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Abstract Spectral analysis approaches have been actively studied in machine learning and
data mining areas, due to their generality, efficiency, and rich theoretical foundations. As
a natural non-linear generalization of Graph Laplacian, p-Laplacian has recently been pro-
posed, which interpolates between a relaxation of normalized cut and the Cheeger cut. How-
ever, the relaxation can only be applied to two-class cases. In this paper, we propose full
eigenvector analysis of p-Laplacian and obtain a natural global embedding for multi-class
clustering problems, instead of using greedy search strategy implemented by previous re-
searchers. An efficient gradient descend optimization approach is introduced to obtain the
p-Laplacian embedding space, which is guaranteed to converge to feasible local solutions.
Empirical results suggest that the greedy search method often fails in many real-world appli-
cations with non-trivial data structures, but our approach consistently gets robust clustering
results. Visualizations of experimental results also indicate our embedding space preserves
the local smooth manifold structures existing in real-world data.

Keywords p-Laplacian · Graph Laplacian · Clustering · Cheeger cut · Normalized cut

1 Introduction

Graph-based methods, such as spectral embedding (Belkin and Niyogi 2001), spectral clus-
tering (Shi and Malik 2000; Belkin and Niyogi 2001), and semi-supervised learning (Zhou
et al. 2003; Kulis et al. 2009; Belkin et al. 2004), have recently received much attention
from the machine learning community. Due to their generality, efficiency, and rich theoret-
ical foundations (Chung 1997; Belkin and Niyogi 2001; Zhou et al. 2003; Hein et al. 2005;
Robles-Kelly and Hancock 2007; Guattery 1998), these methods have been widely explored
and applied into various machine learning related research areas, including computer vision

Editors: José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag.

D. Luo · H. Huang (�) · C. Ding · F. Nie
Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX,
USA
e-mail: heng@uta.edu

mailto:heng@uta.edu


38 Mach Learn (2010) 81: 37–51

(Shi and Malik 2000; Jain and Zang 2007; Chen and Lerman 2009), data mining (Jin et
al. 2005), speech recognition (Bach and Jordan 2006), social networking (White and Smyth
2005), bioinformatics (Liu et al. 2008), and even commercial usage (Anastasakos et al. 2009;
Cheng et al. 2007). More Recently, as a nonlinear generalization of the standard graph
Laplacian, graph p-Laplacian starts to attract attentions from machine learning commu-
nity, such as Bühler et al. (2009) proved the relationship between graph p-Laplacian and
Cheeger cuts. Meanwhile, discrete p-Laplacian has also been well studied in mathematics
community and solid properties have been investigated by previous work (Amghibech 2003;
Allegretto and Huang 1998; Bouchala 2003).

Bühler (2009) provided a rigorous proof of the approximation of the second eigenvec-
tor of p-Laplacian to the Cheeger cut. Unlike other graph-based approximation/relaxation
techniques (e.g. (Ding and He 2005)), the approximation to the optimal Cheeger cut is guar-
anteed to be arbitrarily exact. This discovery theoretically and practically starts a direction
for graph cut based applications. Unfortunately, the p-Laplacian eigenvector problem leads
to an untractable optimization, which was solved (see Bühler and Hein 2009) by a some-
what complicated way. Moreover, they only solved the problem for the second eigenvector
and provided a direct approach to solve two-class clustering problems. For multi-class prob-
lems, they employed hierarchical strategy, which often leads to poor clustering quality in
real world data with complicated structures due to its intrinsically greedy property.

Putting the nice theoretical foundations of p-Laplacian and its difficulties together, one
might immediately raise a question: can we obtain a full eigenvector space of p-Laplacian,
similar to other regular spectral techniques, and easily derive a complete clustering analysis
using p-Laplacian? To solve this question, in this paper, we investigate the whole eigenvec-
tor space of p-Laplacian and provide (1) an approximation of the whole eigenvectors which
lead to a tractable optimization problems, (2) a proof to show that our approximation is very
close to the true eigenvector solutions of p-Laplacian, and (3) an efficient algorithm to solve
the resulting optimization problems, which is guaranteed to converge to feasible solutions.

After introducing several important research results from mathematics community, we
further explore the new properties of the full eigenvector space of p-Laplacian. Our main
theoretical contributions are summarized in Theorems 2 and 3. Through our theoretical
analysis and practical algorithm, the p-Laplacian based clustering method can naturally
and optimally find the cluster structures in multi-class problems. Empirical studies in real
world data sets reveal that greedy search often fails in complicated structured data, and our
approach consistently obtains high clustering qualities. Visualizations of images data also
demonstrate that our approach extracts the intrinsic smooth manifold reserved in the embed-
ding space.

2 Discrete p-Laplacian and eigenvector analysis

Given a set of similarity measurements, the data can be represented as a weighted, undirected
graph G = (V ,E), where the vertices in V denote the data points and positive edge weights
in W encode the similarity of pairwise data points. We denote the degree of node i ∈ V by
di = ∑

j wij . Given function f : V → R, the p-Laplacian operator is defined as follows:

(�W
p f )i =

∑

j

wijφp(fi − fj ), (1)

where φp(x) = |x|p−1sign(x). Note that φ2(x) = x, which becomes the standard graph
Laplacian. In general, the p-Laplacian is a nonlinear operator. The eigenvector of
p-Laplacian is defined as following:
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Definition 1 f : V → R is an eigenvector of p-Laplacian �W
p , if there exists a real number

λ, such that

(�W
p f )i = λφp(fi), i ∈ V. (2)

λ is called as eigenvalue of �W
p associated with eigenvector f .

One can easily verify that when p = 2, the operator �W
p becomes the regular graph

Laplacian �W
2 = L = D − W , where D is a diagonal matrix with Dii = di , and the eigen-

vectors of �W
p become the eigenvectors of L. The eigenvector of p-Laplacian is also called

p-eigenfunction.

2.1 Properties of eigenvalues of p-Laplacian

Proposition 1 (Amghibech 2006) If W represents a connected graph, and if λ is an eigen-
value of �W

p , then

λ ≤ 2p−1 max
i∈V

di .

This indicates that the eigenvalues of p-Laplacian are bounded by the largest volume. It
is easy to check that for connected bipartite regular graph, the equality is achieved.

2.2 Properties of eigenvectors of p-Laplacian

Starting from previous research results on p-Laplacian, we will introduce and prove our
main theoretical contributions in Theorems 2 and 3. The eigenvectors of p-Laplacian have
the following properties:

Theorem 1 (Bühler and Hein 2009) f is an eigenvector of p-Laplacian �W
p , if and only if

f is a critical point of the following function

Fp(f ) =
∑

ij wij |fi − fj |p
2‖f ‖p

p

, (3)

where

‖f ‖p
p =

∑

i

|fi |p.

The above theorem provides an equivalent statement of eigenvector and eigenvalue of p-
Laplacian. It also serves as the foundation of analysis of eigenvector. Notice that Fp(αf ) =
Fp(f ) which indicates the following property of p-Laplacian:

Corollary 1 If f is an eigenvector of �W
p associated with eigenvalue λ, then for any α �= 0,

αf is also an eigenvector of �W
p associated with eigenvalue λ.

Notice that �W
p is not a linear operator, i.e. �W

p (αf ) �= α�W
p f , if p �= 2. However, Corol-

lary 1 shows that the linear transformation of a single eigenvector remains an eigenvector of
the p-Laplacian. Also note that �W

p f = �W
p (f + d) for any constant vector d . Thus, �W

p is
translation invariant, and we have
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Corollary 2 c1 is an eigenvector of �W
p for constant c �= 0, associated with eigenvalue 0,

where 1 is a column vector with all elements 1 and proper size.

In the supplement (Lemma 3.2) of Bühler and Hein (2009), authors also provided the
following property of the non-trivial eigenvector of p-Laplacian.

Proposition 2 If f is a non-trivial eigenvector of �W
p , then

∑

i

φp(fi) = 0. (4)

The non-trivial eigenvectors refer to those eigenvectors associated with non-zero eigen-
values. Inspired by the above properties of eigenvectors of p-Laplacian, we propose the
following new theoretical analysis on eigenvectors of p-Laplacian.

Definition 2 We call f �= 0 and g �= 0 as p-orthogonal if the following condition holds

∑

i

φp(fi)φp(gi) = 0. (5)

As one of the main results in this paper, the following property of the full eigenvectors
of p-Laplacian is proposed,

Theorem 2 If f and g are two eigenvectors of p-Laplacian �W
p associated with different

eigenvalues λf and λg , and W is symmetric, and p ≥ 1, then f and g are p-orthogonal up
to the second order Taylor expansion.

Proof By definitions, we have

(�W
f )i = λf φ(fi), (6)

(�W
g )i = λgφ(gi). (7)

Multiplying φp(gi) and φp(fi) on both sides of (6) and (7), respectively, we have

(�W
f )iφ(gi) = λf φ(fi)φ(gi), (8)

(�W
g )iφ(fi) = λgφ(gi)φ(fi). (9)

By summing over i and taking the difference of both sides of (8) and (9), we get

(λf − λg)
∑

i

φp(fi)φp(gi) =
∑

i

[(�Wf )iφp(gi) − (�Wg)iφp(fi)].

Notice that for any p > 1, a, b ∈ R,

φp(a)φp(b) = |a|p−1 sign(a)|b|p−1 sign(b)

= |a|p−1|b|p−1 sign(a) sign(b)

= |ab|p−1 sign(ab) = φp(ab).
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Therefore, we have
∑

i

[(�Wf )iφp(gi) − (�Wg)iφp(fi)]

=
∑

ij

wij [φp(fi − fj )φp(gi) − φp(gi − gj )φp(fi)]

=
∑

ij

wij [φp(figi − fjgi) − φp(gifi − gjfi)].

Since any constant vector c1 is a valid eigenvector of p-Laplacian, we write φp(x) as

φp(x) = φp(c) + φ′
p(c)(x − c) + o2,

where o2 is the sum of high order Taylor expansion terms (starting from the second order) at
constant c. Note that both φp(c) and φ′

p(c) are constants. Because of wij = wji , the above
equation becomes

∑

ij

wij [φp(c) + φ′
p(c)(figi − fjgi − c)

− φp(c) − φ′
p(c)(gifi − gjfi − c)] + o2

=
∑

ij

wij [φ′
p(c)(figi − gifi) − φ′

p(c)(fjgi − gjfi)

+ φp(c) − cφ′
p(c) − φp(c) + cφ′

p(c)] + o2

= o2.

All 0th and 1st order Taylor expansion terms are canceled explicitly. This leads to

(λf − λg)
∑

i

φp(fi)φp(gi) ≈ 0.

Since λf �= λg , we have
∑

i

φp(fi)φp(gi) ≈ 0.

If p = 2, the second order term of Taylor expansion is 0, then the approximately equal
becomes exactly equal. This property of p-Laplacian is significant different from those in
existing literacy, in the sense that it explores the relationship of the full eigenvectors space. �

Theorem 3 If f ∗1, f ∗2, . . . , f ∗n are n eigenvectors of operator �W
p associated with unique

eigenvalues λ∗
1, λ

∗
2, . . . , λ

∗
n, then f ∗1, f ∗2, . . . , f ∗n are local solution of the following opti-

mization problem

min
F

J (F ) =
∑

k

Fp(f k), (10)

s.t.
∑

i

φp(f k
i )φp(f l

i ) = 0, ∀k �= l, (11)

where F = (f 1, f 2, . . . , f n).



42 Mach Learn (2010) 81: 37–51

Proof We do the derivative of J (F ) w.r.t. f k as:

∂J (F )

∂f k
= ∂Fp(f k)

∂f k
=

∂

∑
ij wij |f k

i
−f k

j
|p

2‖f k‖p
p

∂f k

= 1

‖f k‖p
p

[

�W
p (f k) −

∑
ij wij |f k

i − f k
j |p

‖f k‖p
p

φp(f k)

]

.

From Theorem 3.1 in Bühler and Hein (2009),

λ∗
k =

∑
ij wij |f ∗k

i − f ∗k
j |p

‖f ∗k‖p
p

,

and by definition,

�W
p (f ∗k) − λ∗

kφp(f ∗k),

thus we have,

∂J (F )

∂f ∗k
= 0,

and according to Theorem 2, the constraints in (11) are satisfied. Thus f ∗k, k = 1,2, . . . , n

are local solutions for (10). �

On the other hand, one can show the following relationship between the Cheeger cut and
the second eigenvector of p-Laplacian when K = 2.

Definition 3 Given a undirected graph W and a partition of the nodes {C1,C2, . . . ,CK}, the
Cheeger cut of the graph is

CC =
K∑

k=1

Cut(Ck, C̄k)

min1≤l≤K |Cl | , (12)

where

Cut(A,B) =
∑

i∈A,j∈B

Wij , (13)

and C̄k is the complement of Ck, k = 1,2, . . . ,K .

Proposition 3 Denoted by CC∗
c , the Cheeger cut value is obtained by thresholding the sec-

ond eigenvector of �W
p , and CC∗ is the global optimal value of (12) with K = 2, then the

following holds

CC∗ ≤ CC∗
c ≤ p

(
max
i∈V

di

) p−1
p

(CC∗)
1
p . (14)

This property of the second eigenvector of �W
p indicates that when p → 1, CC∗

c → CC∗.
Notice that this approximation can be achieved arbitrarily accurate, which is different from
other relaxation-based spectral clustering approximation. Thus, it opens a total new direction
of spectral clustering.
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However, this relationship holds only in the case of K = 2. In previous research, a greedy
search strategy is applied to obtain Cheeger cut results for multi-class clustering (Bühler and
Hein 2009). In the algorithm, they first split data in to two parts and recursively dichotomize
the data till a desired number of clusters are achieved. In our study, we discover that in many
real world data sets, this greedy search strategy isn’t efficient and effective. This limitation
inspires us to explore the whole eigenvectors of p-Laplacian to obtain better solution of
Cheeger cut.

3 Solving complete eigenfunctions for p-Laplacian

In previous section, we derive a single optimization problem for full eigenvectors of
p-Laplacian. However, the optimization problem remains intractable. In this section, we
propose an approximation algorithm to obtain full eigenvectors of p-Laplacian. We also
provide a proof to show how good our approximation is.

3.1 Orthogonal p-Laplacian

Instead of solving (10), we solve the following problem:

min
F

Jo(F ) =
∑

k

∑

ij

wij |f k
i − f k

j |p, (15)

s.t. F T F = I, ‖f k‖p
p = 1, k = 1,2, . . . , n. (16)

3.2 The approximation evaluation

Here we show that the approximation is tight. By introducing Lagrangian multiplier, we
obtain,

L =
∑

k

QW
p (f k) − Tr F T F � −

∑

k

ξk(‖f k‖p
p − 1), (17)

where QW
p (f ) = ∑

ij wij |fi −fj |p. Taking the derivative of L w.r.t. f k and set it to be zeros,
we have,

p
∑

j

wijφp(f k
i − f k

j ) − λkf
k
i − pξkφp(f k

i ) = 0, i = 1,2, . . . , n, (18)

which leads to

λk = p[�W
p (f k) − ξkφ

k
f ]i

f k
i

,

or

λk

ξk

= p[�W
p (f k)/ξk − φk

f ]i
f k

i

. (19)

Denote ηi = [�W
p (f k)/ξk − φk

f ]i , from Amghibech (2006), we know that ηi is a constant
w.r.t. i. Notice that (19) holds for all i, thus ηi ≈ 0, indicating that compared to ξk , λk can



44 Mach Learn (2010) 81: 37–51

be ignored. Thus, (18) becomes

p
∑

j

wijφp(f k
i − f k

j ) − pξkφp(f k
i ) = 0, i = 1,2, . . . , n,

and by definition, f k is an eigenvector of �W
p associate with eigenvalue ξk .

4 p-Laplacian embedding

Since Fp(f ) = Fp(αf ) for α �= 0, we can always scale f without any change. Thus, we
propose the following p-Laplacian Embedding problem.

min
F

JE(F ) =
∑

k

∑
ij wij |f k

i − f k
j |p

‖f k‖p
p

, (20)

s.t. F T F = I. (21)

4.1 Optimization

The gradient of JE w.r.t. f k
i can be written as,

∂JE

∂f k
i

= 1

‖f k‖p
p

[∑

j

wijφp(f k
i − f k

j ) − φp(f k
i )

‖f k‖p
p

]

. (22)

If we simply use the gradient descend approach, the solution f k might not be orthogonal.
We modify the gradient as following to enforce the orthogonality,

∂JE

∂F
← ∂JE

∂F
− F

(
∂JE

∂F

)T

F .

We summarize the p-Laplacian embedding algorithm in Algorithm 1.
The parameter α is the step length, which is set to be

α = 0.01

∑
ik |Fik|

∑
ik |Gik| .

Input: Pairwise graph similarity W , number of embedding dimension K

Output: Embedding space F
Compute L = D − W , where D is a diagonal matrix with Dii = di .
Compute eigenvector decomposition of L: L = USUT ,
Initialize F ← U(:,1 : K)

while not converged do
G ← ∂JE

∂F − F (
∂JE

∂F )T F , where ∂JE

∂F is computed using (22)
F ← F − αG.

end
Algorithm 1: The p-Laplacian embedding algorithm



Mach Learn (2010) 81: 37–51 45

One can easily see that if F T F = I , then using the simple gradient descend approach
can guarantee to give a feasible solution. More explicitly, we have the following theorem:

Theorem 4 The solution obtained from Algorithm 1 satisfies the constraint in (21).

Proof Since Laplacian L is symmetric, we have F T F = I for initialization, and

GT F t + (
F t

)T
G

=
(

∂JE

∂F
− F

(
∂JE

∂F

)T

F
)T

F t + (
F t

)T

[
∂JE

∂F
− F

(
∂JE

∂F

)T

F
]

=
(

∂JE

∂F

)T

F t − (
F t

)T ∂JE

∂F
−

(
∂JE

∂F

)T

F t + (
F t

)T ∂JE

∂F
= 0.

By Algorithm 1 we have,

F t+1 = F t − αG.

Thus

(F t+1)T F t+1 = (F t − αG)T (F t − αG) = (F t )T F t − α[GT F t + (F t )T G] = I.

�

This technique is a special case of Natural Gradient, which can be found in Amari (1998).
Since JE(F ) is bounded as JE(F ) ≥ 0, our algorithm also has the following obvious prop-
erty:

Theorem 5 Algorithm 1 is guaranteed to converge.

5 Experimental results

In this section, we will evaluate the efficiency of our proposed p-Laplacian Embedding
algorithm. To demonstrate the results, we use eight benchmark data sets: AT&T, MNIST,
PIE, UMIST, YALEB, ECOLI, GLASS, and DERMATOLOGY.

5.1 Data set descriptions

In the AT&T database1, there are ten different images of each of 40 distinct subjects. For
some subjects, the images were taken at different times, varying the lighting, facial expres-
sion, and facial details. All images were taken against a dark homogeneous back-ground
with the subjects in an upright, frontal, position (with tolerance for some side movement).

MNIST hand-written digits data set consists of 60,000 training and 10,000 test digits
(Cun et al. 1998). The MNIST data set can be downloaded from website2 with 10 classes,

1See http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
2See http://yann.lecun.com/exdb/mnist/.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://yann.lecun.com/exdb/mnist/
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Table 1 Detailed information of
data sets used in our experiments Data set #samples #Attribute #class

AT&T 400 644 40

MNIST 150 784 10

PIE 680 1,024 68

UMIST 360 644 20

YALEB 1,984 2,016 31

ECOLI 336 343 8

GLASS 214 9 6

DERMATOLOGY 366 34 6

from digit “0” to “9”. In the MNIST data set, each image is centered (according to the center
of mass of the pixel intensities) on a 28 × 28 grid. We select 15 images for each digit in our
experiment.

UMIST faces is for multi-view face recognition, which is challenging in computer vision
because the variations between the images of the same face in viewing direction are almost
always larger than image variations in face identity. This data set contains 20 persons with 18
images for each. All these images of UMIST database are cropped and resized into 28 × 23
images. Due to the multi-view characteristics, the images shall lie in a smooth manifold. We
further use this data set to visually test our embedding smoothness.

CMU PIE face database contains 68 subjects with 41,368 face images. Preprocessing to
locate the faces was applied. Original images were normalized (in scale and orientation)
such that two eyes were aligned at the same position. Then, the facial areas were cropped
into the final images for matching. The size of each cropped image is 64 × 64 pixels, with
256 grey levels per pixel. In our experiment, we randomly pick 10 different combinations of
pose, face expression, and illumination condition. Finally we have 68 × 10 = 680 images.

Another images benchmark used in our experiment is the combination of extended
and original Yale database (Georghiades et al. 2001). These two databases contain single
light source images of 38 subjects (10 subjects in original database and 28 subjects in ex-
tended one) under 576 viewing conditions (9 poses × 64 illumination conditions). Thus,
for each subject, we got 576 images under different lighting conditions. The facial areas
were cropped into the final images for matching (Georghiades et al. 2001). The size of
each cropped image in our experiments is 192 × 168 pixels, with 256 gray levels per pixel.
We randomly pick up 20 images for each person and also sub-sample the images down to
48 × 42. To visualize the quality of the embedding space, we pickup the images such that
they come from different illumination conditions.

Three other data sets (ECOLI, GLASS, and DERMATOLOGY) come from UCI Repos-
itory (Asuncion and Newman 2007). The detailed information of eight benchmark data sets
can be found in Table 1.

For all data sets used in our experiments, we directly use the original space without any
processing. More specifically, for images data sets, we use the raw gray level values as
features.

5.2 Experimental settings

We construct the pairwise similarity of data points as follows.

Wij =
{

exp
(−‖xi−xj ‖2

ri rj

)
, xi, xj are neighbors

0, otherwise
(23)
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where ri and rj are the average distances of K-nearest neighbors of data points i and j ,
respectively. K is set to 10 in all our experiments, which is the same as in Bühler and Hein
(2009). By neighbors here we mean xi is a K-nearest neighbors of xj or xj is a K-nearest
neighbors of xi .

For our method (Cheeger cut Embedding or CCE), we first obtain the embedding space
using Algorithm 1 Then a standard K-means algorithm is applied to further determine the
clustering assignments. For visualization, we use the second and third eigenvectors as the
x-axis and y-axis, respectively.

In direct comparison and succinct presentation, we compare our results to greedy search
Cheeger cut algorithm (Bühler and Hein 2009) in terms of three clustering quality mea-
surements. We download their codes and directly use them with default settings. For both
methods, we set p = 1.2, which is suggested in previous research (Bühler and Hein 2009).

5.3 Measurements

We use three metrics to measure the performance in our experiments: the value of objective
in (3), the Cheeger cut defined in (12), and clustering accuracy. Clustering accuracy (ACC)
is defined as:

ACC =
∑n

i=1 δ(li ,map(ci))

n
, (24)

where li is the true class label and ci is the obtained cluster label of xi , δ(x, y) is the delta
function, and map(·) is the best mapping function. Note δ(x, y) = 1, if x = y; δ(x, y) = 0,
otherwise. The mapping function map(·) matches the true class label and the obtained cluster
label, and the best mapping is solved by Kuhn-Munkres algorithm. A larger ACC indicates
a better performance. And a lower value of objective in (3) or lower Cheeger cut suggests
better clustering quality.

5.4 Evaluation results

Embedding results We use 4 data sets (AT&T, MNIST, UMIST, YALEB) to visualize the
embedding results obtained by our method. For each data set, we select samples in four
different clusters. We use the second and third eigenvector as x-axis and y-axis, respectively.
The embedding results are shown in Fig. 1(a)–(d). For AT&T data, the four persons are well
separated. For MNIST data, the four digits are separated in most of the images. Three images
(“3”, “2”, and “0” as highlighted in Fig. 1(b)) are visually different from other images of
the same group. The embedding results also show that these three images are far way from
the other objects in the same group. This result indicates that our embedding space reserves
the visual characteristics. For UMIST and YALEB data, since the images from the same
group are taken under different face expression or illumination conditions, they are arranged
in a smooth manifold. This structure also remains in our embedding space, see Fig. 1(c)
and (d).

Clustering analysis on confusion matrices We select 10 groups for AT&T, MNIST, PIE,
UMIST, and YALEB, 6 for GLASS and DERMATOLOGY, and 8 for ECOLI. We compare
the greedy search Cheeger cut (Bühler and Hein 2009) (GSCC) to our method (CCE). The
confusion matrices are shown in Fig. 2. In AT&T, MNIST, and ECOLI data, our method
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Fig. 1 Embedding results on four image data sets using the second and third eigenvectors of p-Laplacian
as x-axis and y-axis, respectively, where p = 1.2. Different colors indicate different groups according to
ground truth. In (b) the highlighted are images which are visually far away from other images in the same
group

obviously outperforms GSCC, because the diagonals of our confusion matrices are much
stronger than those in GSCC results.

Clustering quality analysis We use three metrics mentioned above to measure the quality
of clustering results. We compare our method to greedy search Cheeger cut in various ex-
perimental settings. For AT&T, MNIST, PIE, and UMIST, we choose k = 2,3,4,5,6,8,10,
where k is the number of clusters. Typically, a larger k leads to a more difficult clustering
task and a lower clustering accuracy. For ECOLI, GLASS, YALEB, and DERMATOLOGY
data, we set k = 2,3,4,5,6,8, k = 2,3,4,5,6,7, k = 2,4,5,6,8,10 and k = 2,3,4,5,6,
respectively. We set these numbers of k according to the size of the original data sets and
also for convenient presentation. All results are shown in Table 2. Notice that for greedy
search, if k > 2, there is no way to calculate the objective function values defined in (3).

In Table 2, when the data set is simple (i.e. k is small), the accuracy of the two methods
is close to each other. However, if the data is complex (i.e. when k is large), our method
has much better clustering results than greedy search. For example, in AT&T, when k = 10,
our approach remains high (78%) in clustering accuracy, while greedy search only achieves
38%. Also we can see that when k is large, our algorithm obtains much lower values in both
objective and Cheeger cut than greedy search. One should notice that the setting of MNIST
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Fig. 2 Comparisons of confusion matrices of GSCC (left in each panel) and our CCE (right in each panel)
on 8 data sets. Each column of the matrix represents the instances in a predicted class, and each row represents
the instances in an actual class

data used in our experiment is different from the one used in previous research (Bühler and
Hein 2009).

6 Conclusions

Spectral data analysis is important in machine learning and data mining areas. Unlike other
relaxation-based approximation techniques, the solution obtained by p-Laplacian can ap-
proximate the global solution arbitrarily tight. Meanwhile, Cheeger cut favors the solutions
which are more balanced. This paper is the first one to offer a full eigenvector analysis of
p-Laplacian. We proposed an efficient gradient descend approach to solve the full eigen-
vector problem. Moreover, we provided new analysis of the properties of eigenvectors of
p-Laplacian. Empirical studies show that our algorithm is much more robust in real world
data sets clustering than the previous greedy search p-Laplacian spectral clustering. There-
fore, both theoretical and practical results proposed by this paper introduce a promising
direction to machine learning community and related applications.
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Table 2 Clustering quality comparison of greedy search Cheeger cut and our method. Obj is the objective
function value defined in (3), CC is the Cheeger cut objective defined in (12), and Acc is the clustering
accuracy defined in (24). For greedy search, objective in (3) is not provided when k > 2

AT&T Greedy search Our method MNIST Greedy search Our method

k Obj CC Acc Obj CC Acc k Obj CC Acc Obj CC Acc

2 31.2 29.1 100.0 31.2 29.1 100.0 2 46.0 42.9 100.0 46.0 42.9 100.0

3 – 124.9 80.0 187.4 91.3 100.0 3 – 182.9 56.0 268.1 132.3 98.0

4 – 385.9 60.0 333.2 176.4 100.0 4 – 534.0 47.0 459.7 252.9 97.0

5 – 1092.5 50.0 500.7 306.6 90.0 5 – 1129.9 45.0 680.7 402.8 92.0

6 – 3034.6 45.0 673.3 436.8 73.0 6 – 6356.0 40.0 923.2 582.7 89.0

8 – 5045.6 36.0 1134.9 862.6 80.0 8 – 10785.6 33.0 1608.9 1110.4 86.0

10 – 8012.7 38.0 1712.8 1519.7 78.0 10 – 16555.5 35.0 2461.2 1731.2 85.0

PIE Greedy search Our method UMIST Greedy search Our method

k Obj CC Acc Obj CC Acc k Obj CC Acc Obj CC Acc

2 38.4 31.0 60.0 38.4 38.4 65.0 2 86.2 80.8 57.0 86.2 80.4 57.0

3 – 144.0 50.0 189.1 112.8 67.0 3 – 269.1 42.0 388.4 193.2 58.0

4 – 514.3 43.0 324.3 179.6 60.0 4 – 732.3 42.0 669.6 399.8 62.0

5 – 2224.7 34.0 477.1 336.6 58.0 5 – 973.5 42.0 1026.1 639.1 57.0

6 – 3059.9 28.0 673.6 489.7 62.0 6 – 1888.4 33.0 1426.0 898.2 60.0

8 – 5362.7 24.0 1146.1 985.9 45.0 8 – 8454.9 29.0 2374.8 1939.8 55.0

10 – 7927.2 22.0 1707.4 1776.3 45.0 10 – 4204.1 34.0 3793.1 2673.7 54.0

ECOLI Greedy search Our method GLASS Greedy search Our method

k Obj CC Acc Obj CC Acc k Obj CC Acc Obj CC Acc

2 70.7 65.7 97.0 70.7 67.8 98.0 2 71.4 85.3 63.0 71.4 111.3 63.0

3 – 189.5 73.0 318.3 180.6 89.0 3 – 259.5 39.0 386.4 198.8 66.0

4 – 529.0 72.0 458.4 306.0 84.0 4 – 821.3 48.0 617.9 389.6 71.0

5 – 738.1 57.0 790.0 566.7 77.0 5 – 7659.5 43.0 862.7 498.9 57.0

6 – 1445.6 61.0 1083.5 993.1 80.0 6 – 12160.9 38.0 1253.7 814.5 62.0

8 – 16048.2 58.0 1969.5 1736.0 79.0 7 – 12047.2 37.0 1253.7 816.3 62.0

YALEB Greedy search Our method DERMA Greedy search Our method

k Obj CC Acc Obj CC Acc k Obj CC Acc Obj CC Acc

2 73.5 68.6 50.0 73.5 68.6 50.0 2 74.1 69.1 100.0 74.1 69.1 100.0

4 – 425.7 33.0 740.1 405.0 39.0 3 – 275.0 78.0 426.7 192.0 100.0

6 – 1642.4 27.0 2300.6 1534.5 34.0 4 – 493.8 81.0 770.9 403.3 95.0

8 – 3953.5 27.0 3044.4 2109.8 31.0 5 – 1120.5 77.0 1206.6 661.2 96.0

10 – 4911.5 24.0 4690.6 3368.1 28.0 6 – 2637.5 45.0 1638.6 1115.1 96.0
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