap-weighted subsequences feature kernel is the kernel based on the gap-weighted
subsequences feature map.

Definition 5 The gap-weighted subsequences plus feature map (gapWeighted+): Com-
bines gapWeighted and the Parikh kernel times λ.3 We also define the associated kernel.

Example 6 For the gapWeighted kernel, with p = 2:

φ(bab) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a : λ

b : 2λ

aa : 0
ab : λ2

ba : λ2

bb : λ3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Proposition 7 The gapSchemas kernel is injective.

Proof By construction of the inverse function. Given a feature representation h ∈ H , and a
w ∈ �∗ such that φ(w) = h. Let l be the length of the longest schema with a non-zero value
in h, which will be unique. Clearly |w| = l.

1. The first character of the string is the first character of the longest schema.
2. The nth character (for n > 1) contributes as first character to one of the schemas of length

l−n+1, but not to the schemas of length l−n+2. So, let Sn be the multiset enumerating
just all first characters of schemas of l −n+1. Then the nth character is the only element
of the set Sn − Sn−1. �

3.1 Injectivity of the gapWeighted+ kernel

The proof of the following proposition makes use of the existence of transcendental num-
bers. A transcendental number is any complex number that is not algebraic, that is, not the
solution of a non-zero polynomial equation with integer (or, equivalently, rational) coeffi-
cients; some standard examples are π and e. The intuition behind the proof is that there is a
correspondence between gapped schemas and the complex polynomials obtained from the
gapWeighted+ kernel.

Proposition 8 There exists an injective function f from gapSchemas feature represen-
tations to gapWeighted+ feature representations, for p = 2 and a transcendental value
for λ.4

Proof We write H1 for the space of gapSchemas representations and φ1 for the associated
feature map, and H2, φ2 for the space of gapWeighted+ feature representations, and its
map, respectively. We define f as follows: fab(h) = habλ

2 + ha?bλ
3 + · · · , fa(h) = λha . By

construction we can see that φ2(w) = f (φ1(w)). Suppose we have two elements h,h′ of H1,
that lie in φ1(�

∗), such that f (h) = f (h′). This means that for every feature ab, we have

3We could use the standard Parikh kernel here, the λ factor is purely for technical reasons.
4A proof of injectivity for non-integral rational values for λ appeared in Clark and Watkins (2008).
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fab(h) = fab(h
′) and therefore habλ

2 + ha?bλ
3 + · · · = h′

abλ
2 + h′

a?bλ
3 + · · · . This means

that λ is the root of the polynomial (hab − h′
ab)λ

2 + (ha?b − h′
a?b)λ

3 + · · · = 0. Note that this
is a polynomial since we will only have finitely many non-zero feature values for images
of strings. Since λ is transcendental this means that all of the coefficients must be zero, i.e.,
hab = h′

ab, ha?b = h′
a?b, . . . . Therefore h = h′ and the map is injective. �

3.2 Expressive power

The relationship between the classes of planar languages and classes in the Chomsky hi-
erarchy is minimal: for computable kernels, membership will be decidable. Even the class
of planar languages defined by the most elementary kernel, the Parikh kernel, contains lan-
guages which are non-context free, while not including simple finite languages like {a, aa}.

In order to define notions of efficient learnability, which we will do in the next section,
we need to be explicit as to the representation we use and the size of the representation.
Each kernel defines a different representation class, and we consider the representation for
a κ-planar language to be a set of strings of minimal size, where the size of a finite set of
strings S is

‖S‖ =
∑

w∈S

|w|. (3)

Though the minimal representation may not be unique, every minimal representation clearly
has the same size. Our requirements for efficient learnability, defined in the next section,
will then require sample complexity, or alternatively the size of the characteristic set, to be
polynomial in the size of this minimal representation.

The Parikh kernel is clearly too limited to be of much interest. However kernels with
richer feature spaces can represent interesting languages. For example, consider the classic
example of a context-free language L = {anbn|n ≥ 0}. If we use the kernel κ2, the subse-
quence kernel of length 2, then if w ∈ Lanbn , clearly |w|ba = 0. Thus using these features,
this language can be represented through the equalities |s|a = |s|b and |s|ba = 0, without
any recursive structure or center-embedding (Gentner et al. 2006). Since κ2 has such fea-
tures we will now be able to represent languages like Lanbn as hyperplanes in this richer
feature space. The use of features corresponding to substrings of length greater than 2 in-
creases the expressive power. For example, while κ2 can express ordering constraints, κ3

can express that a certain string must appear between two other strings, and so on. This in-
creased expressivity comes at a price; the dimensionality of the feature space is O(|�|k) for
κk , and thus the amount of data required to learn a simple language can increase radically
as k increases. However, one of the conclusions of our research is that k = 2 is surpris-
ingly powerful. Intuitively, values of k = 3 might be necessary to model languages where
substrings are constrained to lie between two other strings.

The relationship between k-testable languages and planar languages defined by the k-
spectrum kernel is a useful illustration of the power of our technique.5 The k-testable lan-
guages are those that are defined by a set of admissible k-length substrings. Clearly any
k-testable language defined by n strings u1, . . . un, |ui | = k, is also a planar language de-
fined by the n-dimensional subspace spanned by these n substrings (we neglect here the
problems of boundary symbols and prefixes and suffixes). But the class of planar languages
contains not just the axis-aligned hyperplanes defined by each of these basis vectors, but
also non-axis aligned hyperplanes.

5The class of k-testable languages has been shown to be learnable and has been applied in bioinformatics
(Yokomori and Kobayashi 1998).
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4 Learnability

In this section we discuss the learnability of the class of planar languages in a more formal
way, by applying two different learnability criteria. First we will discuss efficient PAC-
learnability (Valiant 1984). Secondly we will consider a classic criterion of grammatical
inference, identification in the limit (Gold 1967), and one of its polynomial variant as defined
by de la Higuera (1997).

We are interested in learning from finite positive data sets. A natural algorithm suggests
itself: given a finite subset of L, say S, we can clearly define as our hypothesis Ŝ, the preim-
age of all affine combinations of the sample points. We can construct the affine combination
for the hyperplane by keeping a finite basis and adding to it when necessary.

Algorithm 1 presents this more formally.

Algorithm 1 SPAN learning algorithm
Inputs: kernel κ , training data S = {w1, . . .wl}
U = {}
for i = 1 to i = l do

if wi �∈ Lκ (U) then
U ← U ∪ {wi}

end if
end for

First, it is clear that if the samples are being drawn from a language L that is a κ-planar
language, or a subset of a κ-planar language, then the hypothesis will converge to the least
hyperplane containing the language, as by definition such hyperplanes are finite dimen-
sional. Secondly, if the language L is a κ-planar language, then the hypothesized language
will always be a subset of L, since the span of any subset of the language will always lie
within the language. Thirdly, the hypothesized language will always include the observed
points. Finally, if the language is planar, and thus of finite rank, say r , the total number of
implicit errors of prediction that it makes is clearly at most r .

Note that in this algorithm we are not concerned with margin bounds, but rather with
points that exactly lie in the hyperplane. This raises some issues about numerical precision.
We can distinguish two cases; the first is where the kernel has integer or rational values. In
this case we can perform all calculations exactly using arbitrary precision integer arithmetic
and issues of numerical precision do not arise. Alternatively, we may have a kernel which
produces real valued Gram matrices: in this case we will be working with finite precision
floating point calculations, which may give rise to errors. As is customary in machine learn-
ing, we will not consider such problems, but rather focus on the more central and important
issues of the generalisation properties of the algorithm given slightly idealistic assumptions
about the accuracy of the computation.

4.1 PAC learnability

We will now look at the probabilistic learnability of this formalism. Note that we are learning
hyperplanes from positive data, not the more normal situation where we learn half-spaces
from positive and negative data. Nonetheless, the proofs are straightforward.

We recall the standard definitions from the PAC paradigm (Kearns and Vazirani 1994).



Mach Learn (2011) 82: 351–373 361

Definition 9 errf,D(h) denotes the probability that hypothesis h disagrees with the target
function f on an instance x drawn from Xn according to D. More formally, errf,D(h) =
Prx∼D[h(x) �= f (x)].

Definition 10 A concept class Fn of size n is PAC-learnable if there is an algorithm A such
that for every f ∈ F , any probability distribution D, any error parameter 0 ≤ ε < 1, and any
confidence parameter 0 ≤ δ < 1, A outputs hypothesis h such that Pr[errf,D(h) ≤ ε] ≥ 1−δ.

A concept class F is efficiently PAC-learnable if there exists a PAC-learning algorithm
A for the class that takes a number of examples bounded by some polynomial in n, 1/ε and
1/δ, and runs in time polynomially bounded by the size of the input data.

Note that since the input space consists of strings of variable length, we define the size
of the data w1, . . .wm to be

∑
I |wi |, and allow the learner to use time polynomial in this.

4.1.1 VC dimension

We assume familiarity with the notion of VC dimension (Vapnik and Chervonenkis 1971).
It is a standard result that the VC dimension of hyperplanes of dimensionality r is r + 1.
However this refers to the classes of half-spaces defined in an r-dimensional space; that is to
say, the hypothesis is the set of points that lie to one side of a hyperplane. In our case we are
concerned with hypotheses that consist of the points that lie in a hyperplane, not necessarily
through the origin, of dimension at most r defined by at most r + 1 points.

Consider any set of r + 2 points. Either these points lie in the same r-dimensional plane,
in which case they cannot be shattered since one of these points p must be expressible
as a linear combination of the r + 1 other points, and therefore we cannot represent the
hypothesis that includes those r + 1 points but excludes p; or they do not, in which case no
hypothesis can contain all of the points. Therefore the VC-dimension is at most r + 1.

Since we can efficiently compute a consistent hypothesis and the VC dimension is equal
to the number of strings in the basis, we have established the efficient PAC-learnability of
the class from positive and negative data. Moreover, since we are interested in positive data
only, and the result is distribution free, we can establish PAC-learnability with one-sided
error as follows:

Theorem 11 For a given fixed polynomially evaluable kernel κ , there is a polynomial p

such that for all ε > 0, all δ > 0, for all κ-planar languages L of rank r , for all distribu-
tions D, such that pD(w) > 0 implies w ∈ L, when algorithm A is provided with at least
p(r,1/ε,1/δ) examples drawn independent and identically distributed (IID) from D, A will
output a hypothesis that is a subset of the target language and with probability at least 1−δ,
PD(L̂ \ L) < ε.

More precisely we can give an explicit polynomial bound. The minimal hyperplane algo-
rithm is a mistake-bounded algorithm, as discussed above, and admits a sample-compression
scheme in the sense considered in Floyd and Warmuth (1995), and from their Theorem 6 it
follows that for any 0 < ε, δ < 1 it is sufficient if we have a sample size (for any 0 < β < 1)
of

m ≥ 1

1 − β

(
1

ε
ln

1

δ
+ (r + 1) + r + 1

ε
ln

1

βε

)

.
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4.2 Identifiability in the limit

The notion of learnability we will apply here is known as identification in the limit (Gold
1967). Within this framework, a class of languages is considered learnable if there exists a
(computable) function over sequences of input data that converges on a correct hypothesis
after a finite amount of data (assuming all data is presented eventually).

4.2.1 Behavioural constraints on learners

Identification in the limit provides criteria for the success of a learning process, but grants
total freedom to learners prior to convergence. Generally speaking it’s desirable to be able
to impose additional constraints, to guarantee ‘rational’ behaviour of the learner. Formally
this simply means choosing a subset of possible learners.

Many different constraints have been studied in the literature, we define the ones relevant
to the present discussion:

Definition 1 (Consistent learning) A learning function ϕ is consistent on G if for any L ∈
L(G) and for any finite sequence σ of elements of L, either ϕ(σ) is undefined or σ ⊆
L(ϕ(σ )).

Definition 2 ((Strong) Monotonicity) The learning function ϕ is monotone increasing
or strong monotonic if for all finite sequences 〈s0, . . . , sn〉 and 〈s0, . . . , sn+m〉, whenever
ϕ(〈s0, . . . , sn〉) and ϕ(〈s0, . . . , sn+m〉) are defined, L(ϕ(〈s0, . . . , sn〉)) ⊆ L(ϕ(〈s0, . . . , sn+m〉)).

Definition 3 (Incrementality) The learning function ϕ is incremental if there exists a com-
putable function ψ such that ϕ(〈s0, . . . , sn+1〉) � ψ(ϕ(〈s0, . . . , sn〉), sn+1).

4.2.2 Efficient identification in the limit

Identification in the limit of a class guarantees the existence of learning algorithms for that
class, but the learning problem is not necessarily tractable. Since we are interested in ap-
plications we need to specify further constraints on the learner. Ideally we would use some
notion of polynomial identification in the limit. Several different definitions have been pro-
posed (de la Higuera 1997; Yokomori 1991 among others), but at the present time no con-
sensus exists as to which is best. The latter is the more restrictive one, so in order to obtain
the strongest positive efficiency result for our approach, we choose to apply this definition.

Yokomori (1991) defines a class as polynomial-time identifiable in the limit from positive
data if there exists a learning algorithm for that class such that both the number of explicit
errors of prediction and the computation time it needs for any sequence of data are bounded
by polynomials over the complexity of the representation (rank, in this case).

4.3 Identification in the limit of planar languages

We are now in the position to establish the following result:

Theorem 12 For a polynomially evaluable kernel κ , the algorithm SPAN identifies in the
limit the class of κ-planar languages in polynomial time and data.
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Proof For any plane of rank r there is a set C of strings such that |C| = r and for any
enumeration e of C, |SPAN(e)| = r (trivial). It follows immediately that for any enumeration
e of C, SPAN(e) defines a plane for L, and thus that C is a characteristic set for L.

Consider C ′ = C ∪ S, where S is a finite subset of L. By definition of planar language
and SPAN, S is in the language defined by the plane SPAN(e), so for any enumeration e′ of
C ′, SPAN(e′) = SPAN(e), and both define a plane for L.

Therefore the learning function based on SPAN will, after encountering all elements from
a characteristic set C, hypothesise L and will not diverge from this hypothesis. This proves
identifiability in the limit of the class of planar languages.

The characteristic set has a size6 polynomial (in fact linear) in the rank of the target plane,
the learner need only change its mind as many times as the size of the characteristic set, and
SPAN can be implemented to run in polynomial time.

A learner for planar languages based on SPAN is consistent and monotone increasing by
definition: any datapoint not in the hyperplane is taken into account when SPAN generates
a new hypothesis, so its hypotheses are always consistent with the data seen so far. It is
monotone increasing since any hypothesis from SPAN at any given time is a hyperplane
that includes the previously hypothesized hyperplanes. Incrementality is obvious: SPAN
can generate a new hypothesis given just a new string and the previous hypothesis. This is
true regardless of the way the hyperplane is represented, it need not be defined in terms of
the set of basis strings. �

4.4 Finite elasticity

Learnability, and related properties like existence of a mind change bound, are largely de-
termined by topological properties of the class under consideration. One such property is
the existence of an infinite ascending chain of languages. This means that for some lan-
guages L0,L1, . . . ,Ln, . . . in that class, L0 ⊂ L1 ⊂ · · · ⊂ Ln ⊂ · · · . This implies the weaker
property known as infinite elasticity:

Definition 13 ((In)finite elasticity (Wright 1989; Motoki et al. 1991)) A class L of lan-
guages is said to have infinite elasticity if there exists an infinite sequence 〈sn〉n∈N of sen-
tences and an infinite sequence 〈Ln〉n∈N of languages in L such that for all n ∈ N, sn �∈ Ln,

and {s0, . . . , sn} ⊆ Ln+1.
A class L of languages is said to have finite elasticity if it does not have infinite elasticity.

Finite elasticity is a sufficient condition for learnability under two conditions, as shown
in Wright (1989):

Theorem 14 (Wright) Let G be a class of grammars for a class of recursive languages,
where G ∈ G is at least semi-decidable. If L(G) has finite elasticity, then G is identifiable in
the limit.7

6Here ‘size’ simply means cardinality of the set. It makes little sense to include the length of the strings in

this definition, since the class includes for example the finite language with one element a10100
.

7We slightly abuse notation here, by letting L denote both the language generated by a grammar, and a class
of languages generated by a class of grammars.
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Thus one route to proving learnability of a class is demonstrating it has finite elasticity,
which has the added benefit of allowing one to easily define a conservative learning algo-
rithm. In this context this is not necessary, however we do get nice closure properties for
free.

The following theorem, from Kanazawa (1994, 1998), generalizes Theorem 14. Let �

and ϒ be two alphabets, a relation R ⊆ �∗ × ϒ∗ is said to be finite-valued just if for every
s ∈ �∗, there are at most finitely many u ∈ ϒ∗ such that Rsu. If M is a language over ϒ ,
define a language R−1[M] over � by R−1[M] = {s | ∃u(Rsu ∧ u ∈ M)}.

Theorem 15 (Kanazawa) Let M be a class of languages over ϒ that has finite elasticity,
and let R ⊆ �∗ × ϒ∗ be a finite-valued relation. Then L = {R−1[M] | M ∈ M} also has
finite elasticity.

In Kanazawa (1998) this property is used to prove finite elasticity of string languages by
proving finite elasticity of their corresponding derivation (tree) languages, but it obviously
has a wider range of applications.

Proposition 2 If the feature space defined by κ has finite dimension, then the class of κ-
planar languages has finite elasticity.

Proof Suppose the class has infinite elasticity, with strings s1, . . . and languages L1 . . . .
If we define Sn = H({s0, . . . , sn}), then Sn−1 ⊆ Ln, and Sn �⊆ Ln. Obviously, S0 ⊂ S1 . . . ,
which constitutes an infinite ascending chain. Since Sn must be of greater rank than Sn−1,
and every Sn is included in a language in the class, there can’t be any bound on the rank of
the planes for languages in the class. This is in contradiction with the hypothesis that the
feature space has finite dimension. �

Not all planar languages are based on such a feature space, so planar languages with
infinite elasticity exist. For example, any class of planar languages that contains all finite
languages (c.f. the kernel based on all substrings) has an infinite ascending chain. It is easy
to see that the fixed length subsequences-, gapWeighted- and gapWeighted+ planar lan-
guages meet the condition: they are based on the occurrence of substrings of bounded length,
so the size of the alphabet imposes a bound on the number of distinct substrings, and thus
on the dimensionality of the feature space.

It is straightforward to establish the following corollary (see Wright 1989):

Corollary 16 Any finite union of classes of κ-planar languages where κ is finite dimen-
sional has finite elasticity.

Corollary 17 Any class L such that for any language L ∈ L, for some substitution σ and
language L′ ∈ Lκ , where Lκ is a given class of planar languages, L = σ [L′], and whose
corresponding hyperplanes have bounded dimensionality, has finite elasticity (and is thus
learnable).

Thus planar languages can be generalised to larger classes of learnable languages. Un-
fortunately, the naive learning algorithms for these classes will run in exponential time.
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5 Experiments

In this section we will discuss some experimental work that we have done to verify the
correctness of the algorithms and explore the practicalities of using this approach.

5.1 Implementation

We have described the algorithm above in terms of the primal representation in the feature
space. In practice, it is more convenient to perform the computations in a dual representation
using only kernel operations. For some of the kernels, the number of dimensions in the
feature space is less than the number of data points; nonetheless, in the interest of clarity we
work throughout with the kernel representation. The training phase of the algorithm follows
a standard kernel PCA method (Shawe-Taylor and Christianini 2004).

1. Inputs: a kernel, a set of training data, a set of test data.
2. Compute Gram matrix of the training data.
3. Compute translated Gram matrix, with center at origin in feature space.
4. Compute k, the rank of the translated Gram matrix.
5. Compute the k eigenvectors and eigenvalues.
6. Compute the translated matrix of training-test products.
7. Project the test strings onto the hyperplane defined by the training data.
8. Compute perpendicular distance from test strings to hyperplane.
9. If this distance exceeds a threshold, label the data as negative, otherwise label it as posi-

tive.

This algorithm was implemented using MATLAB.8 On all of the experiments reported
here, the running times were only a few minutes. We found that the threshold was easy to
set: generally the squared residuals were either very close to zero, (of the order of 10−10), or
greater than 0.1. A more principled way of setting these bounds would involve comparing
the distance of strings in the training data to the plane to get an idea of the distribution of
numerical errors, and to base the threshold on that. However, since we did not encounter
these problems in any of our experiments under any settings,we did not pursue this avenue.
However, it is worth noting that these problems might occur using for example, kernels
where all of the norms are bounded.

5.2 Data

We generated some synthetic data sets to evaluate the potential of this approach. We selected
a number of languages that have been proposed in the literature, generally from small al-
phabets. For comparison, we also evaluated it on one of the more complex grammars from
the Omphalos context-free grammatical inference competition (Starkie et al. 2004); this is
at the state of the art for context-free grammatical inference. The data is available from the
competition website.9

For each of the languages we generated some positive data, by sampling from a natural
distribution. For example, for the copy languages, we first generated a random length, and
then created a random string by sampling from the uniform distribution over all strings of

8Source code for our implementation and data sets are available at http://www.cs.rhul.ac.uk/home/alexc/gisk/.
9www.irisa.fr/Omphalos/data-sets.html.

http://www.cs.rhul.ac.uk/home/alexc/gisk/
http://www.irisa.fr/Omphalos/data-sets.html
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that length. We then duplicated it to create the sample string. All of the positive data was
generated IID. The lengths of the strings were generally less than 20, with a few exceptions:
the strings from the Omphalos data set are much longer than this.

For evaluation we need both positive and negative data. Generating negative data is far
from trivial: simply generating random strings in a similar way does not produce a test
set sufficiently difficult to distinguish the true hypothesis from a similar but incorrect one,
without using astronomical amounts of data—the same problem was encountered by the
organisers of the Omphalos competition (Starkie et al. 2004). We thus generated the negative
data sets 50% from random strings from a uniform distribution over strings, and 50% drawn
from languages that are close to the true one. Thus for example, when testing languages like
An − Dn, we generated samples from {a+b+c+d+} as well as from {a, b, c, d}+.

For comparison, we also implemented two baseline systems, based on Hidden Markov
Models, and Probabilistic Context Free Grammars. For the HMM system, we randomly
initialised an HMM with a fully connected transition matrix and an explicit end-of-string
transition for each state, for the PCFG system we used a CNF grammar. In both cases they
were trained to convergence with respectively the Baum-Welch algorithm and the inside-
outside algorithm. We then evaluated the test strings and labelled them as positive or negative
according to whether the probability of the string was above a simple length-based threshold.
Though slightly ad hoc, empirically we observed that this was sufficient to distinguish the
language when the model structure was correct.

There are no practical baselines for learning context-sensitive languages.

5.3 Languages

We tried a number of well-studied languages from computational and mathematical linguis-
tics, as well as some variations, see Table 1.10 Bracket is the bracket (Dyck) language (i.e.,
as and bs are balanced), which is known to be context-free. The corresponding phenomenon
in natural language is center embedding, which seems to exist only in a very restricted form.
Even is the set of all strings from {a, b}∗ that are of even length, which is obviously a regular
language. ChinNr is an abstract representation of Chinese number words (Radzinski 1991),
GermScramb of German verb scrambling (according to Becker et al. 1992). AnBmCnDm
is known to be mildly context-sensitive but not expressible by Linear Indexed Grammars
(LIG). The same holds for MultCop with k ≥ 0. DepBranch, the dependent branches lan-
guage, is mentioned in Vijay-Shanker et al. (1987) as an example of a language that cannot
be generated by LIG. Note that An − En is also known to be beyond Tree Adjoining Gram-
mars (TAG), in contrast to An − Dn and AnBnCn. The languages used in our training data
are actually variants, where an is replaced by {a, b}n, bn by {c, d}n and so on. This was done
to ensure that there were an exponentially large number of distinct strings in the language
of bounded length. Without this precaution, simple memorization algorithms could seem to
perform well. Mix (Bach 1981) is another well-known example of a mildly context-sensitive
language, and has been shown not to be expressible by TAG.

CrossDepDA is a copy language with just one copy w of v, where v and w have a
disjunct alphabet. CrossDepCS is a copy language with just one copy, and a center symbol
that marks the boundary between the two subwords, CrossDepND is a copy language with
one copy and no center marker.

10The results of this experimental evaluation were first discussed in Clark et al. (2006a).
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Table 1 Definitions of target languages used. The column labeled ‘Class’ states whether the language is
regular (REG), context-free (CF), mildly context-sensitive (MCS) or context-sensitive (CS). We use the map
z, defined as z(a) = e, z(b) = f, z(c) = g, z(d) = h. π(u) allows any permutation of the string u. Languages
with an asterisk have had additional hard negative examples generated

Name Class Definition Example strings

Bracket CF {ab, avb, vw | v,w ∈ Bracket} aaabbb, ab, aabbab

PalinDisj CF {vw | v ∈ {a, b, c, d}∗,wR = z(v)} abcgfe, dh, bdhf

Palin CF {vvR | v ∈ {a, b, c, d}∗} aa, bdaadb

Even REG {{a, b, c}2n | n ∈ N} cbbabc, acab

ChinNr ∗ CS {abk1 . . . abkr | k1 > · · · > kr > 0} abbbbabbb, abbbabbab

Mix MCS {s ∈ {a, b, c}∗ : |s|a = |s|b = |s|c} bac, babcac

GermScramb MCS {π(w)v | w = z(v), v ∈ {a, b, c, d}+} dbhf , bdacfghe

AnBnCn ∗ MCS {anbncn | n > 0} bde, abdcfe

An − Dn ∗ MCS {anbncndn | n > 0} adfh, bbcdefhg

An − En ∗ CS {anbncndnen | n > 0} acegi, aadcfeghij

DepBranch CS {anbmcmdlelf n | n = m + l ≥ 1} aaaabcdddeeeffff

MultCop CS {wk | k > 0,w ∈ {a, b}∗} babbab, abaabaaba

AnBmCnDm ∗ MCS {anbmcndm | n,m > 0} acfh, abaabccdeffeehgh

CrossDepDA MCS {vzf (v) | v ∈ {a, b, c, d}∗} dbhf , cbdcgfhg

CrossDepCS MCS {wxw | w ∈ {a, b, c, d}∗} cxc, bdaxbda

CrossDepND MCS {ww | w ∈ {a, . . . , h}∗} cgcg, fcgefcge

Omp4 CF Omphalos problem 4 Omphalos website

5.4 Results

Table 2 displays the results of training the baseline models and kernel PCA with two dif-
ferent kernels on these languages.11 We can see that in all but four cases the string kernel
method performs very well, converging to a hypothesis with very small error, whereas the
baseline methods overgeneralize. In particular for our motivating example from Swiss Ger-
man, CrossDepDA, we see a zero error rate. The four cases in question are: ChinNr where
the HMM model performs well by learning a simple regular approximation; Even where
both of the baseline models correctly learn the hypothesis; MultCop which is a very hard
language to learn (in fact one of the authors was unable to determine what language it was
from the generated positive data alone) and CrossDepND, where in the absence of a center
marker there are no features that can define the language. In these cases, where the string
kernel method fails to produce an accurate hypothesis, it overgenerates significantly. In the
case of AnBmCnDm the string kernel method overgeneralises slightly, but very plausibly
by allowing empty strings (generalising > 0 to ≥ 0). The string kernel method when applied
to Bracket learns merely the hypothesis that there are equal numbers of as and bs, but is in-
capable of learning that no prefix must violate the constraint that there are more bs than as.
HMM does well on Bracket, contrary to expectations, but merely by modeling some local
features, even though it is CF. This is due to the fact that it is difficult to generate test data

11Since the data sets are synthetic, it is not appropriate to compare the figures from different rows. The
negative data has been generated to highlight the weaknesses of the various approaches.
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for Bracket. In order to penalize methods that depend on local features, bracket sequences
should be used that represent heavily skewed trees.

The kernel approach performs well on CrossDepDA and CrossDepCS. Either the dis-
junct alphabet or the inclusion of a center marker are sufficient for the kernel method to
perform well. Note that although both kernels score perfectly on CrossDepDA, the 1+2-
subsequence kernel will give false positives with certain strings such as abbafeef : strings of
this type are so rare that they don’t show up in test sets of this size. The Omphalos data is
from a much more complex grammar, and consists of much longer strings. We were there-
fore unable to use the PCFG algorithm, because the time complexity of the inside-outside
algorithm is cubic in the length of the strings. Although neither of these kernels can induce
an accurate representation, some structure has been learned, even though, as the high rank
of the induced representations indicates, it overgenerated substantially.

In general, if the subspaces are of high rank with respect to the feature space, then this
is a clue that the algorithm has failed to capture significant structure. Indeed CrossDepND
illustrates this perfectly: the dimension of the feature space with an alphabet size of 8 is 72
for both kernels, and the rank is 71 or 72. We do not report results here for kernels with
longer features; on the same data sets, with k = 3, we have a very large number of false
negatives, because the rank of the languages becomes very much higher. For example, on
the GermScramb data set, with k = 3 the false positive rate goes up to 94% with a rank of
94. With the longer features the rank of this language has increased to 914, so the span of
the training data, which has size 100, is clearly insufficient.

6 Discussion

When the target language is a planar language for the kernel being used, the algorithm
converges rapidly and exactly. Clearly, the dimension of the hyperplane (equivalently, the
rank of the data in the feature space) is the key factor. Denoting this by r , it is clear that
any exact representation of the hypothesis requires at least r points that are independent in
the feature space. Empirically we observed that the hypothesis converged rapidly after the
first r points. Conversely, when the language being learned is not exactly expressible as a
hyperplane, the hypothesis converged to a superset of the target language. Thus in general,
for sufficiently large amounts of data, we observe false positives but no false negatives. In
some cases this superset was the whole monoid, �∗; for example the language Even. This is
a good example of a comparatively simple, regular language that cannot be represented as a
hyperplane by any of the kernels that we use here. Of course, it would be easy to rectify this
by considering a kernel that also had features corresponding to φn(w) = 1 iff |w| is divisible
by n. This language is easily learnable by the HMM baseline, surprising as it may seem.
Overall, the string kernel method performs very well on these languages, and outperforms
the baselines in general, especially in the context-sensitive cases.

The main computational bottleneck with this algorithm is the eigendecomposition of
the Gram matrix, which means that the algorithm is cubic in the number of strings in the
sample. However, there are more efficient algorithms which exploit the generally low rank
of the Gram matrix in these applications (incomplete Cholesky factorisation) which allow
algorithms that are linear in the amount of data. In our experiments we found that the learn-
ing was reasonably rapid on standard workstations for data sizes up to about 1000 strings,
without any optimisation.



370 Mach Learn (2011) 82: 351–373

6.1 Related work

To the best of our knowledge, string kernels have not been used in this way before. The
idea of using linear equations to define languages was discussed in Salomaa (2005), but the
connection with string kernels has not been noted.

As discussed in the introduction, recent work by Kontorovich and others explored the use
of string kernels for grammar induction; the approaches defined there work in a distribution-
free paradigm from positive and negative data.

In Heinz (2010), the notion of string extension learning was introduced. The basic idea
is that strings from a given language are mapped (extended) to an element of the generat-
ing grammar, so a learner can update its hypothesis by simply computing the union of its
previous hypothesis and the yield of the string extension function applied to the current ob-
servation. Such string extension learners are obviously incremental, globally consistent, and
locally conservative.

It is easy to see that any such function can be regarded as the embedding function of a
string kernel, so the examples considered in Heinz (2010) can easily be dealt with in our
approach. For example, the k factor languages are equivalent to the k-testable languages
which can be learned with the k-spectrum kernel, the Strictly k-Piecewise languages are
defined in terms of non-contiguous subsequences of length k which can be learned with
the fixed length subsequences kernel. More formally, using the notation of Heinz (2010),
given a string extension learner with a set A and a function f : �∗ → Pfin(A), a function
from strings to finite subsets of A, we can define a vector space H(A)whose dimensions are
indexed by the elements of A. We will let 1a denote the unit vector in H(A) corresponding to
a ∈ A. We then replace the string extension map f by a map φf into H(A) which is defined
such that φf (w) · 1a = 1 if a ∈ f (w) and 0 if a is not in f (w). For a given G ⊆ A, the
language defined by G is defined as Lf (G) = {w ∈ �∗ : f (w) ⊆ G}. It is easy to see that if
w ∈ Lf (G), then φ(w) lies in the |G|-dimensional hyperplane spanned by {1a|a ∈ G}, and
that any string mapping to a point in this hyperplane will also be in Lf (G).

In terms of the results, there have been very few grammatical inference algorithms that
have worked with representations capable of learning context-sensitive languages. The only
such algorithm known to the authors was presented in Yoshinaka (2009) which general-
ized the notion of substitutable context-free language (Clark and Eyraud 2007) to include
m-dimensional substitutable languages. This allows efficient induction of classes that con-
tain mildly context-sensitive languages. However, a the author himself points out, even an
extended version of his approach cannot deal with very simple mildly context-sensitive lan-
guages such as {an#an|n ≥ 1}, Lreverse, and Lcopy.

In Becerra-Bonache and Yokomori (2004), an algorithm was presented that learns simple
external contextual grammars (SECGs) from positive data, these generate mildly context-
sensitive languages. This algorithm is exponential, but the later Oates et al. (2005) presents
a polynomial-time learning algorithm for the same class. A careful reading of this work
reveals that the setting is weaker than learning from positive data; a parameter d , the value
of which is accessible to the learner, determines the maximum depth of derivations included
in the characteristic set, and these are exhaustively generated. Thus, the learner is provided
with some extra information not normally present in the identification in the limit paradigm.
Finite elasticity of this class was shown in Becerra-Bonache (2006).

A fundamentally different approach to learning context-sensitive languages is discussed
in Sempere (2008). There, the approach is restricted to learning from structured data, i.e.,
derivations as opposed to strings. Since the learner is supplied with more information than
in our setting, the two approaches are not comparable.
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Apart from these papers, some results are known that are purely theoretical and allow un-
bounded computation: Shinohara (1990) proves learnability for context-sensitive grammars
with a length bound on the rules, but gives no algorithm. The only relevant results that we
are familiar with is a body of work using neural networks (Chalup and Blair 1999). These
papers show that under a suitable, carefully tuned training regime, various types of neural
network are capable of learning some of the examples that we considered. However, these
approaches do not generalise well, are hard to train, and have no theoretical guarantees.

The choice of kernel is clearly very important here: there are a number of other kernels
that can be devised that might be able to learn other classes of languages. One of the sur-
prising aspects of this approach is that even when the induced feature space is of quite small
dimension, the representational power of the formalism is quite high.

Hyperplanes are in some sense the easiest sets of points to learn in a Hilbert space. While
they are effective for some languages, there are other languages, such as {anbm | n > m > 0},
which do not form hyperplanes but rather half-spaces. These of course can be learned using,
for example, the generalised portrait algorithm. Similarly other structures such as manifolds,
or clusters on hyperplanes, would be learnable using other techniques, and would define
other classes of languages. Substantial amount of research has been carried out in learning
such structures in other fields of machine learning. In this context, the work of Crammer
and Singer (2003) is significant. They study the general problem of finding minimum vol-
ume ellipsoids that contain given points in a Bregmanian space. In the case of the models we
consider here, it is important to consider examples that may be of arbitrary length, and thus,
given the kernels we use, arbitrarily far away from the origin. Thus an enclosing volume,
rather than a plane, leads to a very different set of solutions. Indeed, with these kernels it
would lead to models that only define finite languages, which is undesirable for language
theoretic considerations. Nonetheless this does suggest directions for future work: in par-
ticular it is unrealistic to assume that every example we receive will be grammatical. This
would mean we should try to find a plane that does not necessarily include every single point
we observe but rather allows a fraction to lie at some distance from the plane.

7 Conclusion

We have put forward a new representation for languages, as hyperplanes in an induced fea-
ture space, and shown that these languages can be efficiently learned from positive data. We
have demonstrated that this class of languages includes linguistically interesting context-
sensitive languages that are not learnable with current grammatical inference techniques.
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