
Mach Learn (2011) 82: 239–272
DOI 10.1007/s10994-010-5213-8

Stochastic relational processes: Efficient inference
and applications

Ingo Thon · Niels Landwehr · Luc De Raedt

Received: 1 June 2009 / Accepted: 1 May 2010 / Published online: 25 September 2010
© The Author(s) 2010

Abstract One of the goals of artificial intelligence is to develop agents that learn and act
in complex environments. Realistic environments typically feature a variable number of
objects, relations amongst them, and non-deterministic transition behavior. While standard
probabilistic sequence models provide efficient inference and learning techniques for se-
quential data, they typically cannot fully capture the relational complexity. On the other
hand, statistical relational learning techniques are often too inefficient to cope with complex
sequential data. In this paper, we introduce a simple model that occupies an intermediate
position in this expressiveness/efficiency trade-off. It is based on CP-logic (Causal Proba-
bilistic Logic), an expressive probabilistic logic for modeling causality. However, by spe-
cializing CP-logic to represent a probability distribution over sequences of relational state
descriptions and employing a Markov assumption, inference and learning become more
tractable and effective. Specifically, we show how to solve part of the inference and learn-
ing problems directly at the first-order level, while transforming the remaining part into the
problem of computing all satisfying assignments for a Boolean formula in a binary decision
diagram.

We experimentally validate that the resulting technique is able to handle probabilistic
relational domains with a substantial number of objects and relations.

Keywords Statistical relational learning · Stochastic relational process · Markov
processes · Time series · CP-Logic

Editors: S.V.N. Vishwanathan, Samuel Kaski, Jennifer Neville, and Stefan Wrobel.

I. Thon (�) · L. De Raedt
Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001
Heverlee, Belgium
e-mail: ingo.thon@cs.kuleuven.be

L. De Raedt
e-mail: luc.deraedt@cs.kuleuven.be

N. Landwehr
Department of Computer Science, University of Potsdam, August-Bebel-Str. 89, 14482 Potsdam,
Germany
e-mail: landwehr@cs.uni-potsdam.de

mailto:ingo.thon@cs.kuleuven.be
mailto:luc.deraedt@cs.kuleuven.be
mailto:landwehr@cs.uni-potsdam.de

240 Mach Learn (2011) 82: 239–272

1 Introduction

One of the current challenges in artificial intelligence is the modeling of dynamic environ-
ments that change due to actions and activities people or other agents take. As one example,
consider a model of the activities of a cognitively impaired person (Pollack 2005). Such a
model can be used to assist persons, using common patterns to generate reminders or detect
potentially dangerous situations, and thus help to improve living conditions.

As another example and one on which we shall focus in this paper, consider a model
of the environment in a massively multiplayer online game (MMOG). These are computer
games that support thousands of players in complex, persistent, and dynamic virtual worlds.
They form an ideal and realistic testbed for developing and evaluating artificial intelligence
techniques and are also interesting in their own right (cf. also Laird and van Lent 2000).
One challenge in such games is to build a dynamic probabilistic model of high-level player
behavior, such as players joining or leaving alliances and concerted actions by players within
one alliance. Such a model of human cooperative behavior can be useful in several ways.
Analysis of in-game social networks is not only interesting from a sociological point of
view but could also be used to visualize aspects of the gaming environment or give advice
to inexperienced players (e.g., which alliance to join). More ambitiously, the model could
be used to build computer-controlled players that mimic the cooperative behavior of human
players, form alliances and jointly pursue goals that would be impossible to attain otherwise.
Mastering these social aspects of the game will be crucial to building smart and challenging
computer-controlled opponents, which are currently lacking in most MMOGs. Finally, the
model could also serve to detect non-human players in today’s MMOGs—accounts which
are played by automatic scripts to give one player an unfair advantage, and are typically
against game rules.

From a machine learning perspective, this type of domain poses three main challenges:
(1) the world state descriptions are inherently relational, as the interaction between (groups
of) agents is of central interest, (2) the transition behavior of the world is strongly stochastic,
and (3) a relatively large number of objects and relations is needed to build meaningful
models, as the defining element of environments such as MMOGs are interactions among
large sets of agents. Thus, we need an approach that is both computationally efficient and
able to represent complex relational state descriptions and stochastic world dynamics. In
this setting, a relation state typically corresponds to a labeled (hyper)graph, and therefore
the model can also be viewed as a stochastic model over sequences of graphs, cf. Fig. 8.

Artificial intelligence has already contributed a rich variety of different modeling ap-
proaches, for instance, Markov models (Rabiner 1989) and decision processes (Puterman
1994), dynamic Bayesian networks (Ghahramani 1997), STRIPS (Fikes and Nilsson 1995)
and PPDDL (Younes and Littman 2004) (see also Thon et al. (2009) for a discussion of
the relationship between CPT-L and PPDDL), statistical relational learning representations
(Getoor and Taskar 2007), etc. Most of the existing approaches that support reasoning about
uncertainty (that is, satisfy requirement (2) employ essentially propositional representations
(for instance, dynamic Bayesian networks, Markov models, etc.). Thus, they are not able to
represent complex relational worlds, and do not satisfy requirement (1). A class of models
that integrates logical or relational representations with methods for reasoning about uncer-
tainty (for instance, Markov Logic (Richardson and Domingos 2006), CP-logic (Vennekens
et al. 2006), or Bayesian Logic Programs (Kersting and De Raedt 2007)) is considered within
statistical relational learning (Getoor and Taskar 2007) and probabilistic inductive logic pro-
gramming (De Raedt et al. 2008). However, inference and learning often cause significant
computational problems in realistic applications, and hence, such methods do not satisfy
requirement (3).

Mach Learn (2011) 82: 239–272 241

We want to alleviate this situation, by contributing a novel representation, called CPT-L
(for Causal ProbabilisticTime-Logic), that occupies an intermediate position in this expres-
siveness/efficiency trade-off. A CPT-L model essentially defines a probability distribution
over sequences of interpretations. Interpretations are relational state descriptions that are
typically used in planning and many other applications of artificial intelligence. CPT-L can
be considered a variation of CP-logic (Vennekens et al. 2006), a recent expressive logic
for modeling causality. By focusing on the sequential aspect and deliberately avoiding the
complications that arise when dealing with hidden variables, CPT-L is more restricted, but
also more efficient to use than alternative formalisms within the artificial intelligence and
statistical relational learning literature.

The present paper builds upon our recent work in this area (Thon et al. 2008), and extends
this earlier work in several directions. As a first contribution, we generalize the model pre-
sented in Thon et al. (2008) to include the case that head elements are conjunctions of atoms
rather than individual atoms. Second, we relax the strict Markov assumption employed in the
original approach, thus allowing causal influences to stretch over several time steps. Third,
we present partially lifted algorithms for inference and learning in CPT-L, and empirically
show that they reduce the overall computational complexity of our approach substantially.
Finally, we contribute a more detailed and comprehensive experimental evaluation of our
approach.

The rest of the paper is organized as follows: Sect. 2 introduces the CPT-L framework;
Sect. 3 addresses inference and parameter estimation; and Sect. 4 presents experimental
results in several (artificial and real-world) domains. Finally, we discuss related work in
Sect. 5, before concluding and touching upon future work in Sect. 6. Proofs of the main
theorems are contained in the Appendix.

2 CPT-L

This section describes the CPT-L model. We begin with a brief review of CP-logic (Causal
Probabilistic Logic), and then present the CPT-L model as a variant of the more general
CP-logic framework.

2.1 CP-logic

Let us first introduce some terminology. A logical atom is an expression of the form
p(t1, . . . , tn) where p/n is a predicate symbol and the ti are terms. Terms are built up from
constants, variables, and functor symbols. Constants are denoted in lower case (such as a),
variables in upper case (such as Z), and functors by f/k where k is the arity of functor f .
The set of all atoms is called a language L. Ground expressions do not contain variables.
Ground atoms will be called facts. A substitution θ is a mapping from variables to terms, and
bθ is the atom obtained from b by replacing variables with terms according to θ . As an ex-
ample, consider the substitution θ = {Z/a} that replaces variable Z with a, as in bθ = p(a)

for b = p(Z).
Complex world states can now be described in terms of interpretations. An interpretation

I is a set of ground facts {a1, . . . , aN }. These ground facts can represent objects in the current
world state, their properties, and any relationship between objects. As an example, consider
the representation of the state of a multiplayer game in terms of an interpretation as depicted
in Fig. 1.

The semantics of our framework is based on CP-logic, a probabilistic first-order logic
that defines probability distributions over interpretations (Vennekens et al. 2006). CP-logic

242 Mach Learn (2011) 82: 239–272

Fig. 1 Example for the state of a multiplayer game represented as a graph structure and, equivalently, as a
logical interpretation. The rectangles in graphical representation refer to alliances, diamonds to players, and
ellipsis to cities. The last two arguments of city in the logical representation refer to the location of the city

is closely related to other probabilistic logic programming systems, such as PRISM (Sato
and Kameya 1997), ICL (Poole 1997), and ProbLog (De Raedt et al. 2007), that are based on
Sato’s distribution semantics (Sato 1995). However, CP-logic is more intuitive as a knowl-
edge representation framework. The reason is that CP-logic has a strong focus on causality
and constructive processes: an interpretation is incrementally constructed by a process that
adds facts to the interpretation which are probabilistic outcomes of other already given facts
(the causes). More formally, a model in CP-logic is defined as a set of (probabilistic) rules
representing causes and outcomes:

Definition 1 A CP-theory is a set of rules of the form

r = (h1 : p1) ∨ · · · ∨ (hn : pn) ←− b1, . . . , bm

where the hi are logical atoms, the bi are literals (i.e., atoms or their negation) and pi ∈ [0,1]
probabilities s.t.

∑n

i=1 pi = 1.

It will be convenient to refer to b1, . . . , bm as the body(r) of the rule and to (h1 :
p1) ∨ · · · ∨ (hn : pn) as the head(r) of the rule. The body of rule is interpreted as a conjunc-
tion of literals. We shall also assume that the rules are range-restricted, that is, that all vari-
ables appearing in the head of the rule also appear in its body. The semantics of a CP-theory
is given by the following probabilistic constructive process. Starting from the empty inter-
pretation, at each step we consider all groundings rθ of rules r such that body(rθ) holds in
the current interpretation. For each of these groundings, one of the grounded head elements
h1θ, . . . , hnθ of r is chosen randomly according to the distribution given by p1, . . . , pn. The
chosen head element is then added to the current interpretation, and the process is repeated
until no more new atoms can be derived. Note that each grounding of a rule can only con-
tribute a single head element. This probabilistic process defines a generative probabilistic
model over (functor-free) interpretations (Vennekens et al. 2006).

2.2 From CP-logic to CPT-L

CPT-L combines the semantics of CP-logic with that of (first-order) Markov processes. This
corresponds to the assumption that for any sequence of interpretations there is an under-
lying generative process that constructs the next interpretation from the current one. More
formally, a (discrete-time) stochastic process defines a distribution P (X1, . . . ,XT) over a
sequence of random variables X1, . . . ,XT that characterize the state of the world at time
t = 1, . . . , T . We are interested in the case where X is a relational state description, that
is, in relational stochastic processes. A relational stochastic process defines a distribution

Mach Learn (2011) 82: 239–272 243

P (I0, . . . , IT) over sequences of interpretations I0, . . . , IT , where interpretation It describes
the state of the world at time t . Thus, the random variable Xt describing the state of the
process at time t is an interpretation, that is, a structured state. Such a process completely
characterizes the (probabilistic) transition behavior of the world.

A stochastic process is called Markov if P (Xt+1 | Xt, . . . ,X0) = P (Xt+1 | Xt), and sta-
tionary if P (Xt+1 | Xt) = P (Xt ′+1 | Xt ′) for all t, t ′. Stationary Markov processes are the
simplest and most widely used class of stochastic processes, and thus are a natural starting
point for developing simple models for relational stochastic processes. Additionally, we will
assume full observability, meaning that the full state X can be directly observed in the data.
While this is a restrictive assumption that will not be appropriate for all domains, it makes
learning and inference in the resulting probabilistic model significantly easier.

The main idea behind CPT-L is to apply the causal probabilistic framework of CP-logic to
stationary Markov processes, by assuming that the state of the world at time t + 1 is a prob-
abilistic outcome of the state of the world at time t . The constructive probabilistic process
is thus unfolded over time, such that observed facts in interpretation It (probabilistically)
cause other facts to be observed in It+1. In this setting, the first-order Markov assumption
states that causal influences only stretch from It to It+1, but not further into the future. More
formally, we define a CPT-theory as follows:

Definition 2 A CPT-theory is a set of rules of the form

r = (h1,1 ∧ · · · ∧ h1,k1 : p1) ∨ · · · ∨ (hn,1 ∧ · · · ∧ h1,kn : pn) ←− b1, . . . , bm

where the hi,j are logical atoms, pi ∈ [0,1] are probabilities s.t.
∑n

i=1 pi = 1, and the bl are
literals (i.e., atoms or their negation).

A conjunction hi,1 ∧ · · · ∧ hi,ki
in head(r) will also be called a head element, and its

probability pi will be denoted by P (hi,1 ∧ · · · ∧ hi,ki
| r). The meaning of a rule is that

whenever b1θ, . . . , bmθ holds for a substitution θ in the current state It , exactly one head
element hi,1θ ∧ · · · ∧ hi,ki

θ is chosen from head(r) and all its conjuncts hi,j θ are added to
the next state It+1.

Note that in contrast to CP-logic, outcomes in CPT-L can be conjunctions of facts rather
than individual facts. This is needed to represent causes with multiple outcomes in the next
time step. In CP-logic, such multiple outcomes can be easily simulated using a set of rules
of the form hi,j : 1 ←− hi for j = 1, . . . , ki that expand a single head element hi into a
conjunction hi,1, . . . , hi,ki

. However, in CPT-L no new facts can be derived within one state
It , thus such an expansion is not possible and conjunctions are needed to represent multiple
outcomes.

Example 1 Consider the following CPT-theory for the blocks world domain:

r1 = free(X) : 1.0 ←− free(X),¬move(Y,X)

r2 = on(X,Y) : 1.0 ←− on(X,Y),¬move(X,Z), free(Z)

r3 = (on(A,B) ∧ free(C) : 0.9) ∨ (on(A,C) ∧ free(B) : 0.1)

←− free(A), free(B),on(A,C),move(A,B).

The first two rules represent frame axioms, namely that a block stays free if no other block
is moved upon it, and that blocks stay on each other unless they are moved. The third rule
states that if we try to move block A on block C this succeeds with a probability of 0.9.

244 Mach Learn (2011) 82: 239–272

We now show how a CPT-theory defines a distribution over sequences I0, . . . , IT of rela-
tional interpretations. Let us first define the concept of an applicable rule r in an interpreta-
tion It . Consider a CPT rule c1 : p1 ∨· · ·∨cn : pn ←− b1, . . . , bm. Let θ denote a substitution
that grounds the rule r , and let rθ denote the grounded rule. A rule r is applicable in It if
and only if there exists a substitution θ such that body(r)θ = b1θ, . . . , bmθ is true in It , de-
noted It |= b1θ, . . . , bmθ . We will most often talk about ground rules that are applicable in
an interpretation.

One of the main features of CPT-theories is that they are easily extended to include
background knowledge. The background knowledge B can be any logic program, that is,
a set of first-order clauses (cf. Bratko 1990). When working with background knowledge,
the state It is represented by a set of facts and a ground rule is applicable in a state It if
b1θ, . . . , bmθ can be inferred from It together with the background knowledge B . More
formally, a ground rule is applicable if and only if It ∪ B |= b1θ, . . . , bmθ . To simplify the
notation during the elaboration of our probabilistic semantics we shall largely ignore the use
of background knowledge.

Given a CPT-Theory T , the set of all applicable ground rules in state It will be denoted
as Rt . That is, Rt = {rθ | r ∈ T , rθ applicable in It }. Each ground rule applicable in It will
cause one of its grounded head elements to be selected, and the resulting atoms to become
true in It+1. More formally, let Rt = {r1, . . . , rk}. A selection σ is a mapping from applicable
ground rules Rt to head elements, associating each rule ri ∈ Rt with one of its head elements
σ(ri). Note that σ(ri) is a conjunction of ground atoms. The probability of σ is simply the
product of the probabilities of selecting the respective head elements, that is,

P (σ) =
k∏

i=1

P (σ(ri) | ri) (1)

where P (σ(ri) | ri) is the probability associated with head element σ(ri) in the rule ri .
A selection σ defines which head element is selected for every rule, and thus determines

a successor interpretation It+1, that simply consists of all atoms appearing in selected head
elements. More formally,

It+1 =
k∧

i=1

σ(ri)

where, abusing notation, we have denoted an interpretation as a conjunction of atoms rather
than a set of atoms. We shall say that σ yields It+1 from It , denoted It

σ→ It+1, and define

P (It+1|It) =
∑

σ :It σ→It+1

P (σ). (2)

That is, the probability of a successor interpretation It+1 given an interpretation It is
computed by summing the probabilities of all selections yielding It+1 from It . Note that
P (It+1 | It) = 0 if no selection yields It+1.

Example 2 Consider the theory

r1 = p(X) : 0.2 ∨ q(X) : 0.8 ←− q(X)

r2 = p(a) : 0.5 ∨ (q(b) ∧ q(c)) : 0.5 ←− ¬q(b)

r3 = p(X) : 0.7 ∨ nil : 0.3 ←− p(X).

Mach Learn (2011) 82: 239–272 245

Starting from It = {p(a)} only the rules r2 and r3 are applicable, so Rt = {r2, r3{X/a}}. The
set of possible selections is � = {σ1, σ2, σ3, σ4} with

σ1 = {(r2,p(a)), (r3,p(a))} σ2 = {(r2, q(b) ∧ q(c)), (r3,p(a))}
σ3 = {(r2,p(a)), (r3,nil)} σ4 = {(r2, q(b) ∧ q(c)), (r3,nil)}.

The possible successor states It+1 are therefore

I 1
t+1 = {p(a)} with P (I 1

t+1 | It) = 0.5 · 0.7 + 0.5 · 0.3 = 0.5

I 2
t+1 = {q(b), q(c)} with P (I 2

t+1 | It) = 0.5 · 0.3 = 0.15

I 3
t+1 = {p(a), q(b), q(c)} with P (I 3

t+1 | It) = 0.5 · 0.7 = 0.35.

As for propositional Markov processes, the probability of a sequence I0, . . . , IT given an
initial state I0 is defined by

P (I0, . . . , IT) = P (I0)

T∏

t=0

P (It+1 | It). (3)

Intuitively, it is clear that this defines a distribution over all sequences of interpretations of
length T as in the propositional case. More formally, inductive application of the product
rule yields the following theorem:

Theorem 1 (Semantics of a CPT theory) Given an initial state I0, a CPT-theory defines a
discrete-time stochastic process, and therefore for T ∈ N a distribution P (I0, . . . , IT) over
sequences of interpretations of length T .

2.3 Relaxing the Markov assumption

The CPT-L model described so far is based on a first-order Markov assumption (3). As
for propositional Markov processes, it is straightforward to relax this assumption and allow
higher-order dependencies such that

P (I0, . . . , IT) = P (I0)

T∏

t=0

P (It+1 | It−n+1, . . . , It)

where n > 1 is the model order. In particular, for n = ∞, we have a full-history model given
by

P (I0, . . . , IT) = P (I0)

T∏

t=0

P (It+1 | I0, . . . , It). (4)

For propositional Markov processes, a naive representation of P (It+1 | It−n+1, . . . , It) leads
to a number of model parameters that is exponential in n. Thus, higher-order models typi-
cally require additional assumptions (as in Mixed Memory Markov Models (Saul and Jordan
1999)) and/or regularization to avoid overfitting and excessive computational complexity.
However, in CPT-L we can easily take into account all previous interpretations when con-
structing a successor interpretation without a combinatorial explosion in model complexity.
The idea is to extend rule conditions to match on all previous interpretations. This can be

246 Mach Learn (2011) 82: 239–272

realized by aggregating all previous interpretations It , It−1, . . . , I0 using fluents (facts ex-
tended with an additional argument for the timepoint), and then matching on the aggregated
history. More formally, let F (I, t) denote the interpretation I where all facts have been ex-
tended by an additional argument t , as in F (I,0) = {p(0, a), q(0, b)} for I = {p(a), q(b)}.
Now define the aggregated history as

I[0,t] =
t⋃

t ′=0

F (It ′ , t
′ − t).

CPT-L rules are still of the form

r = c1 : p1 ∨ · · · ∨ cn : pn ←− b1, . . . , bm

where the head elements ci are conjunctions and the pi probabilities as in Definition 2, but
body literals bi now match on the interpretation I[0,t]. According to (4), we now need to
construct a successor interpretation It+1 given a history of interpretations It , It−1, . . . , I0, or,
equivalently, giving the aggregated history I[0,t]. In this new setting, a rule r is applicable
given It , It−1, . . . , I0 if and only if there is a grounding θ such that I[0,t] |= b1θ, . . . , bmθ .
As before, we probabilistically select for every applicable rule a grounded head element ciθ

and add its atoms to It+1.

Example 3 (Reconsider Example 2) In the new setting, rules r1, r2, r3 can be written as

r1 = p(X) : 0.2 ∨ q(X) : 0.8 ←− q(0,X)

r2 = p(a) : 0.5 ∨ (q(b) ∧ q(c)) : 0.5 ←− ¬q(0, b)

r3 = p(X) : 0.7 ∨ nil : 0.3 ←− p(0,X).

Assume we are given a history I1 = {p(a)}, I0 = {q(b), q(c)} and need to compute
P (I2 | I1, I0). The joint interpretation is

I[0,1] = {p(0, a), q(−1, b), q(−1, c)}.
The possible successor interpretations I2 are, of course, the same as in Example 2. Rule r1

could be changed to

r1 = p(X) : 0.2 ∨ q(X) : 0.8 ←− q(T ,X)

to make it applicable whenever {q(X)} succeeds in any earlier interpretation (not necessarily
the previous one).

As the first-order Markov variant of CPT-L discussed in Sect. 2.2 is a special case of the
more general variant discussed in this section, we will for the rest of the paper only consider
full-history models. The conditional successor distribution P (It+1 | It , . . . , I0) will also be
denoted by P (It+1 | I[0,t]).

3 Inference and parameter estimation in CPT-L

As for other probabilistic models, we can now formulate several computational tasks for the
introduced CPT-L model:

Mach Learn (2011) 82: 239–272 247

– Sampling: sample sequences of interpretations I1, . . . , IT from a given CPT-theory T and
initial interpretation I0.

– Inference: given a CPT-theory T and a sequence of interpretations I0, . . . , IT , compute
P (I0, . . . , IT | T).

– Parameter estimation: given the structure of a CPT-theory T and a set D of sequences of
interpretations, compute the maximum-likelihood parameters π∗ = arg maxπ P (D | π),
where π are the parameters of T .

– Prediction: Let T be a CPT-theory, I0, . . . , It a sequence of interpretations, and F a first-
order query that represents a certain property of interest. Compute the probability that F

holds at time t + d , that is, P (It+d |= F | T , I0, . . . , It).

Algorithmic solutions for solving these tasks will be presented in turn.

3.1 Sampling

Sampling from a CPT-theory is straightforward due to the causal semantics employed in
the underlying CP-logic framework. Let T be a CPT-theory, and let I0 be an initial inter-
pretation. According to (4), we can sample from the joint distribution P (I1, . . . , IT | I0) by
successively sampling It+1 from the distribution P (It+1 | I[0,t]) for t = 0, . . . , T − 1. This
can be done directly using the constructive process that defines the semantics of CPT-L. We
start with the empty interpretation It+1 = {}, and first find all groundings rθ of rules r ∈ T
that are applicable in I[0,t]. For each grounded rule rθ , we then randomly select one of its
head elements c ∈ head(rθ) according to the probability distribution over head elements for
that rule. The head element c is a conjunction of atoms, which need to be added to It+1. Af-
ter adding all such conjuncts for all applicable rules, we have randomly sampled It+1 from
the desired distribution.

3.2 Inference for CPT-theories

Let T be a given CPT-theory, and I0, . . . , IT a sequence of interpretations. According
to (4), the crucial task for solving the inference problem is to compute P (It+1 | I[0,t]) for
t = 0, . . . , T − 1. According to (2), this involves marginalizing over all selections yielding
It+1 from I[0,t]. However, the number of possible selections σ can be exponential in the
number of ground rules |Rt | applicable in I[0,t], so a naive generate-and-test approach is
infeasible. Instead, we present an efficient approach for computing P (It+1 | I[0,t]) without
explicitly enumerating all selections yielding It+1, which is strongly related to the inference
technique discussed in De Raedt et al. (2007). The problem of computing P (It+1 | I[0,t])
is first converted to a CNF formula over Boolean variables such that satisfying assignments
correspond to selections yielding It+1. The formula is then compactly represented as a binary
decision diagram (BDD), and P (It+1 | I[0,t]) efficiently computed from the BDD using dy-
namic programming. Although finding satisfying assignments for CNF formulae is a hard
problem in general, the key advantage of this approach is that existing, highly optimized
BDD software packages can be used.

The conversion of an inference problem P (It+1 | I[0,t]) to a CNF formula f is realized as
follows:

1. Initialize f := true.
2. Let Rt denote the set of applicable ground rules in I[0,t]. Rules r ∈ Rt are of the form

r = c1 : p1, . . . , cn : pn ←− b1, . . . , bm, where ci are conjunctions of literals (see Defini-
tion 2).

248 Mach Learn (2011) 82: 239–272

3. For all rules r = c1 : p1, . . . , cn : pn ←− b1, . . . , bm in Rt do:
(a) f := f ∧(r.c1 ∨· · ·∨r.cn), where r.ci denotes a new (propositional) Boolean variable

whose unique name is the concatenation of the name of the rule r with the head
element ci .

(b) f := f ∧ (¬r.ci ∨ ¬r.cj) for all i �= j .
4. For all facts l ∈ It+1

(a) Initialize g := false
(b) for all r ∈ Rt and ci : pi ∈ head(r) such that l is one of the atoms in the conjunction

ci do g := g ∨ r.ci

(c) f := f ∧ g.
5. For all variables r.c appearing in f such that one of the atoms in the conjunction c is not

true in It+1 do f = f ∧ ¬r.c.

A Boolean variable r.c in f represents that head element c was selected in rule r . A selection
σ thus corresponds to an assignment of truth values to the variables r.c, in which exactly
one r.c is true for every rule r . The construction of f ensures that all satisfying assignments
for the formula f correspond to selections yielding It+1, and vice versa. Specifically, Step 3
of the algorithm assures that selections are obtained (that is, exactly one head element is
selected per rule), Step 4 assures that the selection generates the interpretation It+1, and
Step 5 assures that no facts are generated that do not appear in It+1. Thus, we have a one-
to-one correspondence between satisfying assignments for the formula f and selections
yielding It+1.

Example 4 The following formula f is obtained for the CPT-T theory given in Example 2
and the transition {p(a)} → {p(a)}:

(r2.c21 ∨ r2.c22) ∧ (r3.c31 ∨ r3.c32)︸ ︷︷ ︸
3.a

∧ (¬r2.c21 ∨ ¬r2.c22)) ∧ (¬r3.c31 ∨ ¬r3.c32)︸ ︷︷ ︸
3.b

∧ (r2.c21 ∨ r3.c31)︸ ︷︷ ︸
4

∧¬r2.c22︸ ︷︷ ︸
5

where c21 = p(a), c22 = q(b)∧q(c), c31 = p(a) and c32 = nil are the head elements of rules
r2 and r3. The parts of the formula are annotated with the steps in the construction algorithm
that generated them.

From the formula f , a reduced ordered binary decision diagram (BDD) (Bryant 1986)
is constructed. Let x1, . . . , xn denote an ordered set of Boolean variables (such as the r.c

contained in f). A BDD is a rooted, directed acyclic graph, in which nodes are annotated
with variables and have out-degree 2, indicating that the variable is either true or false. Fur-
thermore, there are two terminal nodes labeled with 0 and 1. Variables along any path from
the root to one of the two terminals are ordered according to the given variable ordering. The
graph compactly represents a Boolean function f over variables x1, . . . , xn: given an instan-
tiation of the xi , we follow a path from the root to either 1 or 0 (indicating that f is true
or false). Furthermore, the graph must be reduced, that is, it must not be possible to merge
or remove nodes without altering the represented function. More formally, a BDD graph is
said to be reduced if no further reduction operations can be applied. Reduction operations
are (1) to merge any two isomorphic subgraphs in the BDD structure, and (2) to remove any
node whose two children are isomorphic. It can be shown that reduced ordered BDD struc-
tures are a unique representation for any Boolean function, given a fixed variable ordering

Mach Learn (2011) 82: 239–272 249

Fig. 2 BDD representing the
formula f given in Example 4.
The root node indicates the
observed interpretation. The
terminal nodes represent whether
the path starting at the root node
yields this interpretation. The
other nodes are annotated with
the rule r and head element c

they represent, in the form of the
Boolean variable r.c used in f . If
a node is left using a solid edge,
the corresponding variable is
assigned the value true, otherwise
it is assigned the value false. Also
given are upward probabilities
α(N) and downward
probabilities β(N) for all nodes
N , as (α(N) | β(N))

(cf. Bryant 1986 for more details). Figure 2 shows the BDD resulting from the formula f

given in Example 4.
From the BDD graph, P (It+1 | I[0,t]) can be computed in linear time using dynamic

programming. The resulting algorithm is strongly related to the algorithm for inference in
ProbLog theories (De Raedt et al. 2007), and will now be described in detail. First note
that there is a one-to-one correspondence between paths in the BDD from the root to the
1-terminal and selections yielding It+1, where the path indicates which of the Boolean vari-
ables r.c in f are assigned the value true, or equivalently, which head element c has been
selected for rule r . To see this, consider Step 3 of the algorithm for converting a given in-
ference problem into the BDD. It ensures that exactly one head element is chosen for every
rule. Thus, in the BDD representation, every path to the 1-terminal must pass through all
Boolean variables; otherwise, the state of one variable could be altered, violating the con-
straint encoded in Step 3 of the conversion algorithm.

We now recursively define for every node N in the BDD an upward probability α(N) as
follows:

1. The upward probabilities for terminal nodes are defined as

α(0-terminal) = 0 and α(1-terminal) = 1.

2. Let N be a node in the BDD representing the Boolean variable r.c, with r a rule and c

one of its head elements. Let N−,N1 denote the children of N , with N− on the negative
and N+ on the positive branch. Then

α(N) = α(N−) + P (c | r)α(N+).

Furthermore, we recursively define a downward probability β(N) as follows:

1. The downward probability of the root node is defined as

β(root) = 1. (5)

250 Mach Learn (2011) 82: 239–272

Fig. 3 Calculation of upward
and downward probabilities for
internal nodes in the BDD

2. Let N be a non-root node in the BDD. Let N1, . . . ,Nk denote the parents of N , with
N1, . . . ,Nl = pa+(N) reaching N by their positive branch and Nl+1, . . . ,Nk = pa−(N)

reaching N by their negative branch. Then

β(N) =
l∑

i=1

β(Ni)P (ci | ri) +
k∑

i=l+1

β(Ni) (6)

where ri .ci is the Boolean variable associated with node Ni .

The definition of upward and downward probabilities is visualized in Fig. 3. The values
α(N) and β(N) can be interpreted as probabilities of partial selections, which are deter-
mined by the path from the 1-terminal (α) or the root (β) to the node N . They roughly cor-
respond to the forward-backward probabilities used for inference in hidden Markov models
(Rabiner 1989), or inside-outside probabilities used in stochastic context free grammars.

The following theorem states that the desired probability P (It+1 | I[0,t]) for inference can
be easily obtained given the upward and downward probabilities:

Theorem 2 Let B be a BDD resulting from the conversion of an inference problem P (It+1 |
I[0,t]), annotated with upward and downward probabilities as defined above, and let

� = {σ | I[0,t]
σ→ It+1}

be the set of selections yielding It+1. Then

α(root) =
∑

σ∈�

P (σ)

= P (It+1 | I[0,t]). (7)

A proof of the theorem is given in Appendix A. Note that the downward probabilities will
only be needed for the parameter estimation algorithm discussed in Sect. 3.4. Computing
upward and downward probabilities from their recursive definitions is straightforward, thus
Theorem 2 concludes the description of the BDD-based inference algorithm for CPT-L.

Computational costs are linear in the size of the BDD graph. The efficiency of this
method thus crucially depends on the size of this graph, which in turn depends strongly
on the chosen variable ordering x1, . . . , xn. Unfortunately, computing an optimal variable
ordering is NP-hard. However, existing implementations of BDD packages1 contain sophis-
ticated heuristics to find a good ordering for a given function in polynomial time.

1Our implementation uses the CUDD package http://vlsi.colorado.edu/~fabio/CUDD/.

http://vlsi.colorado.edu/~fabio/CUDD/

Mach Learn (2011) 82: 239–272 251

3.3 Partially lifted inference for CPT-theories

We have so far specified CPT-L theories using first-order logic, but carried out inference
at the ground level. This is a common strategy in many statistical relational learning frame-
works: the first-order model specification serves as a template language from which a ground
model is constructed for inference. A popular approach is to use graphical models as ground
models. These can be directed (as in Relational Bayesian Networks (Jaeger 1997), Bayesian
Logic Programs (Kersting and De Raedt 2007), or CP-logic (Vennekens et al. 2006)), or
undirected (as in Markov Logic Networks (Richardson and Domingos 2006)).

In CPT-L, the grounded inference problem takes the form of a (propositional) Boolean
formula, for which we need to compute all satisfying assignments. This problem can be
solved efficiently using binary decision diagrams, as shown in Sect. 3.2. However, the size
of the inference problem (and resulting BDD) depends on the size of the grounded first-order
model, which can be large compared to the original first-order model specification. Recent
work on lifted inference in first-order models (see, for example, Poole (2003) and Milch et al.
(2008)) has shown that computational efficiency can be improved significantly if inference
is performed directly at the first-order level. We now discuss a lifted inference algorithm for
CPT-theories. The general idea is to solve a part of the overall inference problem directly at
the first-order level, without compiling it into the binary decision diagram. The approach is
best illustrated using an example:

Example 5 Reconsider the CPT-Theory given in Example 2. Suppose we want to com-
pute the probability P (It+1 | I[0,t]), where It = {q(a), q(b),p(1),p(2),p(3)}, It+1 =
{p(a),p(b)}, and I[0,t−1] are irrelevant as the theory refers only to the previous time-point.
Rules r1 and r3 are applicable, and

Rt = {r1{X/a}, r1{X/b}, r3{X/1}, r3{X/2}, r3{X/3}}.
We need to compute

P (It+1 | It) =
∑

σ∈�

P (σ) (8)

where � is the set of selections yielding It+1 from It . Computing this sum over probabilities
of selections σ ∈ � is the ground inference problem, which can be solved using BDDs as
explained in Sect. 3.2. According to (1), the P (σ) are of the form

P (σ) = f11f12f31f32f33

where f11, f12 ∈ {0.2,0.8} are the probabilities of selected head elements of ground rules
r1{X/a}, r1{X/b} ∈ Rt , and f31, f32, f33 ∈ {0.7,0.3} are the probabilities of selected head
elements of ground rules r3{X/a}, r3{X/b}, r3{X/c} ∈ Rt .

However, inspecting rule r1 and It+1, we see that irrespective of the substitution θ

grounding rule r1 in It , only the first head element of r1 can be used in a selection. Thus,
factors f11 and f12 are always 0.2, and (8) simplifies to

P (It+1 | It) = 0.2 · 0.2
∑

σ ′∈�′
P (σ ′) (9)

where σ ′ only selects head elements for rule r3. That is, P (σ ′) is of the form

P (σ ′) = f31f32f33.

252 Mach Learn (2011) 82: 239–272

Note that the remaining ground inference problem—summing over the partial selections
σ ′—is smaller than the original one given by (8). The remaining problem can be solved
using the BDD-based inference method as explained above. However, when converting this
inference problem to a Boolean formula f , we need to take into account that some facts
appearing in the next interpretation It+1 have already been generated by the head elements
selected for groundings of rule r1, and thus do not need to be generated anymore by ground-
ings of rule r3. That is, we simply ignore already generated facts in Step 4 of the construction
of f .

In fact, we can go one step further, and note that also for rule r3 we can determine the
selected head element irrespective of the substitution used to ground the rule in It . It is easily
determined by logical inference that head element p(X) cannot be grounded in It+1 given
that the body p(X) is grounded in It , thus only the second head element can be used for any
grounding of rule r3 in any selection σ ′. Thus, (9) is further simplified to

P (It+1 | It) = 0.2 · 0.2 · 0.3 · 0.3 · 0.3

= 0.2Kr1 0.3Kr3

where Kri is the number of groundings of rule ri in It .

The key observation in the above example is that for both r1 and r3 we could logically
infer the head element used in any selection σ ∈ � under any grounding of the rules in It .
Note that in general, only a subset of the rules can be removed from the ground inference
problem in this way.

Generalizing from Example 5, we can describe the partially lifted inference algorithm
for any given CPT-theory T = {r1, . . . , rk} and inference problem P (It+1 | I[0,t]) as follows:

1. Let Rt denote the set of all ground rules applicable in I[0,t].
2. Define

Rt = {rθ ∈ Rt | It+1, I[0,t] logically determine the head element selected for rθ}

For a rule rθ ∈ Rt , let σ(rθ) denote the head element that must be selected.
3. Compute

P (It+1 | I[0,t]) =
∏

rθ∈Rt

P (σ (rθ) | rθ)
∑

σ ′∈�′
P (σ ′)

=
∏

r∈T

∏

cr∈head(r)

P (cr | r)Kr,c
∑

σ ′∈�′
P (σ ′), (10)

where

Kr,c = |{rθ ∈ Rt | σ(rθ) = cθ}|
and �′ is the set of selections of head elements for rules in Rt \ Rt that yield It+1 from
I[0,t], given that we select head element σ(rθ) for rules in rθ ∈ Rt . Note that in (10) we
have integrated all ground rules for which a particular head element cr has to be selected
into one factor, which has to be taken to the power of Kr,c , namely the number of such
ground rules. Thus, we have performed a partially lifted probability calculation.

Mach Learn (2011) 82: 239–272 253

The set Rt contains those grounded rules rθ for which we can prove—using logical infer-
ence on body(rθ), head(rθ), and the interpretations I[0,t] and It+1—that a particular head
element σ(rθ) has to be selected for rθ . For instance, all groundings of rule r1 in Example 5
are in this set, because no ground facts of the form q(X)θ appear in It+1, and thus the first
head element of r1 always has to be selected. In fact, for Example 5 we have Rt = Rt . The
term Kr,c is the number of groundings of a rule r ∈ T for which we know that the head ele-
ment c ∈ head(r) is selected for the grounded rule. For instance, in Example 5, Kr1,p(X) = 2
and Kr3,nil = 3. In practice, the counting variables Kr,c can be computed as follows. For
each rule r , we first determine the set of groundings θ such that rθ holds in I[0,t] and exactly
one of the grounded head elements holds in It+1; this can be achieved with a single logical
query. We then count for each head element cr ∈ head(r) the number of times the unique
grounded head determined in the first step was subsumed by cr , this yields the term Kr,c .

Comparing the outlined partially lifted inference algorithm to other lifted inference algo-
rithms proposed in the literature, such as first-order probabilistic inference (Poole 2003) or
lifted inference with counting formulas (Milch et al. 2008), we note that it is much simpler
and, correspondingly, more limited in scope. Nevertheless, it proved surprisingly effective
in our experimental evaluation (see Sect. 4).

Note that the efficiency of the presented inference algorithm depends on the fact that the
selection of a particular head element is enforced by a given successor interpretation. This
in turn depends on the closed-world assumption, which states that any atom not observed is
false.

3.4 Parameter estimation

Assume the structure of a CPT-theory is given, that is, a set T = {r1, . . . , rk} of rules of the
form

ri = (ci1 : pi1) ∨ · · · ∨ (cini
: pini

) ←− bi1, . . . , bimi
,

where π = {pij }i,j are the unknown parameters to be estimated from a set of training se-
quences D. A standard approach is to find maximum-likelihood parameters

π∗ = arg max
π

P (D | π),

that is, to set the parameters such that we maximize the probability of generating the data D
from T. When generating D from T , a rule ri ∈ T is typically applied multiple times: in the
form of different groundings riθ , and in different transitions (appearing in different training
sequences). We would like to set

∀i, j : pij = κij
∑ni

l=1 κil

, (11)

where κij denotes the number of times head element cij was selected in any application of
the rule ri while generating D. However, the quantity κij is not directly observable. To see
why this is so, first consider a single transition I[0,t] → It+1 in one training sequence. We
know the set of rules Rt applied in the transition; however, there are in general many possible
selections σ of rule head elements yielding It+1. The information about which selection was
used, that is, which rule has generated which fact in It+1, is hidden. We will now derive
an efficient Expectation-Maximization algorithm in which the unobserved variables are the
selections used at a transition, and κij the sufficient statistics. To this aim, we first need to

254 Mach Learn (2011) 82: 239–272

compute expected values of the κij given the observations and the current model parameters
π , and then re-estimate π according to (11) where the κij are replaced by their expectation.

To keep the notation uncluttered, we first consider a single transition 	 = I[0,t] → It+1.
Let Rt denote the set of rules applicable in the transition, and let κθ

ij ∈ {0,1} denote whether
the grounded head element cij θ was selected in the application of a grounded rule riθ ∈ Rt .

Let furthermore � = {σ | I[0,t]
σ→ It+1} be the set of selections yielding It+1. For a given

selection σ ∈ �, we have

κθ
ij =

{
1, σ (riθ) = cij θ

0, otherwise,
(12)

and

κij =
∑

θ :ri θ∈Rt

κθ
ij (13)

where the sum runs over all groundings riθ ∈ Rt of rule ri . However, the selection σ is not
observed, thus we instead have to consider the expectation E[κij | π,] of κij with respect to
the posterior distribution P (σ | π,) over selections given the data and current parameters.
It holds that

E[κθ
ij | π,] = P (κθ

ij = 1 | π,)

=
∑

σ∈�

P (κθ
ij = 1 | σ)P (σ | π,) (14)

where P (κθ
ij = 1 | σ) ∈ {0,1} according to (12). Equation (13) now implies

E[κij | π,] =
∑

θ :ri θ∈Rt

E[κθ
ij | π,],

which concludes the expectation step of the Expectation-Maximization algorithm for a sin-
gle transition 	. If the data D contains multiple transitions (possibly appearing in multiple
sequences), we can simply sum up the quantities E[κij | π,] for each transition. Finally,
given the expectation of the sufficient statistics κij , the maximization step in EM is

p
(new)
ij = E[κij | π, D]

∑
j E[κij | π, D] .

As usual, expectation and maximization steps are iterated until convergence in likelihood
space.

The key algorithmic challenge in the outlined EM algorithm is to compute the expectation
given by (14) efficiently. Note that this again involves summing over all selections yielding
the next interpretation, much as in the inference problem discussed in Sects. 3.2 and 3.3.
In fact, the quantity E[κθ

ij | π,] can also be obtained from the upward and downward
probabilities introduced in Sect. 3.2. More formally, the following holds:

Theorem 3 Let pij be the parameter associated with head element cij in rule ri , let 	 =
I[0,t] → It+1 be a single transition, and let riθ ∈ Rt denote a grounding of ri applicable in
I[0,t]. Let N1, . . . ,Nk be all nodes in the BDD associated with the Boolean variable riθ.cij θ

Mach Learn (2011) 82: 239–272 255

resulting from the grounded rule riθ , and let N+
l be the child on the positive branch of Nl .

Then

E[κθ
ij | π,] = 1

P (It+1 | I[0,t])

k∑

l=1

β(Nl)pijα(N+
l). (15)

As for the inference problem discussed in Sect. 3.2, we can thus compute the estimation
step given by (14) in time linear in the size of the BDD. The theorem can be proven using
similar techniques as in the proof of Theorem 2; however, the proof is slightly more involved
and thus moved to Appendix A.

Finally, note that at this point we can again make use of the partial lifted inference algo-
rithm discussed in Sect. 3.3. A part of the expectation computation is then solved directly
at the first-order level, while the rest is solved using dynamic programming in the BDD as
explained above.

Note that the presented algorithms for inference and parameter estimation can be sig-
nificantly more efficient than the corresponding algorithms in the more general CP-logic
framework. Specifically, in CP-logic the inference and learning problems basically have to
be grounded into a Bayesian Network, which can grow very large depending on the char-
acteristics of the domain. This often makes (exact) inference computationally challenging.
In contrast, the inference and learning techniques we discussed here take advantage of the
particular problem setting and model structure (that is, sequential and fully observable data).
The experimental evaluation presented in Sect. 4 indeed shows that with these techniques
we can perform exact inference in only seconds, for problems where the ground Bayesian
Network would contain hundreds of thousands of nodes.

3.5 Prediction

Assume we are given an observation sequence I0, . . . , It , a CPT-theory T , and a prop-
erty of interest F (represented as a first-order query), and would like to compute
P (It+d |= F | I0, . . . , It , T). For instance, a robot might like to know the probability that
a certain world state is reached at time t + d , given its current world model and observation
history. Or, in the MMOG domain, we might want to compute the probability that a par-
ticular player will have won the game at time t + d , given a model of game dynamics and
an observation history. We will assume that F is any first-order query that could be posed
to a logic programming system such as Prolog, making use of the available background
knowledge B .

Powerful statistical relational learning systems are in principle able to compute the quan-
tity P (It+d |= F | I0, . . . , It , T) exactly by “unrolling” the world model into a large dy-
namic graphical model. However, this is computationally expensive as it requires to mar-
ginalize out all (unobserved) intermediate world states It+1, . . . , It+d−1, and thus often not
practical in complex worlds. In contrast, inference in CPT-theories draws its efficiency
from the full observability assumption, as outlined in Sect. 3. As an alternative to the “un-
rolling” approach, we thus propose a straightforward sample-based approximation to com-
pute P (It+d |= F | It , T) that preserves the efficiency of our approach. The idea is to obtain
independent samples from the Boolean random variable It+d |= F given T and I0, . . . , It ,
and estimate the desired probability as the fraction of positive samples.

Given I0, . . . , It , it is straightforward to obtain independent samples of the condi-
tional distribution P (It+1, . . . , It+d | I0, . . . , It , T) by forward sampling from the stochastic
process represented by T , as explained in Sect. 3.1. Ignoring It+1, . . . , It+d−1, we can sim-
ply check whether It+d |= F in the sampled interpretation It+d . After repeatedly sampling

256 Mach Learn (2011) 82: 239–272

interpretations I
(1)
t+d , . . . , I

(K)
t+d in this fashion, the fraction of I

(k)
t+d for which I

(k)
t+d |= F is then

an unbiased estimator of the true probability P (It+d |= F | It , T), and will in fact quickly
converge towards this true probability for large K .

4 Experimental evaluation2

In this section, we experimentally validate the proposed CPT-L approach in several (arti-
ficial and real-world) domains as well as in different learning settings. The general setting
discussed in this paper, namely constructing models for stochastic processes with complex
state representations, covers a wide range of application domains. It is appropriate whenever
systems evolve over time and are complex enough that their states cannot easily be described
using a propositional representation. A prominent example are states that are characterized
by a graph structure relating different agents and/or world artifacts at a given point in time (as
in dynamic social networks, computer networks, the world wide web, games, marketplaces,
et cetera). In this setting, observations consist of sequences of labeled (hyper)graphs, cf.
Fig. 8. To experimentally evaluate CPT-L, we have selected the following domains as repre-
sentative examples:

Stochastic blocks world domain This domain is a stochastic version of the well-known ar-
tificial blocks world domain, representing an agent that is moving blocks which are stacked
on a table. We use this artificial domain to perform controlled experiments, testing the scal-
ing and convergence behavior of inference and learning algorithms.

Chat room domain This domain is concerned with the analysis of user interaction in chat
rooms. We have monitored a number of IRC chat rooms in real time, and recorded who
was sending messages to whom using the PieSpy utility (Mutton 2004). This results in
dynamically changing graphs of user interaction, representing the social network structure
among chat room participants, cf. Fig. 5. We learn these dynamics using separate models
for different chat rooms. The resulting set of models can be used to visualize commonalities
and differences in the behavior displayed in different chat rooms, thereby characterizing the
underlying user communities.

Massively multiplayer online game domain As a final evaluation domain introduced in
Thon et al. (2008), we consider the large-scale massively multiplayer online strategy game
Travian.3 Game worlds feature thousands of players, game artifacts such as cities, armies,
and resources, and social player interaction in alliances. Game states in Travian are com-
plex and richly structured, and transitions between game states highly stochastic as they are
determined by player actions. We have logged the state of a “live” game server over several
months, recording high-level game states as visualized in Fig. 8. We address different learn-
ing tasks in the Travian domain, such as predicting player actions (prediction setting) and
identifying groups of cooperating alliances (classification setting).

The goal of our experimental study is two-fold. First, we want to evaluate the effective-
ness of the proposed approach. That is, we explore whether it is possible to learn dynamic
stochastic models for the above-mentioned relational domains, and to solve the resulting

2The implementation, models and data will be made available at http://www.ingothon.de/.
3www.travian.com; www.traviangames.com.

http://www.ingothon.de/.
http://www.travian.com
http://www.traviangames.com

Mach Learn (2011) 82: 239–272 257

inference, prediction, and classification tasks. Our second goal is to evaluate the efficiency
of the proposed algorithms. That is, we will evaluate the scaling behavior for domains with
a large number of objects and relationships, and in particular explore the advantage of per-
forming partially lifted inference in such domains. Experiments to address these questions
will be presented in turn for the three outlined evaluation domains in the rest of this section.

4.1 Experiments in the stochastic blocks world domain

As an artificial testbed for CPT-L, we performed experiments in a stochastic version of the
well-known blocks world domain. The domain was chosen because it is truly relational and
also serves as a popular artificial world model in agent-based approaches such as planning
and reinforcement learning. Moreover, application scenarios involving agents that act and
learn in an environment are one of the main motivations for CPT-L.

World model The blocks world we consider consists of a table and a number of blocks.
Every block rests on exactly one other block or the table, denoted by a fact on(A,B).
Blocks come in different sizes, denoted by size_of (A,N) with N ∈ {1, . . . ,4}. A predi-
cate free(B) ←− not(on(A,B)) is defined in the background knowledge. Additionally, a
background predicate stack(A,S) defines that block A is part of a stack of blocks, which
is represented by its lowest block S. Actions in the blocks world domain are of the form
move(A,B). If both A and B are free, the action moves block A on B with probability
1 − ε, with probability ε the world state does not change. Furthermore, a stack S can start
to jiggle, represented by jiggle(S). A stack can start to jiggle if its top block is lifted, or a
new block is added to it. Furthermore, stacks can start jiggling without interference from the
agent, which is more likely if they contain many blocks and large blocks are stacked on top
of smaller ones. Stacks that jiggle collapse in the next time step, and all their blocks fall on
the table. Two example rules from this domain are

(jiggle(S) : 0.2) ∨ (nil : 0.8) ←− move(A,B), stack(A,S)

(jiggle(S) : 0.2) ∨ (nil : 0.8) ←− move(A,B), stack(B,S),

they describe that stacks can start to jiggle if blocks are added to or taken from a stack.
Furthermore, we assume the agent follows a simple policy that tries to build a large stack of
blocks by repeatedly stacking the free block with second-lowest ID on the free block with
lowest ID. This strategy would result in one large stack of blocks if stacks never collapsed.
In our experiments, the policy was supplied as background knowledge, that is, the predicate
move/2 was hard-coded by a logical definition in the background knowledge and not part of
the learning problem. The model had 14 rules with 24 parameters in total.

Results in the blocks-world domain In a first experiment, we explore the convergence be-
havior of the EM algorithm for CPT-L. The world model together with the policy for the
agent, that specifies which block to stack next, is implemented by a (gold-standard) CPT-
theory T , and a training set of 20 sequences of length 50 each is sampled from T . From this
data, the parameters are re-learned using EM. Figure 4, left graph, shows the convergence
behavior of the algorithm on the training data for different numbers of blocks in the do-
main, averaged over 15 runs. It shows rapid and reliable convergence. Figure 4, right graph,
shows the running time of EM as a function of the number of blocks. The scaling behavior is
roughly linear, indicating that the model scales well to reasonably large domains. Absolute
running times are also low, with about 1 minute for an EM iteration in a world with 50

258 Mach Learn (2011) 82: 239–272

Fig. 4 Left graph: per-sequence log-likelihood on the training data as a function of the EM iteration. Right
graph: Running time of EM as a function of the number of blocks in the world model

blocks.4 This is in contrast to other, more expressive modeling techniques which typically
scale badly to domains with many objects. The theory learned (Fig. 4) is very close to the
ground truth (“gold standard model”) from which training sequences were generated. On
an independent test set (also sampled from the ground truth), log-likelihood for the gold
standard model is −4510.7, for the learned model it is −4513.8, while for a theory with
randomly initialized parameters it is −55999.4 (50 blocks setting). Manual inspection of
the learned model also shows that parameter values are on average very close to those in the
gold-standard model.

The experiments presented so far show that relational stochastic domains of substantial
size can be represented in CPT-L. The presented algorithms are efficient and scale well in
the size of the domain, and show robust convergence behavior.

4.2 Experiments in the chat room domain

For our experiments in the chat room domain, we have selected the following 7 well-
frequented IRC chat rooms: football@irc.efnet.net, iphone@irc.efnet.net, computer@irc.
efnet.net, poker@irc.efnet.net, math@irc.efnet.net, politics@irc.efnet.net, and travian@irc.
travian.org. Each chat room was monitored for one day using the PieSpy utility (Mut-
ton 2004), generating a sequence of user interaction graphs as those shown in Fig. 5. For
each chat room, we selected the first 100 observations in the sequence of user interaction
graphs as a single observation sequence for that chat room, yielding 7 observation sequences
S1, . . . , S7.

We have again hand-coded a simple CPT-theory T for this domain, which makes use
of a number of graph-theoretic properties defined in the background knowledge, such as
graph centrality, node degree, closeness, betweenness, and co-citation. As an example rule,
consider

communicates(P 1,P 2) : 0.1 ∨ nil : 0.9

←− cocitation(P 1,P 2,CC),¬communicates(P 1,P 2),¬communicates(P 2,P 1)

encoding that two chat participants start talking to each other if there is a third participant
with whom they have both talked before. The following three rules encode that a random

4All experiments were run on standard PC hardware, 2.4 GHz Intel Core 2 Duo processor, 1 GB memory.

Mach Learn (2011) 82: 239–272 259

F
ig

.5
U

se
r

in
te

ra
ct

io
n

gr
ap

hs
fr

om
th

e
C

ha
tR

oo
m

D
om

ai
n.

Sh
ow

n
ar

e
fo

ur
di

ff
er

en
tt

im
e

po
in

ts
du

ri
ng

th
e

ob
se

rv
at

io
n

se
qu

en
ce

re
co

rd
ed

fo
r

th
e

ir
c.

tr
av

ia
n.

or
g

ch
at

ro
om

http://irc.travian.org

260 Mach Learn (2011) 82: 239–272

person starts to communicate with another person which has above average betweeness,
degree, or closeness.

communicates(P 1,P 2) : 0.1 ∨ nil : 0.9

←− betweeness(P 1,C1),avg_betweeness(Avg),C1 > Avg,

¬communicates(P 1,P 2),¬communicates(P 2,P 1)).

communicates(P 1,P 2) : 0.1 ∨ nil : 0.9

←− degree(P 1,C1),person(P 2),avg_degree(Avg),C1 > Avg,

¬communicates(P 1,P 2),¬communicates(P 2,P 1).

communicates(P 1,P 2) : 0.1 ∨ nil : 0.9

←− closeness(P 1,C1),person(P 2),avg_closeness(Avg),person(P 1),C1 > Avg,

¬communicates(P 1,P 2),¬communicates(P 2,P 1).

In the model definition rule heads also contain a third head element for reversed communi-
cation direction communicates(P 2,P 1), which was omitted above for increased readability.
In total the model had 7 rules with 11 parameters (note that a rule with three head elements
has two parameters, as parameters must sum to one).

For each chat room we learn the parameters of the CPT-theory T using the EM algorithm
presented in Sect. 3.4, resulting in 7 CPT-theories T1, . . . , T7 with the same rule structure
but different parameters. Learning took about 10 seconds per theory Ti . The learned CPT-
theories can be seen as a probabilistic representation of the typical interaction behavior
among members of that chat room, reflecting the corresponding different user communities.
For instance, they could represent how quickly the interaction graph changes, the degree
of connectivity in the interaction graph, or how large the fluctuation in chat participants is
over time. The goal of our experiment is to visualize the commonalities and differences in
the behavior of these different user groups. To this end, we have evaluated the likelihood
P (Si | Tj) of each sequence Si under the learned CPT-theory Tj . This gives an indication as
to how well the behavior in chat room i is explained by the model learned for chat room j ,
thus indicating the similarity in user behavior for the corresponding two communities.

The result of this experiment is visualized in Fig. 6. We can distinguish different clusters
of chat rooms, or, equivalently, user communities. For instance, chat rooms that are con-
cerned with recreational topics such as travian@irc.travian.org and football@irc.efnet.net
(as well as iphone@irc.efnet.net) are clearly distinguishable from chat rooms concerned
with more “serious” topics such as math@irc.efnet.net and politics@irc.efnet.net. Manual
inspection of the learned rule parameters showed that in the “serious” chat domains the like-
lihood of a communication between two players mostly depends on the betweenness and
degrees of the nodes involved, while in the “recreational” chats shared cocitations are more
important.

4.3 Experiments in the massively multiplayer online game domain

We now report on experiments in Travian domain. In Travian, players are spread over several
independent game worlds, with approximately 20.000–30.000 players interacting in a single
world. Travian gameplay follows a classical strategy game setup. A game world consists of

Mach Learn (2011) 82: 239–272 261

Fig. 6 Plot of the likelihood
P(Si | Tj) of a sequence Si

(corresponding to chat room i)
under the CPT-theory Tj (learned
on chat room j). Rows
correspond to models Tj and
columns to sequences Si . Lighter
colors indicate higher likelihoods

a large grid-map, and each player starts with a single city located on a particular tile of
the map. During the course of the game, players harvest resources from the environment,
improve their cities by construction of buildings or research of technologies, or found new
cities on other (free) tiles of the map. Additionally, players can build different military units
which can be used to attack and conquer other cities on the map, or trade resources on a
global marketplace.

In addition to these low-level gameplay elements, there are high-level aspects of game-
play involving multiple players, which need to cooperate and coordinate their playing to
achieve otherwise unattainable game goals. More specifically, in Travian players dynami-
cally organize themselves into alliances, for the purpose of jointly attacking and defending,
trading resources or giving advice to inexperienced players. Such alliances constitute social
networks for the players involved, where diplomacy is used to settle conflicts of interests and
players compete for an influential role in the alliance. In the following, we will take a high-
level view of the game and focus on modeling player interaction and cooperation in alliances
rather than low-level game elements such as resources, troops and buildings. Figure 7 shows
such a high-level view of a (partial) Travian game world, represented as a graph structure
relating cities, players and alliances which we will refer to as a game graph. It shows that
players in one alliance are typically concentrated in one area of the map—traveling over the
map takes time, and thus there is little interaction between players far away from each other.

We are interested in the dynamic aspect of this world: as players are acting in the game
environment (e.g. by conquering other players’ cities and joining or leaving alliances), the
game graph will continuously change, and thereby reflect changes in the social network
structure of the game. As an example for such transition dynamics, consider the sequence of
game graphs shown in Fig. 8. Here, three players from the red alliance launch a concerted
attack against territory currently held by the blue and yellow alliances, and partially conquer
it.

Data collection and preprocessing The data used in the experiments was collected from
a “live” Travian server with approximately 25.000 active players. Over a period of three
months (December 2007, January 2008, February 2008), high-level data about the current
state of the game world was collected once every 24 hours. This included information about
all cities, players, and the alliance structure in the game. For cities, their size and position
on the map are available; for players, the list of cities they own; and for alliances the list of
players currently affiliated with that alliance.

262 Mach Learn (2011) 82: 239–272

Fig. 7 High-level view of a (partial) game world in Travian. Circular nodes indicate cities, shown in their
true positions on the game’s grid-map. Diamond-shaped nodes indicate players, and are connected to all
cities currently owned by the player. Rectangular nodes indicate alliances, and are connected to all players
currently members of the alliance. (The alliance affiliation is additionally indicated by color-coding of the
cities and players)

Fig. 8 Travian game dynamics visualized as changes in the game graph (for t = 1,2,3,4,5). Bold arrows
indicate conquest attacks by a player on a particular city

The game data was represented using predicates city(C,X,Y,S,P) (city C of size S at
coordinates X,Y held by player P), allied(P,A) (player P is a member of alliance A),
conq(P,C) (indicating a conquest attack of player P on city C) and alliance_change(P,A)

(player P changes affiliation to alliance A). A predicate distance(C1,C2,D) with D ∈
{near,medium, far} computing the (discretized) distance between cities was defined in the
background knowledge. Sequences consist of between 29 and 31 such state descriptions.

Mach Learn (2011) 82: 239–272 263

Classification experiments As a classification setting, we consider the problem of identi-
fying so-called meta-alliances in Travian, which was recently introduced by Karwath et al.
(2008). A meta-alliance is a group of alliances that closely cooperate, thereby allowing large
groups of players to work together. We manually identified meta-alliances in the collected
game data based on the alliance names (a small free-text field). For instance, it is easy to
recognize that the alliances ’.~A~.’, ’.=A=.’, and ’.-A-.’ are different wings of the same meta-
alliance.

From all available game data, 30 sequences of local game world states were extracted.
Each sequence tracks a small set of players from three different alliances, two of which
belong to the same meta-alliance (indicated by a fact meta_alliance(a1, a2)). On average,
sequences consist of 25.8 interpretations, every interpretation contains 16.4 cities and 10.6
players, and there are 17.6 conquest events per sequence. The 30 extracted sequences con-
stitute positive examples. A further 60 negative examples were obtained by giving the wrong
meta-alliance information (i.e., meta_alliance(a1, a3) or meta_alliance(a2, a3)).

We hand-coded a simple CPT-theory that encodes a few basic features that one would
assume to be useful in such a task, such as whether two players in different alliances a1 and
a2 attack each other (indicating ¬meta_alliance(a1, a2)), or jointly attack a player from
a third alliance (indicating meta_alliance(a1, a2)). As an example, consider the following
rule:

conq(C,P 1) : 0.0061 ∨ nil : 0.9939

←− city(C,_,_,P 2),player(P 2,_,A1),player(P 1,_,A2),¬meta_alliance(A1,A2),

which states that the player P 1 attacks a city C of a player P 2 who is not his alliance partner.
Such a CPT-theory can be used for classification as follows. Given a set of training se-

quences D, we first split this set into positive sequences D+ and negative sequences D−. We
then learn the parameters of two CPT-theories T+ and T− on the sets D+ and D− according
to maximum likelihood using the EM algorithm presented in Sect. 3.4. Note that T+ and T−
both employ the simple rule set outlined above, and only differ in their parameter values.
Given a new test sequence S, we then evaluate the likelihood of S under the positive and
negative models, P (S | T+) and P (S | T−), and predict the class for which this likelihood is
higher.

To evaluate the accuracy of CPT-L in the meta alliance classification task, we performed
a 10-fold cross-validation, using the same folds as used in Karwath et al. (2008). Figure 9
compares the results obtained for CPT-L with those of the BOOSTEDREAL system. BOOST-
EDREAL is a state-of-the-art system for classification of (relational) sequences by alignment,
which uses a discriminative approach based on boosting the reward model used in the align-
ment algorithm (Karwath et al. 2008). Note that BOOSTEDREAL, in contrast to CPT-L, is
not a generative model for sequences of interpretations, but rather a discriminative approach
specifically tailored to classification problems. It is also significantly more complex, and
the resulting models are harder to interpret, as the boosted reward function is represented
as an ensemble of relational regression trees. Figure 9 shows that CPT-L, at 82.22% with
standard deviation of 9.37, achieves a slightly lower accuracy than the best observed result
for BOOSTEDREAL, although the difference is not significant assuming equal variances for
CPT-L and BOOSTEDREAL. Overall, we can conclude from this experiment that even with
the simple rule set used, CPT-L is able to learn a model that captures useful information
about the positive and negative class, and achieves similar accuracies as other state-of-the-
art sequence classification schemes. Learning a single model in this domain takes under 2
minutes, using the lifted inference technique described in Sect. 3.3.

264 Mach Learn (2011) 82: 239–272

Fig. 9 Classification accuracy
for the BOOSTEDREAL system
(see Karwath et al. 2008) and
CPT-L for the meta-alliance
problem in the massively
multiplayer online game domain.
For BOOSTEDREAL, accuracy is
a function of the boosting
iteration (shown on the x-axis).
For CPT-L, standard deviation
over the cross-validation folds is
indicated by the green-shaded
area. Classification accuracy of
the majority-class predictor is
also shown

We are also currently trying to model this classification problem using discriminative
Markov Logic Networks, in order to better understand the trade-offs between more general
and simpler SRL approaches. However, with similar features as used in the CPT-L rules de-
scribed above, we have not been able to obtain classification accuracies higher than majority
class. The time needed for building a model in Markov Logic is approximate 2 hours, thus
about two orders of magnitude higher than for our approach.

Prediction experiments We now consider the problem of predicting player actions within
Travian, testing the prediction algorithm presented in Sect. 3.5. From all available data, we
again extracted 30 sequences of local game world states. Each sequence involves a subset of
10 players, which are tracked over a period of one month (10 sequences each for December,
January and February). Player sets are chosen such that there are no interactions between
players in different sets, but a high number of interactions between players within one set.
Cities that did not take part in any conquest event were removed from the data, leaving
approximately 30–40 cities under consideration for every player subset.

We defined a world model in CPT-L that expresses the probability for player actions
such as conquests of cities and changes in alliances affiliation, and updates the world state
accordingly. Player actions in Travian—although strongly stochastic—are typically explain-
able from the social context of the game: different players from the same alliance jointly
attack a certain territory on the map, there are retaliation attacks at the alliance level, or
players leave alliances that have lost many cities in a short period of time. From a causal
perspective, actions are thus triggered by certain (relational) patterns that hold in the game
graph, which take into account a player’s alliance affiliation together with the actions carried
out by other alliance members. Such patterns can be naturally expressed in CPT-L as bodies
of rules which trigger actions encoded in the head of the rule. We again manually defined a
number of simple rules capturing such typical game patterns. As an example, consider the
rules

conq(P,C) : 0.039 ∨ nil : 0.961

←− conq(P,C ′), city(C ′,_,_,_,P ′), city(C,_,_,_,P ′)

conq(P,C) : 0.011 ∨ nil : 0.989

←− city(C,_,_,_,P ′′),allied(P,A),allied(P ′,A), conq(P ′,C ′), city(C ′,_,_,_,P ′′).

Mach Learn (2011) 82: 239–272 265

The first rule encodes that a player is likely to conquer a city of a player he or she already
attacked in the previous time step. The second rule generalizes this pattern: a player P is
likely to attack a city C of player P ′′ if an allied player has attacked P ′′ in the previous time
step.

Moreover, the world state needs to be updated given the players’ actions. After a conquest
attack conq(P,C), the city C changes ownership to player P in the next time step. If several
players execute conquest attacks against the same city in one time step, one of them is chosen
as the new owner of the city with uniform probability (note that such simultaneous conquest
attacks would not be observed in the training data, as only one snapshot of the world is taken
every 24 hours). Similarly, an alliance_change(P,A) event changes the alliance affiliation
of player P to alliance A in the next time step.

We now consider the task of predicting the “conquest” action conq(P,C) based on a
learned model of world dynamics. The collected sequences of game states were split into one
training set (sequences collected in December 2007) and two test sets (sequences collected in
January 2008 and sequences collected in February 2008). Maximum-likelihood parameters
of a hand-crafted CPT-theory T as described above were learned on the training set using
EM. Afterwards, the learned model was used to predict the player action conq(P,C) on
the test data in the following way. Let S denote a test sequence with states I0, . . . , IT . For
every t0 ∈ {0, . . . , T − 1}, and every player p and city c occurring in S, the learned model is
used to compute the probability that the conquest event conq(p, c) will be observed in the
next world state, P (It0+1 |= conq(p, c) | T , I0, . . . , It0). This probability is obtained from
the sampling-based prediction algorithm described in Sect. 3.5. The prediction is compared
to the known ground truth (whether the conquest event occurred at that time in the game or
not). Instead of predicting whether the player action will be taken in the next step, we can
also predict whether it will be taken within the next k steps, by computing

P (It0+1 |= conq(p, c) ∨ · · · ∨ It0+k |= conq(p, c) | T , I0, . . . , It0).

This quantity is also easily obtained from the prediction algorithm described in Sect. 3.5.
Figure 10, left, shows ROC curves for this experiment with different values k ∈

{1,2,3,4,5}, evaluated on the first test set (January 2008). Figure 10, right, shows the
corresponding AUC values as a function of k for both test sets. The achieved area under
the ROC curve is substantially above 0.5 (random performance), indicating that the learned

Fig. 10 Left figure: ROC curve for predicting that a city C will be conquered by a player P within the next
k time steps, for k ∈ {1,2,3,4,5}. The model was trained on 10 sequences of local game state descriptions
from December 2007, and tested on 10 sequences from January 2008. Right figure: AUC as a function of the
number k of future time steps considered in the same experiment. Additionally, AUC as a function of k is
shown for 10 test sequences from February 2008

266 Mach Learn (2011) 82: 239–272

CPT-theory T indeed captures some characteristics of player behavior and obtains a reason-
able ranking of player/city pairs (p/c) according to the probability that p will conquer c.
Moreover, the model is able to predict conquest actions several steps in the future, although
AUC is slightly lower for larger k. This indicates that uncertainty associated with predictions
accumulates over time. Finally, predictions for the first test set (January 2008) are slightly
more accurate than for the second test set (February 2008). This is not surprising as the
model has been trained from sequences collected in December 2007, and indicates a slight
change in game dynamics over time. In summary, we conclude that player actions in Tra-
vian are indeed to some degree predictable from the social context of the game, and CPT-L
is able to learn such patterns from the data. The computational complexity of learning in this
task will be analyzed in detail in the next section.

Scaling experiments We now analyze the scaling behavior of the proposed algorithms in
detail, and compare the basic inference algorithm presented in Sect. 3.2 to the lifted infer-
ence algorithm presented in Sect. 3.3. To this end, we again consider the prediction setting
discussed in the last section, and vary the number of players and cities that are present in
any given game state. We used data containing up to 50 players, which together controlled
up to 269 cities. As before, 30 sequences of such game states were extracted from the data.
To evaluate computational complexity, a model was trained on all sequences, using the same
rule set as used for the prediction task.

To illustrate the complexity of the resulting problem, one can approximate the size of the
ground network that would have been obtained had we grounded the model to a Bayesian
or Markov Network as it is typically done for SRL approaches such as CP-logic or Markov
Logic Networks. In such a network, nodes correspond to all groundings of predicates us-
ing available domain constants. Note that in general, only the part of this network that is
relevant for a particular query needs to be constructed. However, in our scenario all ground
facts involving constants that appear in a training sequence are relevant when learning from
that sequence or computing its likelihood. Furthermore, in the dynamic setting considered
here, the network has to be unrolled over time, essentially duplicating the nodes for every
time step in the observation sequence. For the largest domain we have considered (involving
50 players and 269 cities), the size of the ground network is approximately 800.000 nodes,
indicating that exact inference and learning in this network would be computationally ex-
pensive.

Figure 11 shows the time needed to perform inference in CPT-L in the outlined domain
as a function of the size of the (hypothetical) ground network, for up to 20 players. Timing
results are given for both the basic inference algorithm presented in Sect. 3.2 and the lifted
inference algorithm presented in Sect. 3.3. It can be observed that the lifted inference algo-
rithm has significantly better scaling behavior, and achieves a speed-up of about a factor of
50 compared to the basic inference algorithm in large domains. For datasets containing more
than 20 players, the standard inference algorithm could not be run anymore. However, we
ran the lifted inference algorithm for datasets with up to 50 players, resulting in the (hypo-
thetical) ground networks of approximately 800.000 nodes mentioned above. In this setting,
lifted inference could still be performed in about 2 seconds.

Overall, these experiments show that the introduced simple lifted inference algorithm
yields a substantial speed-up compared to the basic inference algorithm. Note that the infer-
ence we perform is exact, and computational efficiency is achieved by exploiting the relative
simplicity of our model and learning setting. This is in contrast to other approaches that try
to overcome the excessive size of ground networks by performing approximate inference,
as, for example, in Markov Logic Networks (Richardson and Domingos 2006).

Mach Learn (2011) 82: 239–272 267

Fig. 11 Time for performing
inference (in the Expectation
Step of the EM algorithm) for the
Travian prediction task as a
function of the domain size. The
y-axis shows runtime in seconds.
The x-axis shows the number of
nodes in the Bayesian network
that would result from the
grounding of the CPT-theory in
this domain

5 Related work

There are relatively few existing approaches that can probabilistically model sequences of
relational state descriptions. CPT-L can be positioned with respect to them as follows.

First, statistical relational learning systems such as Markov Logic (Richardson and
Domingos 2006), CP-logic (Vennekens et al. 2006), Probabilistic Relational Models (Getoor
et al. 2001) or Bayesian Logic Programs (Kersting and De Raedt 2007) can be used in this
setting by adding an extra time argument to predicates (then called fluents). However, infer-
ence and learning in these systems is computationally expensive: they support very general
models including hidden states, and are not optimized for sequential data. A second class
of techniques, for instance (Zettlemoyer et al. 2005), uses transition models based on (sto-
chastic) STRIPS rules. This somewhat limits the transitions that can be expressed, as only
one rule “fires” at every point in time, and it is difficult to model several processes that
change the state of the world concurrently (such as an agent’s actions and naturally occur-
ring world changes). Related to this, is the probabilistic extension of PPDDL (Younes and
Littman 2004) that has been developed for the ICAPS planning competition and that form
a generalization of STRIPS. From a representational perspective, PPDDL is equivalent to
Dynamic Bayesian nets as actions in PPDDL are restricted by finite domains. PPDDL also
employs frame axioms. Writing PPDDL is, however, difficult because the user is supposed
to ensure that the theory is consistent and, hence, that consistency is not enforced by the
language. This makes significantly complicates structure learning for PPDDL models. Note
that it is very well possible that the algorithms presented in this paper can be adapted towards
PPDDL and this seem interesting direction for further research.

Another related formalism is that of Logical MDPs (Kersting and De Raedt 2003), which
specifically targets Markov Decision Processes and thus takes into account rewards. The
action rules employed in LoMDPs are somewhat similar to CPT-L rules, but they require
that the bodies of the action rules are mutually exclusive (which is achieved by imposing
an order on the rules). CP-logic, and therefore also CPT-L, does neither impose orders on
rules, nor does it require that only one clause triggers at the same time, which makes it more
natural to model stochastic relational processes.

Another approach designed to model sequences of relational state descriptions are re-
lational simple-transition models (Fern 2005). A related approach is that by Biswas et al.
(2007), who employs dynamic Markov Logic to represent stochastic relational processes.

268 Mach Learn (2011) 82: 239–272

Inference is carried out in a ground dynamic Bayesian network constructed from the MLN.
In contrast to CPT-L, these two approaches focus on domains where the process generating
the data is hidden, and inferring these hidden states from observations. This is a significantly
harder setting than the fully observable setting discussed in this paper, and therefore typi-
cally only approximate inference is possible (Fern 2005). However, we feel that also the
easier problem where everything is observable is worthy of investigation in its own right.
A better understanding of this problem should also provide new insights into the more com-
plex one. In this context, we can mention that an extension of CPT-L to deal with hidden
variables is currently under study, where inference is based on a Monte Carlo method, cf.
Thon (2009).

6 Conclusions and future work

We have introduced CPT-L, a probabilistic model for sequences of relational state descrip-
tions. In contrast to other approaches that could be used as a model for such sequences,
CPT-L focuses on computational efficiency rather than expressivity. We have specifically
discussed how to perform efficient inference and parameter learning in CPT-L by a par-
tially lifted inference algorithm. The algorithm aggregates all groundings of rules where
the chosen head element is logically entailed into a joint factor during probabilistic infer-
ence, thereby significantly reducing the size of the resulting inference problem. We have
also extended earlier work on CPT-L by relaxing the Markov assumption on the underlying
stochastic process, and using more flexible rules where rule heads consist of a disjunction
of conjunctions.

There are two main directions for future work. One direction is structural optimization,
that is, learning entire rule sets from data as opposed to only learning parameters for a given
rule set. We are currently trying to infer rules for CPT-L using standard rule learners such
as Progol or Tertius. Experiments in this direction are promising but preliminary. A second
interesting direction for future work is to extend the model towards a setting where data is
only partially observed. We have started studying an extension of CPT-L in which a subset
of domain predicates is hidden, while other predicates have to be fully observable. The
resulting hidden state inference problem is computationally challenging, thus it likely calls
for approximate inference techniques. Some initial encouraging results were achieved in this
setting using particle filters (Thon 2009). Finally, we are interested in applying the presented
techniques in other challenging application domains.

Appendix A: Proof of Theorem 2

Theorem 2 Let B be a BDD resulting from the conversion of an inference problem P (It+1 |
I[0,t]), annotated with upward and downward probabilities as defined above, and let

� = {σ | I[0,t]
σ→ It+1}

be the set of selections yielding It+1. Then

α(root) =
∑

σ∈�

P (σ)

= P (It+1 | I[0,t]). (7)

Mach Learn (2011) 82: 239–272 269

Proof Let B be a BDD graph structure resulting from an inference problem p(It+1 | I[0,t]),
and let the nodes in B be annotated with upward and downward probabilities as outlined in
Sect. 3.2. Let N and E denote the nodes and edges in B. To every edge E ∈ E we associate
a weight P (E) with

P (E) =
{

P (c | r), E corresponds to a positive branch

1, E corresponds to a negative branch

where r.c is the Boolean variable associated with the node N from which E originates, and
P (c | r) the probability of choosing head element c in rule r . A (directed) path R in B is a
sequence N1E1 . . .NkEkNk+1 with Ei ∈ E and Ni ∈ N , and we always go downward in the
BDD. We define the weight of a path as

P (R) =
k∏

i=1

P (Ei), (16)

and denote by R(N) the set of all paths from a node N ∈ N to the 1-terminal. We first show
that

∀N ∈ N : α(N) =
∑

R∈R(N)

P (R), (17)

by induction over the level of a node in B.

Base Case: We need to show (17) for the terminal nodes. If N is the 1-terminal, the (trivial)
path R = N is the only element of R(N), with P (R) = 1 according to (16). Thus, (17)
holds. If N is the 0-terminal node, then R(N) = ∅, thus

∑
R∈R(N) P (R) = 0, and (17)

holds as well.
Induction: Let N ∈ N denote a non-terminal node, and let r.c denote its associated Boolean

variable. Let E+ and E− denote the positive and negative branch originating from N , and
N+ and N− the corresponding child nodes. A path R ∈ R(N) either runs through E+ or
E−. In the first case, we have R = NE+R′ with R′ ∈ R(N+), and P (R) = P (c | h)P (R′).
In the second case, we have R = NE−R′ with R′ ∈ R(N−), and P (R) = P (R′). Thus,

∑

R∈R(N)

P (R) = P (c | r)
∑

R∈R(N+)

P (R) +
∑

R∈R(N−)

P (R).

From the inductive assumption it follows that
∑

R∈R(N)

P (R) = P (c | r)α(N+) + α(N−)

= α(N),

completing the proof of (17). Recall that there is a one-to-one correspondence between a
selection σ yielding It+1 and a path R from the root to the 1-terminal. Considering (1)
and (16), we also see that P (σ) = P (R). Thus,

α(root) =
∑

R∈R(root)

P (R)

=
∑

σ∈�

P (σ)

= P (It+1 | I[0,t]),

completing the proof of Theorem 2. �

270 Mach Learn (2011) 82: 239–272

Appendix B: Proof of Theorem 3

Before proving Theorem 3 we will prove the following lemma:

Lemma 1 Let B be a BDD graph structure resulting from an inference problem
p(It+1 | I[0,t]), let the nodes in B be annotated with upward and downward probabilities
as outlined in Sect. 3.2, and let N1, . . . ,Nk denote all nodes at a given level n in the BDD.
Then it holds that

P (It+1 | I[0,t]) =
k∑

l=1

β(Nl)α(Nl). (18)

Proof We prove Lemma 1 by induction over the BDD level n.

Base case: n = 0. At level zero of the BDD, there is only a single node, namely the root
node. Equation (18) follows from Theorem 2 and β(root) = 1 (5):

α(root) = α(root)β(root) = P (It+1 | I[0,t]).

Induction: Assume that (18) holds for level n. Let riθ.cij θ denote the Boolean variable
associated with level n in the BDD, and let p = P (ri .cij) be the corresponding probability.
Let Nl with l = 1, . . . , k denote all nodes at level n, and let N ′

l with l = 1, . . . , k′ denote all
nodes at level n + 1. Let furthermore N+

l (N−
l) denote the positive (negative) child node

of Nl for l = 1, . . . , k. We will refer by pa+(N ′
l) (pa−(N ′

l)) to the subset of the nodes
N1, . . . ,Nk which have N ′

l as positive (negative) child node.

Starting from the inductive assumption, we now derive

P (It+1 | I[0,t]) =
k∑

l=1

α(Nl)β(Nl)

=
k∑

l=1

α(N+
l)β(Nl)p +

k∑

l=1

α(N−
l)β(Nl) (19)

=
k′

∑

l′=1

[∑

Nl∈pa+(N ′
l′)

α(N ′
l′)β(Nl)p +

∑

Nl∈pa−(N ′
l′)

α(N ′
l′)β(Nl)

]

(20)

=
k′

∑

l′=1

α(N ′
l′)β(N ′

l′). (21)

Equation (19) follows from the definition of upward probabilities α. To derive (20), we note
that each edge from a node at level n either goes to a node at level n+1, or to the 0-terminal;
because α(zero-terminal) = 0 the sums in (19) and (20) thus contain the same terms (see also
Fig. 12). Finally, (21) follows from the definition of downward probabilities β . �

Theorem 3 Let pij be the parameter associated with head element cij in rule ri , let 	 =
I[0,t] → It+1 be a single transition, and let riθ ∈ Rt denote a grounding of ri applicable in
I[0,t]. Let N1, . . . ,Nk be all nodes in the BDD associated with the Boolean variable riθ.cij θ

Mach Learn (2011) 82: 239–272 271

Fig. 12 Inductive step
in proof of
P(It+1 | I[0,t])
= ∑

σ∈� P (σ)

= ∑k
l=1 β(Nl)α(Nl)

resulting from the grounded rule riθ , and let N+
l be the child on the positive branch of Nl .

Then

E[κθ
ij | π,] = 1

P (It+1 | I[0,t])

k∑

l=1

β(Nl)pijα(N+
l). (15)

Proof The nodes N1, . . . ,Nk associated with the variable riθ.cij θ together form a level n of
the BDD. As above let N−

l denote the child on the negative branch of node Nl . Reconsid-
ering (19) in the proof of Lemma 1, we see that the probability of head element cij being
selected is given by

P (κθ
ij = 1 | π,) =

∑k

l=1 α(N+
l)β(Nl)p

∑k

l=1 α(N+
l)β(Nl)p + ∑k

l=1 α(N−
l)β(Nl)

(22)

as the head element is chosen if and only if a node at level n is left through the positive
branch. Because κθ

ij is a binary indicator,

E[κθ
ij | π,] = P (κθ

ij = 1 | π,)

=
∑k

l=1 α(N+
l)β(Nl)p

∑k

l=1 α(N+
l)β(Nl)p + ∑k

l=1 α(N−
l)β(Nl)

= 1

P (It+1 | I[0,t])

k∑

l=1

α(N+
l)β(Nl)p (23)

where (23) follows from the definition of downward probabilities β and Lemma 1. �

References

Biswas, R., Thrun, S., & Fujimura, K. (2007). Recognizing activities with multiple cues. In Lecture notes in
computer science (Vol. 4814, p. 255). Berlin: Springer.

Bratko, I. (1990). Prolog programming for artificial intelligence (2nd edn.). Reading: Addison-Wesley.
Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Transactions on Com-

puters, 35(8), 677–691.
De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic prolog and its application in link

discovery. In Proceedings of the 20th international joint conference on artificial intelligence (pp. 2462–
2467).

De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.) (2008). Lecture notes in computer science:
Vol. 4911. Probabilistic inductive logic programming—theory and applications. Berlin: Springer.

Fern, A. (2005). A simple-transition model for relational sequences. In Proceedings of the 19th international
joint conference on artificial intelligence (pp. 696–701). Edinburgh, Scotland, UK.

Fikes, R. E., & Nilsson, N. J. (1995). STRIPS: a new approach to the application of theorem proving to
problem solving. In Computation & intelligence: collected readings (pp. 429–446). Menlo Park, CA,
USA, American Association for Artificial Intelligence.

272 Mach Learn (2011) 82: 239–272

Getoor, L., & Taskar, B. (Eds.) (2007). Statistical relational learning. Cambridge: MIT Press.
Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning probabilistic relational models. In Rela-

tional data mining (pp. 307–335). Berlin: Springer.
Ghahramani, Z. (1997). Learning dynamic Bayesian networks. In Adaptive processing of sequences and data

structures (pp. 168–197). International summer school on neural networks.
Jaeger, M. (1997). Relational Bayesian networks. In D. Geiger & P. Shenoy (Eds.), Proceedings of the thir-

teenth annual conference on uncertainty in artificial intelligence (UAI-97) (pp. 266–273). Providence,
Rhode Island, USA, San Mateo: Morgan Kaufmann.

Karwath, A., Kersting, K., & Landwehr, N. (2008). Boosting relational sequence alignments. In: Proceedings
of the 8th IEEE international conference on data mining (ICDM 2008).

Kersting, K., & De Raedt, L. (2003). Logical Markov decision programs. In Proceedings of the international
joint conference on artificial intelligence IJCAI-2003 (Vol. 3).

Kersting, K., & De Raedt, L. (2007). Bayesian logic programming: theory and tool. In L. Getoor & B. Taskar
(Eds.), An introduction to statistical relational learning. Cambridge: MIT Press.

Laird, J. E., & van Lent, M. (2000). Human-Level AI’s killer application: Interactive computer games. In
Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on
innovative applications of artificial intelligence.

Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., & Kaelbling, L. P. (2008). Lifted probabilistic infer-
ence with counting formulas. In Proceedings of the 23rd national conference on artificial intelligence
(AAAI-2008).

Mutton, P. (2004). Inferring and visualizing social networks on Internet Relay Chat. In Proceedings of the 8th
international conference on information visualization (IV-2004) (pp. 35–43).

Pollack, M. E. (2005). Intelligent technology for an aging population: The use of AI to assist elders with
cognitive impairment. AI Magazine, 26(2), 9–24.

Poole, D. (1997). The independent choice logic for modelling multiple agents under uncertainty. Artificial
Intelligence, 94(1–2), 7–56.

Poole, D. (2003). First-order probabilistic inference. In G. Gottlob & T. Walsh (Eds.), IJCAI (pp. 985–991).
San Mateo: Morgan Kaufmann.

Puterman, M. (1994). Markov decision processes: Discrete stochastic dynamic programming. New York:
Wiley.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2), 257–286.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107–136.
Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In Proceedings

of the twelfth international conference on logic programming (ICLP-1995) (pp. 715–729).
Sato, T., & Kameya, Y. (1997). PRISM: A symbolic-statistical modeling language. In Proceedings of the

15th international joint conference on artificial intelligence (IJCAI-97) (pp. 1330–1339). San Mateo:
Morgan Kaufmann.

Saul, L. K., & Jordan, M. I. (1999). Mixed memory Markov models: Decomposing complex stochastic
processes as mixtures of simpler ones. Machine Learning, 37, 75–87.

Thon, I. (2009). Don’t fear optimality: sampling for probabilistic-logic sequence models. In Proceedings of
the international conference on inductive logic programming (ILP-2009), July 2009.

Thon, I., Landwehr, N., & Raedt, L. D. (2008). A simple model for sequences of relational state descriptions.
In Proceedings of the 19th European conference on machine learning (pp. 506–521).

Thon, I., Gutmann, B., van Otterlo, M., Landwehr, N., & Raedt, L. D. (2009). From non-deterministic to
probabilistic planning with the help of statistical relational learning. In ICAPS 2009—Proceedings of
the workshop on planning and learning, September 2009.

Vennekens, J., Denecker, M., & Bruynooghe, M. (2006). Representing causal information about a probabilis-
tic process. In Lecture Notes in Computer Science: Vol. 4160. Logics in artificial intelligence (pp. 452–
464). Berlin: Springer.

Younes, H. L., & Littman, M. L. (2004). PPDDL1.0: The language for the probabilistic Part of IPC-4. In
Proceedings of the international planning competition.

Zettlemoyer, L. S., Pasula, H., & Kaelbling, L. P. (2005). Learning planning rules in noisy stochastic worlds.
In Proceedings of the 20th national conference on artificial intelligence (AAAI-05) (pp. 911–918).

	Stochastic relational processes: Efficient inference and applications
	Abstract
	Introduction
	CPT-L
	CP-logic
	From CP-logic to CPT-L
	Relaxing the Markov assumption

	Inference and parameter estimation in CPT-L
	Sampling
	Inference for CPT-theories
	Partially lifted inference for CPT-theories
	Parameter estimation
	Prediction

	Experimental evaluation
	Stochastic blocks world domain
	Chat room domain
	Massively multiplayer online game domain
	Experiments in the stochastic blocks world domain
	World model
	Results in the blocks-world domain

	Experiments in the chat room domain
	Experiments in the massively multiplayer online game domain
	Data collection and preprocessing
	Classification experiments
	Prediction experiments
	Scaling experiments

	Related work
	Conclusions and future work
	Appendix A: Proof of Theorem 2
	Appendix B: Proof of Theorem 3
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

