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Abstract We derive pointwise exact bootstrap distributions of ROC curves and the differ-
ence between ROC curves for threshold and vertical averaging. From these distributions,
pointwise confidence intervals are derived and their performance is measured in terms of
coverage accuracy. Improvements over techniques currently in use are obtained, in partic-
ular in the extremes of ROC curves where we show that typical drastic falls in coverage
accuracy can be avoided.

Keywords Receiver operating characteristics · Bootstrap · Coverage probabilities · Model
selection

1 Introduction

Literature on receiver operating characteristics (ROC) curves is abundant and scattered
across different communities and this breadth of applicability has been reported in Swets
and Pickett (1982) and more recently in Swets et al. (2000). In the machine learning com-
munity, ROC curves have recently gained popularity as a tool to measure and visualize the
performance of binary classifiers. See (Fawcett 2006) for an excellent introduction to ROC
curves along with descriptions of the essential elements of ROC graph analysis, within the
context of machine learning. ROC graph analysis can be enhanced if confidence intervals
for the curve are provided along with the curve itself as this allows the user to assess the
reliability of the estimated performance of a model considered for implementation. When
comparing two models through their respective ROC curves, confidence intervals for the
difference in performance can be used to assess the significance of the superiority, which we
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hereafter refer to as dominance, of one model over the other. Unfortunately, in some cases,
coverage of confidence intervals can be far from its intended target (usually, 90%, 95%, or
99%). The goal of this paper is to propose confidence intervals, for ROC curves and the
difference between two ROC curves, with better and more reliable coverage accuracy than
what is obtained using currently available techniques.

When performing model selection (or model comparisons) with ROC curves, this issue
becomes paramount: confidence intervals with coverage above target are too conservative
(too wide) and will more likely fail to identify significant differences where they should
(type II error). Conversely, confidence intervals with coverage below target are too assertive
(too narrow) and are more likely to conclude to the dominance of one model over another
in cases where this is not true (type I error). When considering a single model, confidence
intervals with coverage above (below) target will exhibit an unduly wide (narrow) range
of potential performances which may hamper decision-making. There have been numerous
suggestions on how to obtain confidence intervals for ROC curves. On the other hand, con-
fidence intervals for the difference between two ROC curves, although of great interest to
the machine learning community, have received very little attention. In this paper, this later
issue is treated in great details, thereby providing new analysis tools for machine learning
research.

Bootstrap resampling of the test set in order to obtain an out-of-sample distribution of
a ROC curve or the difference between two ROC curves has previously been used. Confi-
dence intervals obtained through this procedure may vary, depending on the actual resam-
ples drawn and in order to reduce this resampling noise, a larger number of resamples can
be drawn. In the limit, an infinite number of resamples will bring resampling noise to zero,
thus leading to deterministic confidence intervals, given a specific test set. Although infinite
resampling is not feasible, the distribution of the statistic of interest (here, a ROC curve or
the difference between two ROC curves) associated to an infinite number of resamples can,
in some cases, be derived analytically. Such a distribution is often referred to as an exact
bootstrap distribution. Computing this exact bootstrap distribution therefore provides the
same information as would have been obtained through an infinite number of resamples,
without performing any. In this paper we derive exact bootstrap distributions of ROC curves
and the difference between two ROC curves. From these distributions, we obtain confidence
intervals.

Deriving pointwise distributions for curves requires a specification of how the points of
different curves are to be associated and averaged. In this paper, we consider two averaging
techniques that have previously been used in the machine learning community: threshold
and vertical averaging. Statistical and medical literatures on the subject of ROC curve con-
fidence intervals have exclusively addressed the case of vertical averaging although, as de-
scribed in Sect. 2, threshold averaging is of obvious practical relevance. So far, it seems that
only the fields of machine learning and data mining have considered the issue of threshold
averaging.1

Combining the two statistics (ROC curves and differences between ROC curves) with
the two averaging techniques (threshold and vertical) leads to the four problems addressed
in this paper. We provide contributions to each of these four issues by proposing confidence
intervals that alleviate the problem of coverage accuracy drops in the extremes of the ROC
curve, as observed in particular in Macskassy et al. (2005). The paper presents numerous
different theoretical and numerical results. In order to make things clearer for the reader,

1A recent exception in engineering is Kerekes (2008).
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Table 1 Exact bootstrap distributions of ROC curves and their approximations. Design: some results apply
to the distribution of a single curve (Single). These results can also be used to estimate the distribution
of the difference between two ROC curves for unpaired designs. Other results apply to the distribution of
the difference between two ROC curves when the design is paired (Paired). Approximation: results are for
the exact bootstrap distribution itself (Exact) or an approximation of it (Approx.). Sections: sections where
relevant theory and numerical results appear

Design Values Approx. Timesa Algorithms, Sections

(theory) Equations Theory/Simul.

Threshold averaging

Single C.I. Approx. O(n lnn) Algorithm 1 3.1/5.1

Paired ft1,t2 Exact O(n · h) Algorithm 2, (2) 3.2/–

C.I. Approx. O(n · h) Algorithm 3 3.2/5.2

Vertical averaging

Single C.I. Approx. O(n · h) Algorithm 4, (4), (6), (7) 4.1/5.3

Paired C.I. Exact O(n4) Algorithm 5 4.2/5.4

an: sample size, h: number of evaluation points

Table 1 classifies algorithms, equations, and subsections (where theory and numerical results
appear) with respect to the problem to which they apply. Also, for convenience, Table 2
provides a summary of the notation used throughout the paper.

The rest of the paper is as follows: in Sect. 2, we discuss in more details the issues related
to the computation of confidence intervals for ROC curves and present existing work. The-
oretical developments for threshold and vertical averaging are presented in Sects. 3 and 4,
respectively. In Sect. 5, we report numerical results. We conclude in Sect. 6.

2 Confidence intervals for ROC curves

This paper considers models that have been trained to discriminate between two classes.
We assume each model’s output is a score with unknown continuous distribution. Instances
for which a certain condition is present (e.g. a tumor is cancerous, a credit card transaction
is fraudulous) will be referred to as positive instances. Also, without loss of generality, we
assume higher scores indicate that an instance is more likely to be positive. Our interest
lies in evaluating pointwise confidence intervals, i.e., the dispersion of individual points of
the curve. Confidence bands, that define regions within which a certain portion of the curve
should lie, are not treated here.

2.1 Experiment designs

We assume model selection is performed by comparing each model’s out-of-sample perfor-
mance. An unpaired design refers to the situation where the first model’s test set is disjoint
from the other model’s test set. This may occur in medicine if a patient can only be given
one of two possible treatments. In paired design experiments, both models are evaluated
using the same test set. Obviously, most of the machine learning literature focuses on paired
rather than unpaired designs in order to perform model selection. For convenience, we define
a single design as the situation where only one model is considered.

With unpaired designs, the distribution for the difference between two ROC curves can
be obtained by assuming the two individual curves are independent, since the test sets are
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Table 2 Notation

Threshold averaging, single design

n number of instances in test set

n+ (n−) number of positive (negative) instances in test set

n+
t (n−

t ) number of positive (negative) instances in test set, with score greater or equal to t

m number of instances in each sample

m+ (m−) number of positive (negative) instances in each sample

M+
t (M−

t ) r.v. for the number of positive (negative) instances in a sample, with score greater or
equal to t

T P+
t (FP−

t ) r.v. for the true (false) positive rate at threshold t

relations: p+
t = n+

t /n+, T P+
t = M+

t /m+, p−
t = n−

t /n−, FP−
t = M−

t /m−

Threshold averaging, paired design

n+
t1,t2

(n−
t1,t2

) number of positive (negative) instances, in the test set, with score of model 1 below
t1 and score of model 2 greater or equal to t2

n+
t1,t2

(n−
t1,t2

) number of positive (negative) instances, in the test set, with score of model 1 greater
or equal to t1 and score of model 2 below t2

�T P+
t1,t2

r.v. for the difference in true positive rates when thresholds are set at t1 and t2 for
models 1 and 2, resp

�FP−
t1,t2

same for false positive rates

relations: p+
t1,t2

= n+
t1,t2

/n+, p+
t1,t2

= n+
t1,t2

/n+

p−
t1,t2

= n−
t1,t2

/n−, p−
t1,t2

= n−
t1,t2

/n−

Vertical averaging, single design

T −
r r.v. for threshold at false positive rate r/n−

sk kth largest negative instance score, in the test set

n+
k

number of positive instances with score greater or equal to sk , in test set

M+
k

r.v. for the number of positive instances with score greater or equal to sk , in a sample

T P+
r r.v. for the true positive rate at false positive rate r/n−

relations: p+
k

= n+
k

/n+

Vertical averaging, paired design

s1,k (s2,j ) kth (j th) largest score of negative instances in test set,

according to model 1 (model 2)

T −
1,r

(T −
2,r

) r.v. for threshold at false positive rate r/n− according to model 1 (model 2)

�T P+
r r.v. for difference in true positive rates, at false positive rate r/n−

disjoint. Solutions obtained for single designs can therefore serve to obtain solutions for
unpaired designs as well. On the other hand, with paired designs, we must account for the
fact that out-of-sample performances of two models are usually positively correlated across
test sets since model scores are correlated across instances: an obvious fraud will usually
score high on both models. This paper considers single and paired designs.

2.2 Advantage of ROC curves

An advantage of ROC graph analysis lies in the fact that ROC curves are independent of
the relative proportions of positive and negative instances in the population as well as the
relative values of error costs (Fawcett 2006). Since both axes are scaled as proportions to the
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total number of positive (y-axis) and negative (x-axis) instances, a change in these numbers
should not affect the ROC curve (although this argument has recently been discussed (Webb
and Ting 2005; Fawcett and Flach 2005)). Since all computations of ROC curves are made
independently of cost values, these have no effect on the curve. On the other hand, changes
in costs or proportions will cause changes in the value of the optimal (expected total error
cost minimizing) threshold, corresponding to a different point on the otherwise unaffected
ROC curve. One drawback of ROC graph analysis, is its inability to handle instance-varying
benefits (or costs) but an extension has recently been proposed for that purpose (Fawcett
2006). Model performance assessment in terms of expected total error cost can hardly be
done using ROC curves and for this reason (and others (Drummond and Holte 2006)), cost
curves (Drummond and Holte 2006) and expected performance curves (Bengio et al. 2005)
have been introduced as alternatives (or complements) to ROC curves.

2.3 Bootstrap resampling of the test

In order to obtain confidence intervals for out-of-sample performance, resampling methods
such as the bootstrap technique can be used. Since the objective here is to estimate a model’s
out-of-sample performance distribution, instances of the training set can not be used for that
purpose and we are limited to resampling from the test set.

The bootstrap (Efron and Tibshirani 1993) is a simulation method that allows the estima-
tion of the distribution of complex statistics such as ROC curves. Given an original set of
instances, a certain number of samples are drawn, with replacement, from the original set.
For each of the samples, an ROC curve is computed and the bootstrap estimate is obtained
as the average, over all bootstrap samples, of the individual curves. In certain cases, analytic
derivations can be obtained that give exact bootstrap distribution, allowing to characterize
the statistic’s bootstrap distribution without performing any resampling. An exact bootstrap
distribution can be interpreted as the one to which the bootstrap distribution converges as
the number of bootstrap samples tends to infinity.

Mathematical derivations of exact bootstrap results for ROC curves are made difficult by
the presence of normalization terms that vary from one sample to another: at each thresh-
old, the true (false) positive rate is obtained as the number of positive (negative) instances
correctly (falsely) labelled as positive divided by the total number of positive (negative) in-
stances in the sample. Since these total numbers vary from one bootstrap sample to another,
one must account for their distribution. In particular, the bootstrap distribution assigns non
zero probability to samples that are entirely composed of instances drawn from one of the
two classes. In such cases, either the true or false positive rate is undefined at any thresh-
old. In this paper, we circumvent this difficulty through the use of a procedure referred to
as stratified bootstrap according to which proportions of positive and negative instances of
each bootstrap sample are fixed as equal to those of the original test set. In other words, each
sample is obtained from the combination of two independent bootstrap samples: one drawn
from the set of positive instances and the other drawn from the set of negative instances.
This procedure has previously been used in the context of ROC curves (Bandos 2005;
Drummond and Holte 2006). The underlying assumption of fixed class proportions is dis-
cussed and revisited in Sect. 5.5.

2.4 Averaging techniques

As mentioned above, bootstrap estimates are obtained through the averaging of a series of
ROC curves. This averaging can be performed according to various methods of which we
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consider two that have previously been used in the machine learning community (Fawcett
2004; Macskassy et al. 2005): threshold averaging and vertical averaging. The choice of the
appropriate averaging method should fall directly from the intended use of the model to be
implemented as each method can be associated to a specific variable that is considered inde-
pendent. For this reason, we view threshold and vertical averaging as two different problems
rather solutions when trying to establish the distribution of an ROC curve. According to
threshold averaging, the independent variable is the score threshold that serves to determine
whether an instance is to be labelled as a positive or a negative. The averaging process there-
fore involves looping through a series of different threshold values. For each threshold, true
and false positive rates of the different ROC curves are averaged. Connecting these aver-
age points forms the average ROC curve. According to vertical averaging, a series of false
positive rates are considered. For each of these false positive rates, true positive rates of the
different ROC curves are averaged. Again, connecting these average points forms the aver-
age ROC curve. Vertical averaging is therefore associated to an independent false positive
rate variable.

Vertical averaging has the advantage that, in ROC space, it leads to one-dimensional
confidence intervals rather than two-dimensional confidence regions such as those obtained
through threshold averaging. On the other hand, false positive rates can only be measured ex-
post, after the model has been implemented and used, thus can not correspond to any ex-ante
decision made by the user of the model. Obviously, threshold setting is a potential ex-ante
user decision so that threshold averaging can be directly associated to practical applications,
an advantage of this method over vertical averaging.

2.5 Approaches to obtain confidence intervals

Much research has been devoted to smoothing the empirical ROC curve and estimating its
dispersion. Approaches fall into one of three broad categories: parametric, semi-parametric
and nonparametric (or empirical). According to parametric approaches, scores of positive
instances are assumed to follow a particular distribution and scores of negative instances are
assumed to follow a distribution of the same functional form but with different parameters.
The functional form is usually either normal or logistic. Model parameters are estimated
using available data and the smoothed ROC curve follows as a combination of the two
estimated functions.

Semi-parametric kernel-based methods have been proposed (Zou et al. 1997; Lloyds
1998) in order to smooth the empirical ROC curve and have been shown (Lloyds and Wong
1999) to perform better, in terms of root mean squared error, than the empirical ROC curve
itself, if kernel bandwidths are chosen appropriately such as in Hall and Hyndman (2003).
Using the kernels, a distribution for the ROC curve can be derived and used to obtain con-
fidence intervals or regions, the performance of which is generally evaluated through an
estimation of the coverage accuracy. Kernel bandwidth selection for optimal coverage accu-
racy has been investigated in Hall et al. (2004).

When obtained through the use of a model for scoring instances of a test set, the curve is
often referred to as the empirical ROC. Strong convergence properties of the empirical ROC
curve (Hsieh and Turnbull 1996) and a formula for its bias (Lloyds and Wong 1999) have
been obtained. Although bootstrap resampling is often used to obtain empirical dispersion
measures of ROC curves, exact (stratified) bootstrap results have only been reported for
the area under the ROC curve (AUC) (Bandos 2005) and cost curves (Dugas and Gadoury
2008). In this paper, we derive pointwise exact stratified bootstrap distributions for ROC
curves.
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2.6 Confidence intervals for multinomial probabilities

As will be shown in Sect. 3, the true and false positive rates follow independent binomial
distributions, when exact stratified bootstrap is used. We must therefore estimate confidence
intervals for binomial probabilities, an issue that has received substantial attention in the
statistical literature. The most common approach is to fit the estimated first two moments
of the distribution to a Gaussian distribution. Accordingly, a 1 − α confidence interval has
bounds

p̂ ± z1−α/2

√
p̂(1 − p̂)/n

where z1−α/2 is the (1 − α/2)th quantile of the Gaussian distribution, n is the sample size
from which p̂ = k/n was obtained, and k is the number of observed successes. These inter-
vals are sometimes referred to as Wald intervals since they are obtained from inverting the
Wald large-sample normal test. Similarly, score confidence intervals are obtained by invert-
ing a score normal test which uses the null hypothesis variance p(1 − p)/n rather than its
approximated value. Score confidence interval bounds for a binomial probability are

(
p̂ + z2

1−α/2/2n ± z1−α/2

√
p̂(1 − p̂)/n + (z1−α/2/2n)2

)
/(1 + z2

1−α/2/n).

It is interesting to note (and can easily be shown) that score confidence intervals, as op-
posed to Wald intervals, will strictly provide admissible bounds i.e., limited to the [0,1]
range. As a consequence, score intervals are asymmetric with respect to p̂, the midpoint
being (p̂ + z2

1−α/2/2n)/(1 + z2
1−α/2/n). Note that the estimated value p̂ is always within

the bounds. Another element of importance is the fact that score intervals never collapse to
zero-length, i.e. the upper bound is always strictly larger than the lower bound. Zero-length
Wald intervals are obtained whenever p̂ ∈ {0,1}. Thus the closer to 0 or 1 is the true under-
lying event probability p and the smaller the sample size is, the more frequent zero-length
intervals will be obtained. This explains why Wald intervals exhibit such poor coverage for
values of p close to 0 or 1 and small samples.

Exact confidence intervals for which coverage is always greater or equal to target (1 −α)
have been proposed (Clopper and Pearson 1934) but they generally lead to intervals that
are too wide i.e., too conservative. To avoid confusion with respect to the use of the term
“exact”, let us mention that, for the rest of the paper, “exact” shall refer to the fact that we
derive exact bootstrap distributions. Exact confidence intervals are used nowhere here.

In Agresti and Coull (1998), the three alternatives described above are compared with
respect to their coverage accuracy. As shown in Agresti and Coull (1998), coverage accuracy
of Wald intervals drops drastically for small samples when the underlying true probability
is close to 0 or 1. Score intervals coverage is shown to be closest to target. The authors then
show that score intervals can be approximated by simply adding two positive instances as
well as two negative instances to the sample before Wald-type intervals are derived. Bounds
of the confidence intervals therefore become

p̃ ± z1−α/2

√
p̃(1 − p̃)/ñ (1)

where, p̃ = k̃/ñ, k̃ = k + 2, and ñ = n + 4. We refer to these as the Agresti-Coull intervals.
In Sects. 3 and 4, we show how Agresti-Coull confidence intervals and other similar

intervals can be adapted to the four problems we are interested in. Through numerical sim-
ulations, Sect. 5 shows that these confidence intervals provide improvements over existing
techniques, in terms of coverage accuracy.
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3 Threshold averaging

3.1 Threshold averaging and single designs

Consider a test set consisting of n instances from which stratified bootstrap samples of
size m are drawn (often, m = n). Let n+ and n− be the number of positive and negative
instances, respectively, in the test set. Let X + and X − be the sets of all bootstrap sam-
ples that can be drawn from the n+ positive and n− negative instances of the test set, re-
spectively. The set of all stratified bootstrap samples that can be drawn from the test set is
{(x+, x−), x+ ∈ X +, x− ∈ X −}. Throughout the paper, values depending on actual sample
x+(x−) of positive (negative) instances are superscripted with symbol + (−).

According to the stratified bootstrap procedure, the number of sampled positive and neg-
ative instances, m+ = m · n+/n and m− = m · n−/n are fixed. In this paper, we simply
assume m+,m− ∈ N. Otherwise, in cases where m �= n and m+,m− /∈ N, an additional pro-
cedure should be devised so that stratified sampling precisely reflects the actual proportions
of the test set.

Let n+
t denote the number of instances, among the n+ positive instances of the test set,

with score greater or equal to t . Let M+
t be the random variable for the number of positive

instances with score greater or equal to t , within a random bootstrap sample of size m+

drawn from the n+ positive instances of the test set. Then, M+
t follows binomial distribution

with trial number m+ and estimated event probability p+
t = n+

t /n+ which we note as M+
t ∼

Bin(m+,p+
t ). Let T P +

t = M+
t /m+ be the random variable for the true positive rate, at

threshold t , where m+ is fixed across all samples.
Similarly for negative instances, the random variable for the false positive rate is denoted

FP −
t = M−

t /m− where M−
t is the random variable for the number of negative instances,

within a sample of size m− with score greater or equal to threshold t . Let p−
t = n−

t /n−

where n−
t is the number of instances with score greater or equal to t among the n− negative

instances of the test set. Thus, M−
t ∼ Bin(m−,p−

t ).
According to stratified bootstrap resampling, samples x+ ∈ X + and x− ∈ X − are drawn

independently so that T P +
t and FP −

t are independent as well and their confidence intervals
can be built independently. These confidence intervals can be obtained by fitting a Gaussian
distribution to the first and second moments of the binomial distributions defined above.
Since p+

t and p−
t are sample proportions that are estimates of the true underlying probabil-

ities, then careful attention must be paid in order to derive confidence intervals that closely
match their target coverage. Our approach is to build two Agresti-Coull (1998) confidence
intervals, one for the true positive rate and another for the false positive rate, and to combine
these two intervals to obtain a two-dimensional confidence region. In Sect. 5.1, we per-
form simulations in order to assess the coverage accuracy of the suggested approach. This
approach is compared to two others.

For a set of h thresholds, confidence intervals are obtained in time2 O(n lnn) because of
the necessary sorting preprocessing. If instances are already sorted, then the computational
time is O(n) (linear). Algorithm 1 describes how this can be done. Figure 1 gives an exam-
ple of the use of Algorithm 1 where the confidence regions are illustrated for a set of five
thresholds.

2Throughout the paper, computational time analyses assume n+, n−,m+,m−, and m are proportional to n.
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Algorithm 1 Confidence regions for threshold averaging with single design. Time: O(n lnn)

Input: Scores of positive and negative instances, set of h thresholds, size m.
Output: Set of h confidence regions for the model performance.
n+

t ← 0, n−
t ← 0

β ← 1 − √
1 − α

z ← (1 − β/2)th quantile of the Gaussian distribution.
a ← 2
for j = 1,2, . . . , h do

t ← j th largest threshold.
Compute n+

t

p̂+
t ← (n+

t + a)/(n+ + 2a)

σ̂ ← √
p̂+

t (1 − p̂+
t )/(m+ + 2a)

(L+
j ,U+

j ) ← p̂+
t ± z · σ̂

Similarly, obtain interval (L−
j ,U−

j ) using scores of negative instances.
Define j th confidence region as the rectangle with lower left corner (L−

j ,L+
j ) and upper

right corner (U−
j ,U+

j ).
end for

Fig. 1 Empirical ROC curve with pointwise exact bootstrap confidence intervals for a model performance
(single design). Threshold averaging is used for five threshold values. All values were obtained using Algo-
rithm 1

3.2 Threshold averaging and paired designs

When comparing the performance of two models, particular attention must be given to the
choice of thresholds since the scores obtained using different models may bear different
meanings: if a first model assigns scores between 0 and 100 while a second model assigns
scores between 100 and 1000 then clearly, comparing their performance at fixed threshold
values is meaningless. Even when score domains overlap, either partially or entirely, com-
parisons can be flawed if overall score distributions vary widely from one model to another.
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In order to perform relevant comparisons between different model outputs, a first solution
is to modify the scores through a process often referred to as score calibration (Platt 2000;
Zadrozny and Elkan 2002; Fawcett and Niculescu-Mizil 2007) where the objective is to
learn a monotonic mapping from the “raw” scores of a model to their corresponding cali-
brated scores representing class probability values, i.e., the conditional probability that an
instance is positive.

Here, the purpose of calibration is merely to align scores of different models in order to
perform relevant performance comparisons for thresholds that would, in practice, be com-
parable candidates for the two models at hand. The advantage of score calibration for this
purpose is that it can be performed automatically, without the user’s intervention. But this
automation can also be viewed as a disadvantage since in some cases, the user might wish
to compare models according to their respective performances at thresholds that are not
necessarily aligned, even after calibration. The reason is as such: score calibration is usu-
ally performed with respect to score distribution, disregarding model performance, whereas
threshold selection is based on model performance. This later approach is more flexible
and likely more representative of practical implementations but requires additional user in-
put.

In this paper, we handle both approaches by considering a set of h pairs of thresholds
(t1, t2). If considering score calibration, then t1 = t2 for each of the h pairs, where t1 and
t2 are the calibrated score thresholds of models 1 and 2, respectively. On the other hand, if
thresholds are user-specified, then the h threshold pairs represent those for which the user
wishes to compare the performance of the two models.

Given fixed threshold values t1 and t2, both true and false positive rates can vary from
one model to another. It is therefore impossible to differentiate between two models when
both true and false positive rates of one model are lower than the corresponding values for
the other model, unless the costs of both types of errors (false positives and false negatives)
and class probabilities (positive and negative) are known. We can still estimate f1(t1, t2), the
probability that, at thresholds t1 and t2, model 1 dominates model 2, i.e. the probability that
the false positive rate FP −

t1
of model 1 is less than or equal to that of model 2, FP −

t2
, while

model 1’s true positive rate T P +
t1

is greater or equal to that of model 2, T P +
t2

. The case
where both true and false positive rates are equal must be excluded for strict dominance.
Since samples x+ and x− are drawn independently, joint probabilities can be expressed as
the product of marginals, thus

f1(t1, t2) = Pr{�T P +
t1,t2

≥ 0} · Pr{�FP −
t1,t2

≤ 0}
−Pr{�T P +

t1,t2
= 0} · Pr{�FP −

t1,t2
= 0}, (2)

where �T P +
t1,t2

= T P +
t1

− T P +
t2

and �FP −
t1,t2

= FP −
t1

− FP −
t2

. Empirical estimates of
f1(t1, t2) can be obtained with Algorithm 2 for which we provide here an intuitive descrip-
tion. Detailed mathematical derivations of the algorithm are left to Appendix A.

When paired designs are considered, one must account for the presence of dependencies
between the scores of the two models, as explained in Sect. 1. Let us first consider positive
instances. Differences in true positive rates are due to the presence of instances for which
models disagree, i.e. given the thresholds considered, one model classifies an instance as
positive while the other classifies the same instance as negative. Thus, estimates of the dis-
tribution of the difference in true positive rates are based on the number of test set instances
in each of the following three categories: (a) instances for which score of model 1 is greater
or equal to t1 while score of model 2 is lower than t2, (b) instances for which score of
model 1 is lower than t1 while score of model 2 is greater or equal to t2, and (c) instances
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Algorithm 2 Dominance probabilities for threshold averaging with paired design. Time:
O(n · h)

Input: Scores of positive and negative instances for both models, set of h pairs of thresh-
olds, size m.
Output: Set of h probabilities of dominance.
Notation: Let dtp1, dtp0, dfp1, and dfp0 represent probabilities Pr{�T P +

t1,t2
≥ 0},

Pr{�T P +
t1,t2

= 0}, Pr{�FP −
t1,t2

≥ 0}, and Pr{�FP −
t1,t2

= 0}, respectively.

for j = 1,2, . . . , h do
(t1, t2) ← j th pair of thresholds.
Compute values n+

t1,t2
, n+

t1,t2
, n−

t1,t2
, and n−

t1,t2
.

u ← n+
t1,t2

/n+, v ← n+
t1,t2

/n+/(1 − u)

dtp0 ← 0, dtp1 ← 1 − B(u, 	m+/2
,m+).
for i = 0,1, . . . , 	m+/2
 do

dtp0 ← dtp0 + b(u, i,m+) · b(v, i,m+ − i)

dtp1 ← dtp1 + b(u, i,m+) · B(v, i,m+ − i)

end for
Values for dfp1 and dfp0 are obtain through similar computations for negative in-
stances with n−,m−, n−

t1,t2
, and n−

t1,t2
in place of n+,m+, n+

t1,t2
, and n+

t1,t2
, respectively.

f1(t1, t2) ← dtp1 · (1 − dfp1 + dfp0) − dtp0 · dfp0
f2(t1, t2) ← (1 − dtp1 + dtp0) · dfp1 − dtp0 · dfp0

end for
Return f1(t1, t2) and f2(t1, t2) for all pairs of thresholds

for which both models are in agreement, i.e. both scores are either greater or equal to or
lower than their respective thresholds. Let n+

t1,t2
and n+

t1,t2
represent the number of positive

instances of categories (a) and (b), in the test set, respectively. For negative instances, we use
a similar notation: n−

t1,t2
and n−

t1,t2
represent the number of negative instances of categories

(a) and (b), in the test set, respectively. When performing stratified bootstrap resampling,
the joint distribution of the number of positive instances drawn from categories (a), (b) and
(c) is trinomial (multinomial with three categories). The same is true of negative instances.
This distributional property is used to derive Algorithm 2 to obtain dominance probability
estimates f1(t1, t2) and f2(t1, t2).

Note that, unfortunately, evaluating the statistical significance of superior performance
of one model over the other using (2) and Algorithm 2 leads to a test with very poor
power. The main reason is that in many cases, probabilities Pr{�T P +

t1,t2
< 0,�FP −

t1,t2
< 0}

and Pr{�T P +
t1,t2

> 0,�FP −
t1,t2

> 0} are sufficiently large so that the tests are inconclu-
sive by usual standards, i.e. with p-values below 1, 5 or 10%. In other words, it is difficult
for f1(t1, t2) to reach values above 0.99, 0.95 or even 0.90. This argument is illustrated
in Fig. 2.

Let us now consider confidence intervals for �T P +
t1,t2

and �FP −
t1,t2

, thus defining con-
fidence regions in ROC space, for the difference in performance between two candidate
models. The issue of building confidence intervals for the difference between two event
probabilities, within the context of paired designs, has previously been addressed in the sta-
tistical literature. In particular, Agresti and Min (2005) suggest a procedure, similar to the
one used in the previous subsection, whereby one half instance is added to each of cate-
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Fig. 2 Testing for dominance of one model over the other using (2). Point II represents, in ROC space, the
performance of model 2 (M2) at a certain threshold t2 and for a certain sample. The performance of model 1
(M1), at the corresponding threshold t1 and for the same sample, can be located in any of the four quadrants
(A, B, C, and D) delimited by the two dashed lines that cross each other at point II. If model 1’s performance is
located in quadrant A (e.g., point IA) or in quadrant C (e.g., point IC ), then no conclusion can be reached: in
quadrant A, a higher true positive rate is obtained at a cost of a higher false positive rate whereas in quadrant
C, a lower false positive rate is obtained at a cost of a lower true positive rate. This leads to a dilemma that
is not solved in the context of ROC analysis and no conclusion can be reached. If model 1’s performance is
located in one the other two quadrants, then we conclude that either model 1 (in quadrant D, e.g. point ID )
or model 2 (in quadrant B, e.g. point IB ) dominates

gories (a) and (b) and one full instance is added to category (c) (i.e. a total of two instances
are added), before computing Wald-type confidence intervals.

Given threshold t1 and t2, computing values n+
t1,t2

and n+
t1,t2

requires linear time. The

same is true for the corresponding values for negative instances. For a set of h threshold
pairs, confidence regions are thus obtained in time O(n · h). Algorithm 3 shows how these
confidence regions are obtained. In Sect. 5.2, the proposed approach is compared with two
others.

4 Vertical averaging

4.1 Vertical averaging and single designs

We wish to evaluate the exact bootstrap distribution of the true positive rate for each element
of the set {ri/m−,1 ≤ r1 ≤ r2 ≤ · · · ≤ rh ≤ m− − 1, i = 1,2, . . . , h} of h false positive rates
of interest. Let T P +

r be the random variable for the true positive rate, at false positive rate
r/m−. Also, let M+

r be the random variable for the number of positive instances correctly
labelled as positives, at the same false positive rate r/m− so that T P +

r = M+
r /n+. Note that

M+
r depends on false positive rate r/m− which in turn varies across samples x− ∈ X −, so

that M+
r depends on both samples x+ and x− of positive and negative instances, respectively.

The following mathematical derivation can be summarized as such: given stratified sam-
ple (x+, x−) and fixed false positive rate r/m−, r negative instances of the sample, those
with the highest scores, are falsely labelled as positives. The lowest score among these false
positives is the threshold T −

r associated to false positive rate r/m−. Once that threshold is
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Algorithm 3 Confidence regions for threshold averaging with paired design. Time: O(n ·h)

Input: Scores of positive and negative instances for both models, set of h pairs of thresh-
olds, size m.
Output: Set of h confidence regions for the difference in performance.
β ← 1 − √

1 − α

z ← (1 − β/2)th quantile of the Gaussian distribution.
a ← 0.5
for j = 1,2, . . . , h do

(t1, t2) ← j th pair of thresholds.
Obtain values n+

t1,t2
, n+

t1,t2
, n−

t1,t2
, and n−

t1,t2
.

p̂t1,t2 ← (n+
t1,t2

+ a)/(n+ + 4a)

p̂t1,t2 ← (n+
t1,t2

+ a)/(n+ + 4a)

σ̂ ←
√

p̂t1,t2
+p̂t1,t2

−(p̂t1,t2
−p̂t1,t2

)2

m++4a

(L+
j ,U+

j ) ← p̂t1,t2 − p̂t1,t2 ± z · σ̂
Similarly, obtain interval (L−

j ,U−
j ) using scores of negative instances.

Define j th confidence region as the rectangle with lower left corner (L−
j ,L+

j ) and upper
right corner (U−

j ,U+
j ).

end for

determined, we can establish the distribution of the true positive rate over X +, conditional
on the value of T −

r . Integrating over the distribution of T −
r , we obtain the unconditional

distribution T P +
r .

First, let s1 ≥ s2 ≥ · · · ≥ sn− be the scores of the negative instances, sorted in decreas-
ing order. Given a particular sample (x+, x−), if at least r of the m− negative instances of
sample x− are chosen from the k negative instances with the largest scores, then the corre-
sponding threshold T −

r is greater or equal to sk . This can be expressed as a sum of binomial
probabilities:

Pr{T −
r ≥ sk} =

m−∑

j=r

b(k/n−, j,m−)

= 1 − B(k/n−, r − 1,m−) (3)

where b(p, k,n) is the binomial probability of obtaining k successes out of n independent
trials, each with success probability p. The associated cumulative distribution is denoted
B(p, k,n). The exact bootstrap distribution of the threshold T −

r follows as

Pr{T −
r = sk} = Pr{T −

r ≥ sk} − Pr{T −
r ≥ sk−1}

= B

(
k − 1

n− , r − 1,m−
)

− B(k/n−, r − 1,m−). (4)

Each value of P {T −
r = sk} is obtained in constant time.

Let us now consider the threshold conditional exact bootstrap distribution of the false
positive rate. Let n+

k be the number of positive instances with score greater or equal to sk ,
out of the n+ positive instances of the test set. Let M+

k be the random variable for the number
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of instances with score above sk , out of the m+ positive instances of stratified bootstrap sam-
ple x+. Then, M+

k follows binomial distribution M+
k ∼ Bin(m+,p+

k ) where p+
k = n+

k /n+.
Finally, the unconditional true positive rate distribution is

Pr{T P +
r = l/m+} =

n−∑

k=1

Pr{T −
r = sk} · Pr{M+

k = l}

=
n−∑

k=1

Pr{T −
r = sk} · b(l,m+,p+

k ). (5)

Each probability Pr{T P +
r = l/m+} is computed in linear time and this is done for all values

of l in {0,1, . . . ,m+} and all h false positive rates. Thus, using (4) and (5), we obtain true
positive rate distributions for all h false positive rate values in time O(n2 · h). Note that the
true positive rate distribution is a mixture of binomial distributions, not a binomial itself,
except for trivial cases.

Here again, exact bootstrap distributions can be summarized by their first two moments
and fitted to Gaussian distributions in order to perform computations more efficiently and
derive Wald-type confidence intervals. In order to avoid coverage accuracy breaks, we use
the Agresti-Coull (1998) smoothed estimator for p+

k : p̂+
k = (n+

k + 2)/(n+ + 4) so that, at
false positive rate r/m−, we have:

Ê{T P +
r } =

n−∑

k=1

Pr{T −
r = sk}Ê{M+

k /m+}

=
n−∑

k=1

Pr{T −
r = sk} · p̂+

k . (6)

Similarly for the second moment of T P +
r :

Ê{(T P +
r )2} =

n−∑

k=1

Pr{T −
r = sk}Ê{(M+

k /m+)2}

=
n−∑

k=1

Pr{T −
r = sk}[(p̂+

k )2 + p̂+
k (1 − p̂+

k )/(m+ + 4)]. (7)

Equations (6) and (7) are obtained in linear time and computed for each false positive rate
so that pointwise confidence intervals are obtained in time O(n ·h). Algorithm 4 shows how
these computations are performed. Numerical results comparing the suggested approach
with others are presented in Sect. 5.3.

4.2 Vertical averaging and paired designs

We conclude this section by considering the distribution of the difference between two ROC
curves within the context of vertical averaging and paired designs. Here again, we provide
an intuitive description and detailed mathematical derivations are left to Appendix B.
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Algorithm 4 Confidence intervals for vertical averaging with single design. Time: O(n · h)

Input: Scores of positive and negative instances, set of h false positive rates, size m.
Output: Set of h confidence intervals for the true positive rate.
Notation: Let ei, ei2, and pik represent values Ê{T P +

ri
}, Ê{(T P +

ri
)2}, and Pr{T −

ri
= sk},

respectively.
a ← 2
for k = 1,2, . . . , n− do

Compute n+
k

p̂+
k ← (n+

k + a)/(n+ + 2a)

ek ← p̂+
k

ek2 ← (p̂+
k )2 + p̂+

k (1 − p̂+
k )/(m+ + 2a)

end for
z ← (1 − α/2)th quantile of the standard Gaussian distribution.
for i = 1,2, . . . , h do

ei ← 0
ei2 ← 0
for k = 1,2, . . . , n− do

pik ← B(k−1
n− , ri − 1,m−) − B(k/n−, ri − 1,m−)

ei ← ei + pik · ek
ei2 ← ei2 + pik · ek2

end for
vi ← ei2 − (ei)2

(L+
i ,U+

i ) ← ei ± z
√

vi

end for

Let T −
1,r and T −

2,r be the random variables for the thresholds when false positive rate is
r/m−, for the first and second models, respectively. Let s1,1 ≥ s1,2 ≥ · · · ≥ s1,n− and s2,1 ≥
s2,2 ≥ · · · ≥ s2,q be the scores of the negative instances, sorted in decreasing order, using
the first and second models, respectively. Suppose T −

1,r = s1,k and T −
2,r = s2,j . Let us first

emphasize the fact that k is not necessarily equal to j and a simple numerical example will
illustrate this situation: suppose there are n− = 4 negative instances. According to the first
model, their scores are {1,2,3,4} and according to the second model, scores are {5,8,6,7}.
We draw samples of size m− = 4 and fix the false positive rate at r/m− = 25%, i.e. r = 1.
First, consider the case where we draw each instance exactly once. According to the first
model, the threshold is set equal to T −

1,r = s1,1 = 4, the score of the fourth instance and the
largest. The second model sets threshold at T −

2,r = s2,1 = 8, the score of the second instance,
also the largest. Thus, here we obtain thresholds such that k = j = 1. Now, let us consider
a sample for which we draw the first instance twice, the second instance once and the third
instance once as well. The first model sets the threshold equal to T −

1,r = s1,2 = 3, the score of
the third instance and second largest. The second model sets the threshold at T −

2,r = s2,1 = 8,
the score of the second instance and largest. Thus, in that case, k = 2 and j = 1 so that
k �= j . The joint distribution of T −

1,r and T −
2,r has O(n2) support.

The distribution of �T P +
r is obtained in three steps: first, each probability density func-

tion value

fr(k, j) = Pr{T −
1,r = s1,k, T

−
2,r = s2,j }

of the joint thresholds distribution is obtained in linear time. Since fr(k, j) is computed for
all values of r, k and j , total computational time is O(n4). Second, given thresholds T −

1,r and
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Algorithm 5 Confidence intervals for vertical averaging with paired design. Time: O(n4)

Input: Scores of positive and negative instances for both models, set of h false positive
rates, size m.
Output: Set of h confidence intervals for the difference between true positive rates.
for r = m−,m− − 1, . . . ,1 do

for k = 1,2, . . . , n− do
for j = 1,2, . . . , n− do

Compute joint threshold probability density function fr(k, j) using (15), (16),
(17), (18), and (19)

end for
end for

end for
for k = 1,2, . . . , n− do

for j = 1,2, . . . , n− do
for d = −1, (m+ − 1)/m+, . . . ,−1/m+,0,1/m+, . . . , (m+ − 1)/m+,1 do

Compute thresholds conditional probability density function gk,j (d) using (22)
end for

end for
end for
for r = 1,2, . . . ,m− do

Using (23), compute probability density function hr(d) and obtain confidence interval
for d , at false positive rate r/m−.

end for

T −
2,r , each conditional probability distribution function value for �T P +

r

gk,j (d) = Pr{�T P +
r = d/m+|T −

1,r = sk, T
−

2,r = sj }
is obtained in linear time. Since gk,j (d) is computed for values of k, j and d , total compu-
tational time is O(n4). Finally, each value of the unconditional distribution of �T P +

r

hr (d) =
∑

k,j

fr(k, j) · gk,j (d)

is obtained in quadratic time. Since hr(d) is computed for all values of r and d , total com-
putational time is, again, O(n4). Algorithm 5 summarizes these steps and relevant equations
of Appendix B are identified.

As detailed in Appendix B, the conditional distributions gk,j (d) can be approximated
with conditional moments. Unconditional moments are then obtained using the joint thresh-
old distribution and the usual Gaussian approximation can be used to obtain confidence
intervals. This procedure, although faster, still requires O(n4) computational time since the
threshold distribution still needs to be obtained.

Of course, an O(n4) algorithm has limited practical applicability. In order to improve on
the algorithmic efficiency, one would be required to approximate the joint threshold distri-
bution. Also, we have observed that most entries of the matrix of the joint probability mass
function have values very close to 0. Sparsifying this matrix would certainly help accelerate
computations. We leave these avenues for future work.

In Sect. 5.4, we compare the confidence intervals obtained with this approach to those
obtained by effectively drawing a series of bootstrap samples from the test set.
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5 Numerical results

In this section, we conduct a series of experiments in order to assess the performance of
the equations and algorithms described in Sects. 3 and 4. For each of the four potential
combinations of averaging (threshold or vertical) and design (single or paired), we compare
the proposed solutions of Table 1 with other popular methods. Performance is measured in
terms of coverage accuracy of the confidence intervals derived using these solutions.

Simulation experiments are inspired from Macskassy et al. (2005) which reported results
in terms of coverage accuracy as a function of false positive rate and can thus be compared
to the results we present in Sect. 5.3. An exception are their results on threshold averaging,
reported in terms of coverage accuracy as a function of threshold which are similar to those
of Sect. 5.1. In addition, experiments with six real-world data sets, available from the UCI
repository, are also presented. More details on these data sets appear in Appendix C.

Note that, for threshold averaging results of Sects. 5.1 and 5.2, we choose to report cov-
erage accuracy as a function of total positive rate which is the number of test instances
labelled as positive divided by the total number of instances in the test set. Using the total
positive rate, rather than threshold, allows us to perform comparisons that are independent
of score scales.

5.1 Threshold averaging and single designs

In this subsection, we compare the coverage accuracies of three methods used to derive
confidence regions of threshold averaged ROC curves. According to the first method, the
pointwise exact bootstrap distributions of both the observed true and false positive rates are
smoothed using Agresti-Coull estimators. This method was described in detail in Sect. 3.1
by Algorithm 1. We refer to this method as the Agresti method. The second method consists
of deriving Wald-type confidence intervals from the exact bootstrap distributions of the true
and false positive rates. This second method is referred to as the Wald method. Finally,
the third method consists of actually performing a certain number (here, 100) of bootstrap
resamples of the test set. For each resample, an ROC curve is obtained. Quantiles of the
empirical distribution serve to define confidence intervals and regions. This last method is
referred to as the Empirical method.

As a first experiment, we reproduce the one that appears in Macskassy et al. (2005)
in which positive and negative instances scores both follow normal distributions but with
different parameters. Such a pair of normal distributions is often referred to as a binor-
mal distribution. In Macskassy et al. (2005), the scale parameter is set to 3.75 for positive
instances and 3.00 for negative instances and confidence intervals are obtained for a sig-
nificance level of 10%. The location parameter θ for positive instances varies within the
set {0.75,1.5,3.0,5.0} and the location parameter for negative instances is set equal to −θ .
Sample size is set to 10,000, i.e. a set of 10,000 instances is drawn from the positive in-
stances distribution and another set of 10,000 negative instances is drawn from the negative
instances distribution. The sampling procedure is repeated 1,000 times, i.e. 1,000 simula-
tions are performed for each value of θ . We refer to this experiment as the spread experi-
ment.

Figure 3 provides simulation results for the spread experiment. First, note that asymme-
try of the plots is due to the difference in scale parameters used for positive and negative
instances distributions. With a spread parameter of θ = 0.75, the three methods are barely
distinguishable. With a parameter of either θ = 1.50 or θ = 3.00, coverages of the Wald and
Empirical methods drop sharply for low values of the total positive rate. The Agresti method
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Fig. 3 Threshold averaging and single design. Effect of spread between distributions on coverage. Four dif-
ferent values for the location parameter θ are considered. The coverage accuracies of three methods: Agresti
(solid), Wald (dotted), and Empirical (dashed) are plotted against the theoretical total positive rate. Con-
fidence intervals are built with significance level α = 10%. Coverage proportion is obtained from 1,000
simulations. Sample size is 10,000 and target coverage is 90% (dashed)

is somewhat too conservative. With a parameter of θ = 5.00, the pattern is emphasized on
the left-hand side of the plot and appears on the right-hand side as well. Thus, better ac-
curacy is obtained when score distributions of positive and negative instances have strong
overlap, i.e. for low values of θ . This suggests that coverage accuracy is better for “difficult”
problems, an observation that may seem counterintuitive. Digging into a simple numerical
example will help clarify this point.

Consider the bottom right plot of Fig. 3, i.e. with spread parameter θ = 5.0, and a to-
tal positive rate of 0.2. The target theoretical values for the true and false positive rates are
0.3999 and 1.3090e–04, respectively. Threshold is set at 5.9513. In other words, the prob-
ability that a negative instance scores above 5.9513, and thus becomes a false positive, is
1.3090e–04. With sample size of 10,000, the probability of obtaining no such false positive
is (1 − 1.3090e–04)10,000 = 0.2701. In such cases, the Wald confidence interval for the false
positive rate, is [0,0]. Then, the theoretical false positive rate is excluded from the confi-
dence interval and there can be no coverage, i.e. the false positive rate can only be covered
at most 73% of the time. Assuming coverage of the true positive rate is close to its target
of 1 − √

1 − 0.1 = 0.9487, then simultaneous coverage of both true and false positive rates
should be close to the product of these two figures, i.e. 0.692. Indeed, we observe a coverage
of 0.692 for the Wald method.

With θ = 0.75, as in the top left plot of Fig. 3, and total positive rate of 0.2, target
theoretical values for the true and false positive rates are 0.2861 and 0.1139, respectively.
Threshold is set at 2.8681. Here, the probability that no false positive is observed is zero and
this explains why coverage is much better for the Wald method.

The Empirical method exhibits similar patterns. On the other hand, the Agresti method
provides confidence intervals that are too conservative. When no false positives are ob-
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Fig. 4 Threshold averaging and single design. Effect of sample size on coverage. Four sizes are considered.
The coverage accuracies of three methods: Agresti (solid), Wald (dotted), and Empirical (dashed) are plotted
against the theoretical total positive rate. Confidence intervals are built with significance level α = 10%.
Coverage proportion is obtained from 1,000 simulations. Location parameter is θ = 3.0 and target coverage
is 90% (dashed)

served, the confidence interval becomes [0, 4.7539e–04], thereby including the target the-
oretical value of 1.3090e–04 (with θ = 5.0 and total positive rate of 0.2). Thus, whereas
coverage of the Wald and Empirical methods tend to break, the Agresti method becomes
somewhat too conservative.

Note that our interpretation that the results are better for “difficult” problems is related
to how we compare the different plots. Here, we have chosen to compare performances on
the basis of equal total positive rates. This forces us to look at different threshold ranges.
With θ = 0.75, thresholds span the [−7.8430,8.5299] range whereas with θ = 5, this range
widens to [−11.1618,12.7016]. The conclusion that results are better for difficult problems
would certainly differ, had we compared plots on the basis of equal threshold values.

In a second experiment, we consider the effect of sample size on coverage accuracy.
This experiment, as the previous one, appears in Macskassy et al. (2005) and is everywhere
similar to the previous (spread) experiment except for two modifications: (1) the location
parameter no longer varies: it is set to θ = 3.0 and (2) the sample size takes values in
{25,250,2 500,10,000} instead of being fixed at 10,000. This second experiment will be
referred to as the size experiment. Simulation results appear in Fig. 4. Clearly, results im-
prove as the sample size increases, for all three methods considered. Once again in this
experiment, severe coverage breaks affect the Wald and Empirical methods for low and high
values of the total positive rate. In these regions, the Agresti method leads to coverage that
is too conservative.

Finally, as a third experiment, we consider “real” data sets, available through University
of California at Irvine’s repository (Asuncion and Newman 2007). Six data sets are used
and their detailed descriptions appear in Appendix C. We refer to them as Abalone, Adult,
Chess, Covertype, Credit, and Telescope. Using training sets of lengths 1000 (Abalone),
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Fig. 5 Threshold averaging and single design. Coverage accuracy for six real data sets. The coverage ac-
curacies of three methods: Agresti (solid), Wald (dotted), and Empirical (dashed) are plotted against the
theoretical total positive rate. Confidence intervals are built with significance level α = 10%. Coverage pro-
portion is obtained from 1,000 simulations. Sample size is 25 and target coverage is 90% (dashed)

32,561 (Adult), 5000 (Chess), 500 (Credit), and 1000 (Telescope), we trained a logistic
regression model for each of the six data sets. From the set of remaining observations, we
derived the target ROC curve. Then, for each simulation, a test set was obtained by sampling
with replacement from the same set of remaining observations. Note that, when using real
data, score distributions spread and shapes are determined by the data itself, not under our
control. Thus, the only parameter that can fluctuate is size. In Figs. 5 and 6, we consider
sample sizes of 25 and 250, respectively. Results are similar to those obtained previously.
We refer to this as the UCI experiment.

In conclusion, experiments of this subsection show that, within the context of threshold
averaging and single design, the Wald and Empirical methods may lead to severe coverage
breaks. These breaks tend to occur in the ends of the ROC curve, i.e. where the total positive
rate is either low or high but as the sample size decreases or as the score distributions of
positive and negative instances are further apart (a larger spread), coverage breaks affect
a larger portion of the ROC curve. In these situations, the Agresti method avoids coverage
breaks that poise the other two methods but its coverage is above target.

5.2 Threshold averaging and paired designs

In this subsection, we report coverage accuracy results for confidence intervals for the dif-
ference of two ROC curves, at fixed threshold values. Given desired significance level α and
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Fig. 6 Threshold averaging and single design. Coverage accuracy for six real data sets. The coverage ac-
curacies of three methods: Agresti (solid), Wald (dotted), and Empirical (dashed) are plotted against the
theoretical total positive rate. Confidence intervals are built with significance level α = 10%. Coverage pro-
portion is obtained from 1,000 simulations. Sample size is 250 and target coverage is 90% (dashed)

since �T P +
t1,t2

and �FP −
t1,t2

are independent, a confidence interval of size
√

1 − α is defined
for each variable. The intersection of these two confidence intervals is a two-dimensional
rectangular confidence region of desired size 1 − α.

We compare three methods derived according to the same three approaches considered in
the previous subsection. The Agresti method, as applied to the case of threshold averaging
and paired design, is described in Algorithm 3. Wald intervals are easily obtained using
the same algorithm but by setting a ← 0. Third, according to the Empirical method, 100
bootstrap samples are drawn, according to distributions we now define.

The experiment design is similar to the one used for the spread and size experiments
of the previous subsection. Scores are distributed according to a binormal distribution with
scale parameter set to 3.75 for positive instances and 3.00 for negative instances. Confidence
intervals are obtained for a significance level of α = 10%. The location parameters are set as
follows: for positive instances of the first model, we consider two values: θ ∈ {1.0,3.0}. For
negative instances of both models the location parameter is set equal to −θ . For positive in-
stances of the second model it is set to θ +2.0. In order to include some form of dependency
between the scores of the two models, three values of a correlation factor are considered:
ρ ∈ {0.3,0.6,0.9}.

Simulation results appear in Fig. 7. As was the case with single design, coverage ac-
curacy declines as the spread (θ ) parameter increases. The same is true of the correlation
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Fig. 7 Threshold averaging and paired design. Location parameter for positive instances of first model is set
to θ = 1.0 (left) and θ = 3.0 (right). Correlation factor is equal to 0.3 (top), 0.6 (middle) and 0.9 (bottom).
The coverage accuracies of three methods: Agresti (solid), Wald (dotted), and Empirical (dashed) are plotted
against the theoretical total positive rate. Confidence intervals are built with significance level α = 10%.
Coverage proportion is obtained from 1,000 simulations. Sample size is 100 and target coverage is 90%
(dashed)

parameter: as ρ increases, zigzag patterns become more pronounced. Once again, in cases
where coverages of the Wald and Empirical drop, coverage of the Agresti method increases
above target.

We conclude, as we did in the previous subsection, that in situations where the cover-
ages of the Wald and Empirical methods drop, the Agresti method leads to conservative
confidence intervals with coverage above target.

5.3 Vertical averaging and single designs

Out of the four problems we consider in this paper, the case of vertical averaging with single
design clearly stands out as the one that has received the most attention in the literature. In
particular, semi-parametric approaches involving kernel-based methods have drawn much
attention in the statistical literature (e.g. Hall and Hyndman 2003; Hall et al. 2004; Lloyds
and Wong 1999) where the main issue is the selection of the appropriate value for the band-
width parameter.

Again in this subsection, we compare three methods. The first method has been detailed
in Sect. 4.1 by Algorithm 4. As this method uses an Agresti-type adjustment of pointwise
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Fig. 8 Vertical averaging and single design. Coverage accuracy for six real data sets. The coverage accuracies
of three methods: Agresti (solid), Kernel (dotted), and Empirical (dashed) are plotted against the theoretical
total positive rate. Confidence intervals are built with significance level α = 10%. Coverage proportion is
obtained from 1,000 simulations. Sample size is 25 and target coverage is 90% (dashed)

exact bootstrap distributions, we refer to it as the Agresti method. Second, we consider
a kernel-based method. Kernels are Gaussian-shaped with bandwidth parameter chosen as
in Hall et al. (2004). We refer to this as the Kernel method. Third, we report results for
the Empirical method whereby 100 bootstrap samples are drawn from the test set. Confi-
dence intervals are obtained from the quantiles of the distribution of the true positive rate
for a series of fixed values of the false positive rate.

Figures 8 and 9 provide comparative results for the three methods considered here,
using our 6 UCI data sets with test set sizes of 25 and 250, respectively. With a sam-
ple size of 25 (Fig. 8) and may be with the exception of the Chess data set, the Em-
pirical (dashed) method exhibits severe coverage breaks at high false positive rates. The
Kernel method performs better with a single severe break at low false positive rates for
the Abalone data set. But it also leads to substantially overconservative intervals on the
Adult, Chess and Covertype data sets. Overall, the Agresti method performs best with
the most severe break of 0.753 occurring at high false positive rates on the German data
set and the highest coverage of 0.965 at high false positive ratios on the Telescope data
set.

With sample sizes of 250 (Fig. 9), coverage is generally better. Here again, the Empirical
method exhibits severe coverage breaks at high false positive rates, with the exception of the
Chess and German data sets. Severe breaks also affect the Kernel method on the Abalone,
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Fig. 9 Vertical averaging and single design. Coverage accuracy for six real data sets. The coverage accuracies
of three methods: Agresti (solid), Kernel (dotted), and Empirical (dashed) are plotted against the theoretical
total positive rate. Confidence intervals are built with significance level α = 10%. Coverage proportion is
obtained from 1,000 simulations. Sample size is 250 and target coverage is 90% (dashed)

German, and Telescope data sets. Also, on the Adult and Covertype data sets, coverage
reaches 1. The Kernel method behaves somewhat chaotically on the Adult data set. Here
again, the Agresti method fares best with lowest coverage of 0.802 on the German data set
and highest coverage of 0.971 on the Adult data set.

In conclusion, Figs. 8 and 9 show that the Agresti method succeeds in avoiding the most
severe coverage breaks that affect both other methods, particularly the Empirical method.
The Agresti method also avoids producing too high coverage.

5.4 Vertical averaging and paired designs

This subsection presents coverage accuracy results for the case of vertical averaging with
paired designs. The Agresti method as described in Algorithm 5 is compared to its Wald
counterpart and the Empirical method. The experiment of Sect. 5.2 is used for that purpose.
Results appear in Fig. 10. Coverage accuracy is generally too conservative for all three
methods. For very low false positive rates, coverage drops for all methods. For high false
positive rates, coverages for the Wald and Empirical methods drop severely. On the other
hand, coverage for the Agresti method is above target, for high false positive rates.
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Fig. 10 Vertical averaging and paired design. Location parameter for positive instances of first model is set
to θ = 1.0 (left) and θ = 3.0 (right). Correlation factor is equal to 0.3 (top), 0.6 (middle) and 0.9 (bottom).
The coverage accuracies of three methods: Agresti (solid), Wald (dotted), and Empirical (dashed) are plot-
ted against the false positive rate. Confidence intervals are built with significance level α = 10%. Coverage
proportion is obtained from 1,000 simulations. Sample size is 100 and target coverage is 90% (dashed)

The conclusion of this subsection is similar to those of Sects. 5.1 and 5.2: at the expense
of being somewhat too conservative, the Agresti method avoids the important coverage ac-
curacy breaks that poise the Wald and Empirical methods.

5.5 The impact of stratified sampling

Formulas of Sects. 3 and 4 have been obtained assuming stratified sampling. As described
in Sect. 1, this corresponds to assuming that the true underlying proportions of positive and
negative instances are equal to those of the test set. In that case, each sample is in fact
obtained as the union of two independent samples that have been drawn from two disjoint
pools of instances: positive and negative instances of the test set. One may wonder whether
the confidence intervals we have developed so far are robust to changes in the proportions
of true and false positives, i.e. whether confidence intervals obtained assuming stratified
sampling perform as well when the actual sampling is full, i.e. samples are drawn from the
entire test set, a single pool of instances including positive as well as negative instances.

In Fig. 11, we reconsider the size experiment of Sect. 5.1 where threshold averaging
and single design are used. As is apparent, both sampling approaches yield very similar
coverage.
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Fig. 11 Comparison of full and stratified sampling. The size experiment with threshold averaging and paired
design (Sect. 5.1) is used to compare the two sampling approaches. Samples are drawn using stratified (dotted)
and full (solid) sampling. Target coverage of 90% is also plotted (dashed) against total positive rate

6 Conclusion

In this paper, we derived pointwise exact bootstrap distributions of ROC curves (single de-
sign) and for the difference between two ROC curves (paired design). Paired design is of
particular importance to the machine learning community as it directly pertains to the is-
sue of model selection. Paired design has received very little attention and by addressing it
in great details in this paper, we provide new analysis tools for machine learning research.
Combining designs with the two averaging techniques considered (threshold and vertical),
leads to the four problems that were addressed. Using these pointwise exact bootstrap distri-
butions and building upon previous work, mainly Agresti and Coull (1998) and Agresti and
Min (2005), confidence intervals and regions were obtained.

For the problem involving vertical averaging and single design, by far the one that has
received most attention in the literature, Wald-type confidence intervals and a Kernel-based
semi-parametric approach (Hall et al. 2004) were considered. On this specific problem,
the suggested (Agresti) approach was shown to outperform both the Wald and Kernel ap-
proaches as the former had the tightest range of observed coverage values around target
coverage. For the three other problems, the proposed Agresti approach was compared to
Wald confidence intervals derived from pointwise exact bootstrap distributions and an ap-
proach that consists of actually taking a certain number of bootstrap samples of the test set.
We referred to this later approach as Empirical. On all three problems, both Wald and Em-
pirical approaches were shown to be poised with severe drops in coverage accuracy. These
coverage breaks can be avoided by using the proposed approach. Unfortunately, in these
cases, the Agresti approach obtains coverage that is somewhat above target. For threshold
averaging, coverage accuracy was plotted against total positive rate, thereby allowing us to
perform comparisons that are independent of score scales.
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In essentially all of the literature on ROC curves, confidence intervals are derived assum-
ing fixed proportions of positive and negative instances, what we referred to as stratified
sampling. This element is never questioned, although is does represent a departure from
real-world applications. In reality, the observed test set proportions may deviate from the
true underlying population proportions. We relaxed this hypothesis of fixed proportions by
considering full sampling whereby bootstrap samples of varying proportions are drawn from
the test set in order to derive confidence intervals. In our experiments, the use of either sam-
pling technique had marginal impact on coverage, a result that we consider as reassuring.

In the future, we wish to investigate algorithmic accelerations through approximations
of the Agresti approach, when applied to the case of vertical averaging and paired design.
Also, for some applications, the number of instances that may be labelled and treated as
positive may be limited, due to budget constraints. This suggests that a different averaging
technique may be appropriate, one that derives confidence intervals given fixed values for
the total positive rate, rather than fixed thresholds or fixed false positive rates.

Appendix A: Probability of dominance for threshold averaging

In this section, we derive exact stratified bootstrap probabilities that scoring model 1 domi-
nates model 2, given that model 1 and model 2 assign a positive label to all instances with
scores greater or equal to t1 and t2, respectively.

Let n+
t1,t2

be the number of positive instances in the test set with first score greater or
equal to t1 and second score greater or equal to t2. Also, let n+

t1,t2
(n+

t1,t2
) be the number of

positive instances with first score greater or equal to (below) t1 and the second score below
(greater or equal to) t2. Finally, n+

t1,t2
represents the number of positive instances with both

scores below their respective thresholds. Thus, the following relationship holds:

n+ = n+
t1,t2

+ n+
t1,t2

+ n+
t1,t2

+ n+
t1,t2

.

Let p+
t1,t2

= n+
t1,t2

/n+ be the probability that a positive instance drawn at random from the test
set has both scores above their respective thresholds. Similarly, p+

t1,t2
= n+

t1,t2
/n+, p+

t1,t2
=

n+
t1,t2

/n+, and p+
t1,t2

= n+
t1,t2

/n+.

Consider a random bootstrap sample of size m+ drawn from the set of n+ positive in-
stances of the test set. Let M+

t1,t2
, M+

t1,t2
, M+

t1,t2
and M+

t1,t2
be the random variables for the

numbers of instances, defined similarly as above but for the set of instances of the bootstrap
sample. We have,

m+ = M+
t1,t2

+ M+
t1,t2

+ M+
t1,t2

+ M+
t1,t2

.

Then, the difference in true positive rates is

�T P +
t1,t2

= T P +
t1

− T P +
t2

= M+
t1,t2

+ M+
t1,t2

m+ − M+
t1,t2

+ M+
t1,t2

m+

= M+
t1,t2

− M+
t1,t2

m+ . (8)

According to the stratified bootstrap sampling approach, m+ is fixed and the difference in
true positive rates depends on the two values M+

t1,t2
and M+

t1,t2
which have trinomial joint
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distribution:

Pr{M+
t1,t2

= i,M+
t1,t2

= l} =
(

m+
i, l

)
(p+

t1,t2
)i(p+

t1,t2
)l(p+

t1,t2
+ p+

t1,t2
)m+−i−l

= b(u, i,m+) · b(v, l,m+ − i) (9)

where
( n

a,b

) = n!
a!·b!·(n−a−b)! , u = p+

t1,t2
, and v = p+

t1,t2
1−p+

t1,t2

so that,

Pr{�T P +
t1,t2

= 0} =
	m+/2
∑

i=0

b(u, i,m+) · b(v, i,m+ − i), (10)

Pr{�T P +
t1,t2

≥ 0} =
	m+/2
∑

i=0

b(u, i,m+) · B(v, i,m+ − i)

+1 − B(u, 	m+/2
,m+). (11)

Similar results are obtained for negative instances and f1,t is obtained using (2). Using (10)
and (11), we obtain probabilities Pr{�T P +

t1,t2
≥ 0}, Pr{�FP −

t1,t2
≤ 0}, Pr{�T P +

t1,t2
= 0},

Pr{�FP −
t1,t2

= 0} in linear time. Assuming we wish to evaluate the probability of dominance

for h different thresholds, this leads to an O(n · h) algorithm.
Finally, from (9), first and second moments for the distribution of �T P +

t1,t2
are easily

obtained:

E{�T P +
t1,t2

} = p+
t1,t2

− p+
t1,t2

,

Var{�T P +
t1,t2

} = p+
t1,t2

+ p+
t1,t2

− (p+
t1,t2

− p+
t1,t2

)2

m+ .

Values p+
t1,t2

,p+
t1,t2

,p+
t1,t2

,p+
t1,t2

are computed for each pair of thresholds and this is per-

formed in O(n · h) time.
Note that a naive approach that considers scores of different models as independent

random variables leads to the same expected value for �T P +
t1,t2

but a larger variance
VarN {�T P +

t1,t2
}:

VarN {�T P +
t1,t2

} = Var{T P +
t1

} + Var{T P +
t2

}

= (p+
t1,t2

+ p+
t1,t2

)(p+
t1,t2

+ p+
t1,t2

)

m+

+ (p+
t1,t2

+ p+
t1,t2

)(p+
t1,t2

+ p+
t1,t2

)

m+

= Var{�T P +
t1,t2

}

+2 · p+
t1,t2

· p+
t1,t2

− p+
t1,t2

· p+
t1,t2

m+ . (12)

This last result has an intuitive interpretation: larger positive correlations between scores
of two models lead them to disagree less often so that values for p+

t1,t2
and p+

t1,t2
should be

smaller, relative to p+
t1,t2

and p+
t1,t2

, and the variance overestimation should be greater.
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Appendix B: Distribution of �T P +
r for vertical averaging

In this section, we derive the exact stratified bootstrap distribution of the difference in the
true positive rates between two scoring models, given fixed false positive rate r . From this
distribution, confidence intervals can be built. In the first part of the section, we obtain the
joint (exact stratified bootstrap) distribution of the two model thresholds, given false positive
rate r . Then, conditional on these threshold values, the distribution of the difference between
the true positive rates follows.

Let N −
k,j be the set of negative instances with first score greater or equal to s1,k and second

score greater or equal to s2,j . Similarly, N −
k,j

(N −
k,j

) denotes the set of negative instances with
first score below (greater or equal to) s1,k and second score greater or equal to (below) s2,j

and N −
k,j

is the set of negative instances with first score below s1,k and second score below

s2,j . Let n−
k,j , n−

k,j
, n−

k,j
, n−

k,j
be the cardinalities of the four sets defined above. Finally,

let p−
k,j = n−

k,j /n− be the probability that a negative instance drawn at random from the
test set has first and second scores greater or equal to s1,k and s2,j , respectively. Similarly,
p−

k,j
= n−

k,j
/n−, p−

k,j
= n−

k,j
/n−, and p−

k,j
= n−

k,j
/n−.

Given fixed false positive rate r , let T −
1,r and T −

2,r be the random variables for the thresh-
olds obtained, according to the first and second models, for random stratified bootstrap sam-
ple x− ∈ X −, of size m−, drawn from the n− negative instances of the test set. We are
interested in evaluating the joint probability that T −

1,r ≥ s1,k and T −
2,r ≥ s2,j . Surely, these

two conditions are simultaneously satisfied if at least r negative instances, have been chosen
from set N −

k,j . There is also the possibility that less than r instances have been drawn from
set N −

k,j but that sufficiently many have been drawn from sets N −
k,j

and N −
k,j

so that both
conditions are still respected. Thus,

Fr,k,j = Pr{T −
1,r ≥ s1,k, T

−
2,r ≥ s2,j }

=
m−∑

l=r

b(p−
k,j , l,m

−) +
r−1∑

l=(2r−m−)+

b(p−
k,j , l,m

−) · C−
k,j (l, r) (13)

where (x)+ = max(0, x) and C−
k,j (l, r) is a sum of trinomial coefficients:

C−
k,j (l, r) =

m−−r∑

a=r−l

m−−l−a∑

b=r−l

(
m− − l

a, b

) (p−
k,j

)a(p−
k,j

)b(p−
k,j

)m−−l−a−b

(p− − p−
k,j )

m−−l
(14)

with C−
k,j (r, r) = 1. We define F0,k,j = 1 and Fm−+1,k,j = 0 for all values of k and j . From

(13), we obtain the following recursive relationship for r = 1,2, . . . ,m−:

Fr+1,k,j = Fr,k,j −
r∑

l=(2r+2−m−)+

b(p−
k,j , l,m

−)[C−
k,j (l, r) − C−

k,j (l, r + 1)]

−b(p−
k,j ,2r − m− + 1,m−) · C−

k,j (2r − m− + 1, r) · I{2r+1−m−≥0}

−b(p−
k,j ,2r − m−,m−) · C−

k,j (2r − m−, r) · I{2r−m−≥0} (15)

where I{x≥0} is 1 if x ≥ 0 and zero otherwise. The difference between trinomial coefficients
simplifies to the following:

C−
k,j (l, r) − C−

k,j (l, r + 1)
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= b

( p−
k,j

p− − p−
k,j

, r − l,m− − l

) m−−r∑

b=r−l

b

( p−
k,j

p−
k,j

+ p−
k,j

, b,m− − r

)

+b

( p−
k,j

p− − p−
k,j

, r − l,m− − l

) m−−r∑

a=r−l

b

( p−
k,j

p−
k,j

+ p−
k,j

, a,m− − r

)

−b

( p−
k,j

p− − p−
k,j

, r − l,m− − l

)
· b

( p−
k,j

p−
k,j

+ p−
k,j

, r − l,m− − r

)
. (16)

Binomial coefficients that appear in the summations of (16) are independent of l but the
summation itself includes additional terms as l increases. Thus, the sum of terms can be
accumulated so that Fr,k,j − Fr+1,k,j is computed in linear time. The last two terms of (15)
can be computed in constant time. If 2r + 1 − m− ≥ 0, the next to last term is given by

(
m−

m− − r,m− − r − 1

)
(p−

k,j )
2r−m−+1(p−

k,j
· p−

k,j
)m−−r−1

×[(m− − r)n−
k,j

+ n−
k,j

+ n−
k,j

] (17)

and if 2r − m− ≥ 0, the last terms simplifies to

(
m−

m− − r,m− − r

)
(p−

k,j )
2r−m−

(p−
k,j

· p−
k,j

)m−−r . (18)

Using (15), (16), (17), and (18), values of Fr,k,j are obtained for all values of r , k and j .
Each probability Fr,k,j is computed in linear time so that computing all of them takes time
O(n4).

Then, the probability density function fr(k, j) is easily obtained as

fr(k, j) = Pr{T −
1,r = s1,k, T

−
2,r = s2,j }

= Fr,k,j − Fr,k,j−1 − Fr,k−1,j + Fr,k−1,j−1 (19)

and this concludes the first part of the section.
We now turn to the distribution of the difference in true positive rates between two scoring

models, conditional on threshold values T −
1,r = s1,k and T −

2,r = s2,j . Let n+
k,j , n

+
k,j

, n+
k,j

, n+
k,j

be defined as counts of the positive instances as n−
k,j , n

−
k,j

, n−
k,j

, n−
k,j

were defined for the neg-

ative instances. Dividing these counts of positive instances by n+, we obtain the associated
probabilities p+

k,j , p
+
k,j

, p+
k,j

, and p+
k,j

. Finally, let M+
k,j ,M

+
k,j

,M+
k,j

,M+
k,j

be the correspond-

ing counts for sample x+ ∈ X +. Let T P +
1,r and T P +

2,r be the true positive rates for the two
scoring models. Their difference is then

�T P +
r = T P +

1,r − T P +
2,r

=
M+

k,j + M+
k,j

m+ −
M+

k,j + M+
k,j

m+

=
M+

k,j
− M+

k,j

m+ . (20)
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According to the stratified sampling procedure, m+ is fixed and the difference in true
positive rates depends on the two values M+

k,j
and M+

k,j
with trinomial joint distribution:

Pr{M+
k,j

= i, M+
k,j

= l} =
(

m+
i, l

)
(p+

k,j
)i(p+

k,j
)l(p+

k,j + p+
k,j

)m+−i−l . (21)

The thresholds conditional distribution of �T P +
r is a sum of some of these trinomial prob-

abilities. For d ≥ 0, we have:

gk,j (d) = Pr{�T P +
r = d/m+|T −

1,r = sk, T
−

2,j = sj }
= Pr{M+

k,j
= i, M+

k,j
= i − d}

=
m+∑

i=d

(
m+

i, i − d

)
(p+

k,j
)i(p+

k,j
)i−d(p+

k,j + p+
k,j

)m+−2i+d (22)

and for d < 0, the summation index i ranges from 0 to m+ −d , inclusively. There are 2m+ +
1 different possible values for the difference d/m+: −1, (−m+ + 1)/m+, . . . ,−1/m+,

0,1/m+, . . . , (m+ − 1)/m+,1. Obtaining the conditional distribution gk,j (d) for all val-
ues of d takes quadratic time. Repeating the procedure for all values of k and j takes time
O(n4). With these values, the unconditional distribution of �T P +

r is obtained as

hr(d) =
∑

k,j

fr(k, j) · gk,j (d). (23)

Computing this distribution for all values of r and d takes overall computational time O(n4).
Algorithm 5 summarizes the steps described in this section in order to obtain the distribution
of �T P +

r .
An alternative is to use (21) in order to derive the first two conditional moments of

�T P +
r :

μ
′
k,j = E{�T P +

r |T −
1,r = sk, T

−
2,r = sj }

= p+
k,j

− p+
k,j

, (24)

μ
′′
k,j = E{(�T P +

r )2|T −
1,r = sk, T

−
2,r = sj }

= (1 − 1/m+)(p+
k,j

− p+
k,j

)2 +
p+

k,j
+ p+

k,j

m+ . (25)

Computing (24) and (25) for all values of k, j ∈ {1,2, . . . , q} takes quadratic time. Then,
combining these threshold conditional expectations with threshold distributions (15)–(19)
in order to obtain unconditional moments and this is done, for each false positive rate, in
quadratic time:

μ
′
r = E{�T P +

r } =
∑

k,j

fr(k, j) · μ′
k,j , (26)

μ
′′
r = E{(�T P +

r )2} =
∑

k,j

fr(k, j) · μ′′
k,j . (27)
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Repeating this procedure for all false positive rate values therefore takes cubic time. Using
these unconditional moments, Gaussian distributions can be fitted in order to obtain confi-
dence intervals for �T P +

r . Here again, although faster, the algorithm is dominated by the
time spent computing the joint threshold distribution so that the overall computational time
remains O(n4).

Appendix C: UCI data sets

In this section, we describe how the six UCI repository data sets were preprocessed and
split before obtaining the experimental results described above, in Sect. 5. Before we do
so, let us first describe the technique of one-hot encoding. One-hot encoding is used to
obtain a numerical representation for a categorical variable. A variable with n categories
is represented by (mapped onto) a vector of n − 1 binary variables. One of the categories,
the “base” category, is associated to the null vector (a vector of n − 1 zeros). Each of the
other n − 1 categories is associated to a vector for which only one of the binary variables is
equal to one while all other binary variables are equal to zero, thus the term one-hot. This
technique has been used to preprocess some of the variables of the data sets which we now
describe.

– Abalone: the purpose of this data set is to predict the age of an abalone from a set of 8
attributes. The first attribute, sex, was one-hot encoded. Other attributes are all numerical
and were left unchanged. For the purpose of binary classification, we split the data set
between young (<10 years-old) and old (≥10 years-old) abalones.

– Adult: based on the 1994 census data, predict whether an individual’s income is above
$50,000. Categorical data was one-hot encoded. The original data set is already split be-
tween a training set (32,561 observations) and a test set (16,281 observations). We used
the same split for our experiments.

– Chess: a database of chess endgames involving the white king and white rook against the
black king. The goal is to identify whether a particular configuration of the three pieces
will lead to a white win or a draw between the two players, assuming optimal moves
on both sides. In the original data set, wins are categorized according to the number of
moves necessary before the end of the game but, for the purpose of binary classification,
we considered wins as a single class. Rows and columns were one-hot encoded and since
the observations are ordered, we randomly shuffled them. The first 5,000 observations
were used to train the models and the remaining 23,056 were used as a test set.

– Covertype: the objective of this data set is to predict forest cover type of undisturbed
forests, given a set of 54 attributes. The original data set includes seven different cover
types but, since Spruce-Fir (211,840) and Lodgepole Pine (283,301) make up for more
than 80% of the observations, only these two types were retained for the purpose of binary
classification. All 54 attributes of the original data set are numerical. The first 5,000 ob-
servations were used to train the models and the remaining 405,141 were used for testing.

– Credit: German credit approval data set. Given a set of 24 numeric attributes, the task is
to discriminate individuals considered to have good credit from those with a bad credit
record. The first 500 observations were used to train models and the remaining 500 were
used as a test set.

– Telescope: this is the Major Atmospheric Gamma Imaging Cherenkov Telescope project
(MAGIC) data set. The purpose is to discriminate between electromagnetic shower im-
ages initiated by primary gammas (signal) from hadronic shower images (background
noise) caused by cosmic rays in the upper atmosphere. All 10 attributes are numeric.



Mach Learn (2010) 78: 103–136 135

Table 3 UCI’s data sets. Starred (*) data sets required shuffling since their on-line version is sorted

Data Set Training set Test set Total

Positives Negatives Positives Negatives

Abalone 410 590 1,686 1,491 4,177

Adult 7,841 24,720 3,846 12,435 48,842

Chess* 4,505 495 20,755 2,301 28,056

Covertype 2,739 2,261 280,562 209,579 495,141

Credit 364 136 336 164 1,000

Telescope* 328 672 11,660 6,360 19,020

Rows were shuffled since the data set is sorted. The first 1,000 observations were used for
model training.
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