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Abstract We examine the class of multi-linear representations (MLR) for expressing prob-
ability distributions over discrete variables. Recently, MLR have been considered as in-
termediate representations that facilitate inference in distributions represented as graphical
models.

We show that MLR is an expressive representation of discrete distributions and can be
used to concisely represent classes of distributions which have exponential size in other
commonly used representations, while supporting probabilistic inference in time linear in
the size of the representation. Our key contribution is presenting techniques for learning
bounded-size distributions represented using MLR, which support efficient probabilistic in-
ference. We demonstrate experimentally that the MLR representations we learn support ac-
curate and very efficient inference.

Keywords Learning probability distributions - Multi-linear polynomials - Probabilistic
inference - Graphical models

1 Introduction

A significant fraction of the work in Artificial Intelligence deals with probabilistic in-
ference which necessitates reasoning in terms of representations of probability distribu-
tions. In the Machine Learning community, graphical models like Bayes Nets (BN) (Pearl
1988) have received much attention in representing probability distributions. BN provide
an intuitive and comprehensible way of representing probability distributions as it pro-
vides an easy way to express probabilistic dependencies. However, inference with these
representations is known to be computationally hard—inference in BN is #P-complete
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(Roth 1996). Although there has been much work on inference techniques in BN like
conditioning (Darwiche 2001), variable elimination (Shachter et al. 1980; Dechter 1996;
Zhang and Poole 1996), jointree based approaches (Pearl 1988; Jensen et al. 1990), and
arithmetic circuits based techniques (Darwiche 2003), inference in BN still remains a hard
problem in practice. To alleviate this problem, several approximate inference techniques
have been developed like Gibbs sampling (Gilks et al. 1995), variational inference (Wain-
wright and Jordan 2008), and loopy belief propagation (Yedidia et al. 2005). While there are
several cases in which these methods give accurate and fast results, providing performance
and accuracy guarantees in general is difficult.

In this paper, we present a representation of distributions over categorical variables which
facilitates fast inference and learning. We represent the distribution explicitly in the form of a
multi-linear polynomial which provides exact inference in time linear in its size, and develop
algorithms that directly learn the distribution in the multi-linear form.

1.1 Related work

Most of the recent work using probability distributions to support inference focuses on
learning a model from the data rather than explicitly constructing the distributional represen-
tation. Since most of the works that makes use of representations of probability distributions
for inference is concerned with graphical models, this has been the focus also of the learning
work. In most cases, however, the resulting representation is still hard to make inferences
with. While the use of graphical models was initially motivated by comprehensibility, this
issue seems less important when the representation is learned from data, unless a restricted
distributional representation is learned.

Initial works in learning BN (Heckerman et al. 1995) penalize the number of edges and
parameters to simplify the resulting representation and avoid overfitting, but this doesn’t
directly affect the complexity of inference. A large class of approaches for generating BN
which provide efficient inference rely on either mixture models (Meila and Jordan 2000)
(limited representation capacity) or thin tree width networks (Srebro 2003) (computation-
ally hard for graphs with large tree widths). Recently, there has been work by Lowd and
Domingos (2008) which learns a Bayes net while directly penalizing the complexity of the
associated arithmetic circuit. Another approach for representing probability distributions
which particularly takes benefit of context specific independence is based on Probabilistic
Decision Graphs (PDG) (Jaeger et al. 2006). However, similar to BN, PDG are not guaran-
teed to be efficient in the most general cases.

Given that probabilistic inference with MLR is efficient, in this paper, instead of using
graph-based representations, we study the problem of directly learning multi-linear polyno-
mial distributions. The class MLR of multilinear probability distributions has already been
explored by Castillo et al. (1996, 1997) who show that a probability distribution represented
over BN can be represented as a multi-linear polynomial over network parameters and use
MLR for symbolic probabilistic inference in BN. Darwiche studies (e.g., Darwiche 2003)
arithmetic circuits as an alternative representation for BN, and computes a multi-linear poly-
nomial called the Network Polynomial for the distribution in order to facilitate inference.

All these works consider MLR as an intermediate representation within the BN frame-
work, whereas we consider it independently as a powerful and expressive class. Since infer-
ence in MLR has a direct linear relation with the size of the polynomial, we present tech-
niques to learn bounded-size MLR distributions. Moreover, to the best of our knowledge,
this is the first attempt at directly learning distributions as MLR.
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2 Preliminaries

Consider the following setting: we have a set of n random variables X = {X, X», ..., X,;}
such that the variable X; takes labels from a finite set S; = [«;] where [k;] is the set of all
natural numbers from 1 to «;. Now, any distribution P(X’) over X’ can be trivially written as

PX) = Z Ps1.52.....m HIXJ:” M
j=1

S1E€S1,52€82,....5n€Sy

where pg, 5,5, = Pr(X1=51,X,=155,...,X,=s,) and IXJ.:JJ. is an indicator variable
such that

1 ifXj:Sj,

Ix. s, = ]
0 otherwise.

J=5j

In the above form of representing P (X), each term contains exactly one indicator variable
corresponding to each X; € X. Also, the size of each term in this representation is n and
the number of terms is exponential in n. This is an explicit way of writing the probabil-
ity distribution over these variables and any probability distribution over discrete variables
(including BN) can be expressed in this form.

We define the Multi-Linear Representation, MLR, of a probability distribution as a
multinomial over the indicator variables Zy,_,, such that each term in the multinomial has at
most one indicator variable corresponding to any variable X; € X'. This form of representa-
tion is called multi-linear representation because it is linear in terms of indicator variables of
any variable X; € X’ if the remaining variables are kept fixed. The distribution defined in (1)
is clearly represented as an MLR thus demonstrating that MLR is a universal representation
(Darwiche 2003).

A distribution D over X’ can be specified as an MLR as follows. Let D = (R, C), where
R ={ry,r,...,r} is the collection of the terms (i.e. monomials) in the polynomial and
C ={ci,cr,...,c;} € R!is the set of the coefficients of the terms (later on we’ll see that not
any arbitrary set of coefficients from R’ works for a multi-linear polynomial to be a valid
distribution). We can specify each term r; as r; = ]_[;f:1 Ixj=si;» where s5;; € S; U{0} (0 being
a dummy state, with s;; = 0 implying that r; doesn’t depend on X ;) and Z is an indicator
function such that

Ix,

1 ifSij=00er=Sij,
= 0 otherwise.

Thus the probability distribution Pp(X’) can be specified as

Pp (X) = Xt:ciri ZXI:Ci
i=1

i=1 =

n

IXj =sjj* (2)
1

In case each variable in X’ is Boolean, that is, the domain of each X; € X is {0, 1}, we
can write any distribution as an MLR in an even simpler way as

t n
PpX)=) a[[X} (1—x;)%

i=1  j=1
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where s, s,-’j € {0, 1} and s;; + sl-’j < 1. Thus Pp can in fact be written as a multi-linear
polynomial over the variables themselves. For example P(X) = ﬁ( 1+ x; 4+ xp — x1x3) is
an MLR distribution over Boolean random variables X, X,, X5. Under this distribution, the
probabilities of the events {X; =1, X, =0,X3=1}and {X;, =0,X, =1, X3 =1} are ]1—4
and 1, respectively.

3 Representational issues: validity and compactness

In this section, we consider two important questions regarding MLR. First, pertaining to the
usefulness of the representation: how compactly can a distribution be represented in MLR?
Second, pertaining to the learnability: what constraints must a multi-linear polynomial sat-
isfy in order to be a probability distribution?

3.1 Compactness

As mentioned in the last section, the MLR representation of some distribution may require
exponentially many terms. However, several interesting families of distributions can be com-
pactly represented as MLR.

Consider, for example, the class of all distributions with terms of size equal to k. Clearly
the number of such terms is bounded by (’;)mk where m is the maximum cardinality over
the domain sets of variables. In case of Boolean variables, it is bounded by (Z) 2k Thus if k
is sub-logn then any distribution in this class has size polynomial in n. Note that this repre-
sentation does not have any independence or conditional independence assumptions. In fact,
there exist polynomial-size distributions in this class in which no conditional independence
assumption between any subsets of X" hold.

To illustrate the above point we consider a distribution defined over a set of Boolean
random variables X as
21 Xi

n2n-1 °
It is easy to see that G is a valid probability distribution as it is non-negative for all instances
and the sum of probabilities over all instances is 1. Now consider the conditional probability
distribution of X, given X; = x;, X, = x2, ..., X = x;. We get that

G (X) =

Pr(X, =x,IX1=x1,Xo=x2,..., X5 =x1)

C Pr(Xy=x, Xi=x1, Xo=x2, ..., X = xp)
B Pr(Xi=x1,Xo=x2,..., Xx =xp)

(T —1—k2! ey

=1- :
(Ximixi) + = k2! (Ximi) + (1 = k2!

Clearly the above function is not independent of the value of k - it varies as k changes.
Since the distribution is symmetric we can claim that the distribution of any variable in
X conditioned on a subset of X — {X,,} varies with the size of that subset. In other words,
conditioned on any X; C X —{X,}, X,, is notindependent of any X, € X — X| —{X,}, X» #
¢. This, in particular, implies that the corresponding BN representation in its moralized form
is a complete graph and inference is thus exponential in complexity. Hence we notice that
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there are distributions which can be represented compactly in MLR but have no efficient
representation in BN-based approaches.

Theorem 1 An MLR representation of a probability distribution can be exponentially more
compact than the corresponding Bayesian Network representation.

3.2 Validity

This subsection is important for learning in MLR. Consider a distribution Pp(X’) repre-
sented as MLR:

t
Pt =Y e =3c, l_[fx,:s,,
i=1 j=1

i=1
In this form, for Pp, to represent a valid probability distribution, the coefficients cannot take

arbitrary values. In particular, given a multi-linear polynomial P, it is easy to see that P is a
valid distribution iff it satisfies

P(x)=0 Vxe§ xSH x---x8, 3)
and Z P(x)=1. “4)

x€ST XSy X xSy

For the purpose of learning, we would want the above two properties to be easily verifiable
or “imposable”. Given any multi-linear polynomial, constraint (4) is easy to impose via
normalization. To see this, consider w.l.0.g. the case when X consists of Boolean random
variables. We are given a multi-linear polynomial:

P(x)= Zc,l_[x 1—x b

with b;;, b;; € {0, 1} and b;; + b; ; < 1. Condition (4) yields the constraint

ij» ij

t
Yo Pw=1=) 2 Tt =

xef0,1)" i=1

To impose this condition, we can simply divide P by a normalization constant Z =
Zle c,»2"727:1(b’7 i) which is easy to compute. Thus, the normalization condition can
be verified or imposed in time linear in the size of P (x). However, verifying the positivity
constraint (3) is not trivial:

Theorem 2 Verifying positivity for an arbitrary multi-linear polynomial is NP-hard.

Proof We prove this theorem by reducing 3-SAT to positivity verification. The 3-SAT prob-
lem can be stated as: Given a set C of clauses defined over a set of boolean variables X" such
that the size of each clause in C is no greater than 3, does there exist an assignment for vari-
ables in X such that it satisfies all the clauses in C? W.l.0.g., we can assume that each clause
contains at most one literal corresponding to each variable in X'. Consider C’ = {c|c € C},
the set of terms obtained by negating all the clauses in C. So 3-SAT can be equivalently
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posed as: Does there exist an instantiation of variables in X" that does not satisfy any of the
terms in C’? Now consider a polynomial P¢s defined as

Por = (Zd) —%

JeC’

where we treat the and operation in the terms in C’ as a product—clearly this leaves the value
of each term unchanged. P¢s is a multi-linear polynomial over X’ as each term contains at
most one literal corresponding to each variable in X'.

We claim that P does not satisfy positivity iff C is satisfiable. To see this, observe that
if Pcr satisfies positivity then it must be that for all possible instantiations of X, at least
one of the terms in C’ must be satisfied implying that the corresponding clause in C is not
satisfied and thus C is not satisfiable. For the other way, if Pc» doesn’t satisfy positivity that
is there exists an instance x € X’ such that Pc/(x) < O then it must be that x doesn’t satisfy
any of the terms in C’ and thus satisfies all the clauses in C.

Since Pcr can be constructed in time polynomial in the size of C’ (and hence C), the
above implies that we have obtained a polynomial time reduction of 3-SAT to positivity
verification. This proves that the latter is also NP-Hard. ]

The above implies that learning a multi-linear distribution with arbitrary coefficients
is a hard problem. One can alleviate this problem by restricting C to the set (Rt U
{0})! thus trivially satisfying constraint (3). However, by imposing this restriction we
lose out on compactness as it may also expand the structure. For example with this re-
striction, we must express the distribution %(1 — X1X2) over Boolean variables x; and
X, as %((1 — x1)(1 — x2) + x1 + x2). In this paper we assume the coefficients to be
positive during learning. The resulting blow-up of the MLR is discussed further in a
forthcoming paper. Since in the proof of Theorem 1, the example has positive coef-
ficients, the compactness result still holds for MLR distributions with positive coeffi-
cients.

4 Inference

In the next two sections, for the sake of simplicity and w.l.0.g., we assume that all the random
variables in X’ are Boolean unless otherwise mentioned. We briefly review the marginal and
conditional inference techniques in MLR and show that marginal and conditional inference
queries over a multi-linear distribution can be answered in time linear in the size of the
distribution. For details, the reader can refer to Castillo et al. (1996), Darwiche (2003).

Consider the task of computing a marginal distribution over a set of variables X’ =
{X1, X5..., Xx} € X. The marginal distribution Pp(X’) over X’ can be obtained by sum-
ming over the remaining variables as:

Pp (X') = Z XI:C" ﬁX;z/ (1 _ Xj)s'{j

x/x =1 j=1

k
— iCizn*|X/\*Z;":k+1(»Yi_,'+ij) 1_[ X:Ju (1 _ Xij)Sij .

i=1 j=1
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Clearly, the marginal distribution obtained has degree smaller than the original distribution
and hence is also a multi-linear polynomial. Moreover, it can be obtained from the original
distribution in time O(t * n) where ¢ is the number of terms in Pp and 7 is the number of
variables in X’ (i.e. linearly in the size of Pp(X)).

Given evidence e about X’ C X, denote by Pp(X|X’ = e) the distribution obtained by
substituting X’ = ¢ in Pp(X). Procedure for obtaining the conditional distribution follows
easily from that of marginal distribution. Given evidence e about X; € X and a set X, C
X /Xy, let Pp(X;| X, = e) be the conditional distribution of X, given X = e¢. We can write

P(XzUX1|X1 =€)
P (XX =e)

Pp (XX =e) =

P(X, U X)) and P(X)) can be found in time O(t * n) as described above and hence the
conditional distribution Pp(X>|X) = e) can be computed in O (¢ * n) time. Also, since
P (X)X, = e) is a function of only e, Pp(X,|X; = e) is an MLR for a given e.

5 Learning

We now describe the key contribution of the paper. Learning includes two basic components:
learning the structure of the distribution that is learning which terms are present in the MLR,
and learning the coefficients of each term.

5.1 Learning the terms

One trivial way to write the terms of a distribution is to consider all possible terms of size n;
however, this clearly results in an exponentially large distribution. Our task is to perform
density-estimation and thus we approximate the structure of the distribution with bounded
number of terms. One way to restrict the number of terms is to restrict the structure to consist
only of terms of size k. This assumption results in polynomial number of terms with respect
to n for a small enough k and the question is—how good a representation this can be and
how to learn it.

Another way of restricting the number of terms is to use some prior expertise to provide
relevant terms. This expertise could be human provided or can be generated using heuristic
methods. In this paper, we describe one particularly useful heuristic approach for estimating
the terms in the distribution based on the idea of frequent patterns from data-mining. First,
we consider a few definitions from the data-mining literature.

Given a set of items /¢ and a database DB = {Record|Record C It}, the support of any
subset It C It can be defined as

support(It') = |{Record|Record € DB, If C Record}|.

Given a support threshold, supp, we define the set of frequent pattern Freq(DB, supp) over
DB as

Freq(DB, supp) = {It' C It|support(It") > supp}.

However, to avoid redundancy between terms it makes more sense in our case to pick the
largest possible frequent patterns satisfying the support constraint rather than all possible
frequent patterns. We define:

Max-Freq(DB, supp) = {If |support(It') > supp, BIt’ D It , support(It") > supp).
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However the problem of finding max-frequent patterns is NP-hard (Gunopulos et al. 2003)
and thus we instead use closed patterns defined as:

Closed(DB, supp) = {If |support(It') > supp, It D It , support(I") = support(It')}.

For more details on frequent itemset mining, the interested reader can refer to Agrawal et al.
(1993), Pasquier et al. (1999), Burdick et al. (2005). Essentially, we consider the frequently
occurring patterns in the data as a good predictor of the underlying distribution and use
them to estimate the distribution in the MLR form. To summarize this approach, we convert
the given training data into a database of items (ensuring each feature value becomes a
distinct item) and from that mine closed patterns with high enough support. We then use the
resulting closed patterns to obtain the terms of the MLR distribution. The selected terms are
likely to be sufficient to represent the probability mass of the observed examples and support
generalization (as we only mine the most frequent patterns). The crucial part here is to pick
the right threshold such that the obtained set of terms is not too large and is yet expressive
enough.

5.2 Exact learning of the coefficients

Having estimated the set of terms R of the distribution D, the next step is to learn the “most
likely” set of coefficients C*, given the constraints. We are given a set of m training examples
Y ={Y'!, Y% ..., Y™} which are instances over Boolean variables. The distribution as MLR
looks like

t
P(X:CO)=) c ]i[xj"f (1-x
i=1 j=1

Our task is to learn the maximum likelihood estimate for C. Thus assuming that the samples
are drawn independently, we maximize

P(Y|C)—]_[P (x=Y'IC) = ]_[ Z 0 ( f)u ,
I=1 =1 \ i=1 ]:1
subject to the following constraints on the coefficients:
c; > 0, Vi
and the normalization constraint:
> Yalla-mi=1
xe{0,1}" i=1 j=1

Assuming that the term r; has k; literals, the normalization constraint implies

t

Zz"*"fci =1.

i=1
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To simplify the notation, lets define constants g;; = (Y;)SU a1-Y ;)S;/. So overall, the prob-
lem of learning MLE coefficients, after taking log of the objective function, is:

max ilog (X’: q,-,;a) ,
=1 i=1

subjectto ¢; >0, Vi
t

and Z ke, =1.

i=1

This is a constrained convex programming problem, since the objective function (which
needs to be maximized) is concave and the constraints are linear. Consequently, any local
maximum for this problem is guaranteed to be a global maximum. Now, we can use standard
convex optimization software to compute the MLE set of coefficients C*. We denote the set
of coefficients thus obtained as an Exact-MLR model.

5.3 An approximation algorithm for learning the coefficients

The exact learning procedure mentioned above can be slow in converging. Moreover, most
convex optimization techniques require expensive Hessian computations at each stage. We
therefore present a technique for efficiently computing an approximate solution by max-
imizing a lower bound on the objective function. We call this solution an Approx-MLR
model. We evaluate this technique as a standalone model and also use it to initialize the
exact optimization procedure described above (for faster convergence).

For now, we assume that ¢; > 0, Vi (since if ¢; = 0 for some term r; then we can ignore
that term anyway). Later on we’ll see that this assumption is actually satisfied for the solution
obtained in this part. Consider the log-likelihood objective function from the previous part

m t
LL = Zlog <Z %’,[Q’) .
=1 i=l1

We define a quantity Q (/) = Y} g;; which is the number of terms satisfied by the /th data
instance Y;. Rewrite LL as

LL = Zlog( Q(l) )—i—ZlogQ(Z) 5)

Using the fact that log is a concave function, we rewrite (5) and obtain

m

LL> Z Q (1) logci + Zlog Q()=LL.

The plan is as follows: instead of maximizing LL we maximize a lower bound on LL, namely,
LL'. In fact, observe that LL is the same as LL’ if all the terms are distinct and of size n. The
constraints on the coefficients remain the same. We ignore the log Q(/) term in LL as itis a
constant and thus we have a different optimization problem:

m t

qi.1
max Z logc;,
=1 i=1 0]

@ Springer



204 Mach Learn (2009) 76: 195-209

subjectto ¢; >0, Vi,

t
and Z 2 kic =1,
i=1

This is again a convex optimization problem but the solution to this can be obtained in closed
form. To solve this we introduce Lagrange multipliers A = {A, A5, ..., A;} and u and write
down the Lagrangian of the above problem as

m t t t
LC AW ==3 3 Jislogeitu (Zz"kfci - 1) + Y hici.
1

=1 i=1 i= i=1

Now we impose the KKT conditions which imply that at one of the optimum values c}, A},
and u’ the following is satisfied

Xci=0, Vi,
2 hicl =1
i k]
OL(C. A, ) _
Bc,» -
Using the fact that ¢; > 0, we manipulate the above equations to obtain:
ki N~ dil
’ 2 Zl:l [40)

=— (©)

and 0, Vi.

One can observe that ¢; is roughly linearly dependent on the number of training examples
satisfied by the term and a training example makes greater contribution to ¢; if it isn’t satis-
fied by too many terms (i.e. Q(I) is low). This is intuitive in that since in the MLE process
we assume that each training example has equal weightage, if an example satisfies less num-
ber of terms then the terms satisfied by that example must carry greater weight. Also this
result is clearly in accord with the assumption that ¢; > 0, because ¢; is zero only when r; is
satisfied by none of training examples—in that case we are better off omitting ;. We show
experimentally that Approx-MLR solution works reasonably well in practice.

5.4 Summary of learning techniques

To summarize, following are steps involved in learning MLR distributions, given the training
data Y and set of variables X’

— First step is generating the terms, R, of the MLR. The terms can be generated either by
mining closed patterns, with appropriate threshold ¢, from an itemized version of ¥ and
converting them into terms, or by producing all monomials over X* of size k. In the latter
approach, prune away infrequently satisfied terms if necessary and perform smoothing by
adding a constant term (the former approach vacuously includes this term as the empty
set has full support in a database).

— Generate the Approx-MLR solution for the coefficients (which can be computed in one
pass over Y).

— Initialize the exact optimization process with the Approx-MLR solution. Carry out op-
timization for a certain no. of iterations to obtain the Exact-MLR solution. Output
(R, Exact-MLR) and (R, Approx-MLR) as different learned MLR distributions.
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6 Experimental results

‘We compare the class of multi-linear representation of distributions with Bayesian networks
on real-world datasets. We show results both for Exact-MLR and Approx-MLR. As a base-
line, we use the WinMine toolkit (Chickering et al. 2002) which is commonly used in the
ML community as one of the best BN learning software available.

6.1 Datasets

We evaluate our learning techniques on 3 real-world datasets taken from the UCI repository
(Asuncion and Newman 2007): Primary Tumor, House Votes, and Letter Recognition. Al-
though, these datasets are meant for the purpose of classification, learning joint distribution
over these variables is still a good problem and they have been used in previous works on
learning distributions (Lowd and Domingos 2005). Moreover, these datasets are indeed gen-
erated from randomly occurring distributions in that the training examples are not contrived
to train a classifier. Table 1 contains a summary of the datasets used. We randomly split the
data into training and test set in 9:1 ratio. For the datasets with small number of examples
i.e. House Votes and Primary Tumor, we perform 10-fold cross validation (after randomiz-
ing the order of the instances in the data). For tuning the parameters, we divide the training
data into tuning and validation sets in the ratio 8:2. Since WinMine treats Missing values as
distinct values, we do the same for MLR.

6.2 Learning

To generate the terms of the distribution we use the two approaches we have de-
scribed in Sect. 5: picking terms of fixed size k = 3 (call it K-3), and picking terms
based on closed-patterns with certain support threshold. We use the ILLIMINE package
(http://illimine.cs.uiuc.edu/) for mining closed patterns. For fast inference and learning, we
restrict the number of terms to 7,000. We tune the support threshold parameter for closed-
patterns based approach on the validation set. To generate varying number of terms, we
pick 3 different thresholds based on the validation process. We call the model with lowest
threshold (and hence the largest number of terms) F-1, the one with medium threshold, F-2,
and the one with highest threshold, F-3. F-1, F-2, and F-3 correspond to thresholds: 80, 100,
and 120 for Primary Tumor; 300, 400, and 500 for Letter Recognition; and 90, 100, and
110 for House Votes. Since the number of terms for k = 3 is extremely large in case of the
Letter Recognition dataset (because of high cardinality for most variables), we do not try
K-3 approach on it. For the rest of the datasets, we reduce the number of terms in the K-3
case by ordering the terms according to the number of training examples they satisfy and
pruning away a certain fraction of the lower order terms. We set the pruning fraction to the
value which results in high accuracy in the validation step, while keeping as less number of

Table 1 Description of the datasets used. Max. Cardinality is the maximum over the number of values any
variable can take. Avg. Cardinality is the average over the number of values for features

Dataset Dimension No. of Instances Max. Cardinality Avg. Cardinality
Letter Recognition 17 20,000 26 16.6

House Votes 17 435 3 2.94

Primary Tumor 18 339 21 3.5
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terms as possible. For Primary Tumor and House Votes, we prune 80% and 70% of size-3
terms, respectively. Also, we smooth the K-3 case by introducing a constant term.

For each of the term structures learned, we learn the set of coefficients as de-
scribed in Sect. 5. We learn the APPROX-MLR model directly using the entire train-
ing data. For the purpose of learning Exact-MLR solution we use the software CVX-
OPT (http://abel.ee.ucla.edu/cvxopt/). For the Exact-MLR model, allowing the optimization
process to carry on till convergence may result in overfitting. We tune the number of itera-
tions in the optimization process to the value which results in highest joint likelihood during
the validation step and then learn the model over the entire training data. We initialize the
optimization process by using the APPROX-MLR solution for faster learning. However in
the case of Letter Recognition, the likelihood declines from the very first iteration and so we
restart the process with a uniform distribution.

For learning the corresponding WinMine model, we perform similar steps. We use the
default parameter settings for WinMine except for the per-parameter penalty x. We use
the tuning and validation data to tune «, picking the best performing value from the set
{0.001, 0.01, 0.1, 0.5, 1.0}. We then use that value to learn the final model from the entire
training data.

Learning in WinMine was only slightly faster than APPROX-MLR. However learning
in EXACT-MLR was considerably slower than WinMine. It took Winmine less than two
minutes to learn each model whereas EXACT-MLR took from a few tens of minutes (in
case of approx. 1500 terms) to a couple of hours (in case of approx. 6000 terms) to converge.
However, since learning is performed offline, it is much more important to have faster and
accurate inference even if it comes at the cost of a slower learning process.

6.3 Accuracy of learned models

We measure the accuracy of models as the average joint log-likelihood of the test data. For
the House Votes and Primary Tumor dataset, we report the average of log-likelihood ob-
tained over the 10-folds. The results are shown in Table 2. MLR-based approaches outper-
form WinMine on Primary Tumor and Letter Recognition dataset. On the latter, MLR’s per-
formance is significantly better than WinMine as per a two-tailed paired t-test with p = 0.05.
The difference between the two is negligible in case of House Votes.

6.4 Performance of learned model on inference

To compare the performance of learned models for each dataset, we generate inference
queries using the test data in a way similar to (Lowd and Domingos 2008). Specifically, for

Table 2 Joint log-likelihood for test data per example. A-MLR represents Approx-MLR, E-MLR represents
Exact-MLR, and W-M represents WinMine. F-1, F-2, and F-3 represent closed frequent pattern based ap-
proaches with thresholds increasing in that order. K-3 represents learning with distributions having terms of
size 3

Dataset F-1 F-2 F-3 K-3 W-M
E-MLR A-MLR E-MLR A-MLR E-MLR A-MLR E-MLR A-MLR

Pri. Tum. -13.86 —15.05 —14.15 —1522 —1434 —-1540 -—1523 —1637 —19.55
Let. Rec. —44.14 —4322 —45.03 —4426 —4490 —4437 - - -52.27
Hou. Vot. —-12.99 -1457 —13.55 —1498 —13.88 —1535 —1622 —16.82 —12.97
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an instance from the test data, we generate query and evidence variables and then calculate
the log probability of the configuration of the query variables given the evidence variables,
as per the learned model. To generate such queries from a test instance, we pick each vari-
able independently as a query variable with probability p, or as an evidence variable with
probability p.. We finally compute average joint log-likelihood over the instances. This ap-
proximates, within a constant factor, the Kullback-Leibler divergence between the learned
and the true distribution, as per the test data. We generate queries from the entire test data for
each fold in case of Primary Tumor and House Votes. For Letter Recognition, we randomly
sample 500 test instances to generate inference queries. We measure the inference time for
all the methods on a machine with CentOS and 16 GB RAM, running at 2.33 GHz.

For MLR-based approaches, we use exact inference. For WinMine, we use Gibbs sam-
pling to perform approximate inference. Since Gibbs sampling takes a long time to con-
verge, we try different settings: fast sampling (using 10 chains, 100 burn-in iterations, and
100 sampling iterations), slow sampling (using 10 chains, 100 burn-in iterations, and 1000
sampling iterations), and very slow sampling (using 10 chains, 1000 burn-in iterations, and
1000 sampling iterations).

Table 3 shows the time taken per query for different settings and datasets. Since the
inference time doesn’t depend on coefficients, we report the average time taken for different
approaches for generating terms.

As far as inference accuracy is concerned, we didn’t observe much variation in the per-
formance of the models within both the classes: MLR and BN. In case of Primary Tumor,
Freq-1 + Exact-MLR gives best performance. For Letter Recognition, Freq-1 + Approx-
MLR gives best performance. For House Votes, Gibbs-very-slow is the best performer with
Gibbs-slow coming very close. Table 4 reports log-likelihoods for the best performing mod-
els for MLR and BN, averaged over all queries and over all values of p, which varies over
the set {0.3,0.4,0.5, 0.6}, while p, is fixed at 0.3. Similarly in Table 5, p, is fixed at 0.3
and p, takes values from {0.3, 0.4, 0.5, 0.6}.

Table 3 This table reports the average time taken (in ms) for answering queries corresponding to each
dataset. F-1, F-2, and F-3 represent closed frequent pattern based approaches with thresholds increasing in
that order. K-3 represents learning with distributions having terms of size 3. G-v-s, G-S, and G-f represent
very slow, slow, and fast Gibbs sampling

Dataset F-1 F-2 F-3 K-3 G-v-s G-s G-f

Pri. Tum. 135 67 35 103 803 446 80
Let. Rec. 72 37 22 - 11,118 6,013 1,165
Hou. Vot. 85 46 25 91 644 356 64

Table 4 This table reports the best performing model for both MLR and BN and its performance. The values
reported are average joint log-likelihoods with fixed p, = 0.3

Dataset MLR BN

Best Model log-like. +/— std. Best Model log-like. 4+/— std.
Pri. Tum. F-1+Exact-MLR —6.23+/—-044 Gibbs-very-slow —-7.06+/—0.74
Let. Rec. F-14+Approx-MLR —19.93+/-0.24 Gibbs-slow —28.08+/—0.28
House Votes F-1 +Exact-MLR —5.77+/—0.36 Gibbs-very-slow —4.82+/—-0.56
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Table 5 This table reports the best performing model for both MLR and BN and its performance. The values
reported are average joint log-likelihoods with fixed p, = 0.3

Dataset MLR BN

Best Model log-like. 4/— std. Best Model log-like. 4-/— std.
Pri. Tum. F-1+Exact-MLR —4.22 Gibbs-very-slow —4.48
Let. Rec. F-1+Exact-MLR —13.60+/—0.23 Gibbs-slow —20.43+/-0.27
House Votes F-1 +Exact-MLR —3.84+/-03 Gibbs-very-slow -312+/-0.39

Inference for best performing model in MLR is an order of magnitude faster than the best
performing model in WinMine in case of Primary Tumor and House Votes, and is more than
100 times faster in case of Letter Recognition. Moreover, MLR models outperform WinMine
in Primary Tumor and Letter Recognition, with the performance being significantly better
(p = 0.05) on the latter. BN-based approaches outperform MLR-based ones on House Votes.

The results obtained in the inference experiments can be attributed to the fact that BN
fits the training data more accurately when the number of states for each variables is less
(which is the case in House Votes) but performs much worse as the cardinality of each
variable becomes high (like in Letter Recognition). Intuitively this happens because larger
number of possible states for each variable results in fewer counts for each state leading
to inaccurate estimates in BN. The MLR models we learned, on the other hand, typically
have smaller terms which means they exhibit better generalization. This is because smaller
terms are satisfied by a larger number of possible instantiations thus avoiding overfitting.
This generalization property proves beneficial when the possible number of instantiations is
large but results in slower fitting to the training data.

7 Conclusion

In this paper, we presented techniques for directly learning distributions in the multi-linear
polynomial form to support faster inference. Experiments on real-world datasets suggest that
our techniques for learning can generate MLR models which are equally or more accurate
than the corresponding ones in BN, with the former providing orders of magnitude faster
inference. Interesting directions for future work include trying or developing approaches for
generating terms with high descriptive power and low redundancy and developing learning
techniques for MLR to better fit the training data without losing the good generalization
properties we currently show.

Acknowledgements The authors wish to thank Daniel Lowd for his help with the Gibbs sampling program.
This work is partly supported by an ONR Award on “Guiding Learning and Decision Making in the Presence
of Multiple Forms of Information” and by the Siebel Scholars Foundation.

References

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large
databases. In SIGMOD 93, 1993 (pp. 207-216).

Asuncion, A., & Newman, D. (2007). UCI Machine learning repository.

Burdick, D., Calimlim, M., Flannick, J., Yiu, T., & Gehrke, J. (2005). MAFIA: A maximal frequent itemset
algorithm. IEEE Transactions of Knowledge Data Engineering, 17, 1490-1504.

@ Springer



Mach Learn (2009) 76: 195-209 209

Castillo, E., Gutiérrez, J. M., & Hadi, A. S. (1996). Goal oriented symbolic propagation in Bayesian networks.
In AAAI/IAAI 1996 (Vol. 2, pp. 1263-1268).

Castillo, E., Gutiérrez, J. M., Hadi, A. S., & Solares, C. (1997). Symbolic propagation and sensitivity analysis
in Gaussian Bayesian networks with application to damage assessment. Al in Engineering, 11(2), 173—
181.

Chickering, D. M. (2002). The WinMine Toolkit (Tech. Rep. MSR-TR-2002-103). Microsoft, Redmond, WA.

Darwiche, A. (2001). Recursive conditioning. Artificial Intelligence, 126(1-2), 5-41.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal of the ACM, 50(3),
280-305.

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic inference. In UAI 1996 (pp.
211-219).

Gilks, W. R., Richardson, S., & Speigelhalter, D. J. (1995). Markov chain Monte Carlo in practice. Boca
Raton: Chapman & Hall/CRC.

Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., & Sharm, R. S. (2003). Discovering all
most specific sentences. ACM Transactions on Database Systems, 28(2), 140-174.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning, 20(3), 197-243.

Jaeger, M., Nielsen, J. D., & Silander, T. (2006). Learning probabilistic decision graphs. International Journal
of Approximate Reasoning, 42(1-2), 84—100.

Jensen, F. V., Lauritzen, S., & Olesen, K. (1990). Bayesian updating in recursive graphical models by local
computation. Computational Statistics Quarterly, 4, 269-282.

Lowd, D., & Domingos, P. (2005). Naive Bayes models for probability estimation. In Proc. ICML-05
(pp- 529-536).

Lowd, D., & Domingos, P. (2008). Learning arithmetic circuits. In UAI 2008 (pp. 383-392).

Meila, M., & Jordan, M. 1. (2000). Learning with mixtures of trees. Journal of Machine Learning Research,
1,1-48.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999). Discovering frequent closed itemsets for association
rules. In: ICDT"99, 1999 (pp. 398-416).

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo: Morgan Kaufman.

Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2), 273-302.

Shachter, R. D., D’ Ambrosio, B., & Favero, B. D. (1980). Symbolic probabilistic inference in belief networks.
In AAAT 1990 (pp. 126-131).

Srebro, N. (2003). Maximum likelihood bounded tree-width Markov networks. Artificial Intelligence, 143(1),
123-138.

Wainwright, M. J., & Jordan, M. 1. (2008). Graphical models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1(1-2), 1-305.

Yedidia, J. S., Freeman, W.T., Weiss, Y., (2005). Constructing free-energy approximations and generalized
belief propagation algorithms. IEEE Transactions on Information Theory, 51(7), 2282-2312.

Zhang, N. L., & Poole, D. (1996). Exploiting causal independence in Bayesian network inference. Journal
Artificial Intelligence Research (JAIR), 5, 301-328.

@ Springer



	Learning multi-linear representations of distributions for efficient inference
	Abstract
	Introduction
	Related work

	Preliminaries
	Representational issues: validity and compactness
	Compactness
	Validity

	Inference
	Learning
	Learning the terms
	Exact learning of the coefficients
	An approximation algorithm for learning the coefficients
	Summary of learning techniques

	Experimental results
	Datasets
	Learning
	Accuracy of learned models
	Performance of learned model on inference

	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


