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Abstract Many knowledge representation mechanisms are based on tree-like structures,
thus symbolizing the fact that certain pieces of information are related in one sense or an-
other. There exists a well-studied process of closure-based data mining in the itemset frame-
work: we consider the extension of this process into trees. We focus mostly on the case
where labels on the nodes are nonexistent or unreliable, and discuss algorithms for closure-
based mining that only rely on the root of the tree and the link structure. We provide a notion
of intersection that leads to a deeper understanding of the notion of support-based closure, in
terms of an actual closure operator. We describe combinatorial characterizations and some
properties of ordered trees, discuss their applicability to unordered trees, and rely on them
to design efficient algorithms for mining frequent closed subtrees both in the ordered and
the unordered settings. Empirical validations and comparisons with alternative algorithms
are provided.

Keywords Tree mining · Closure operator · Unordered trees · Labeled trees

1 Introduction

Undisputably tree-structured representations are a key idea pervading all of Computer Sci-
ence; many link-based structures may be studied formally by means of trees. From the B+
indices that make our commercial Database Management Systems useful, through search-
tree or heap data structures or Tree Automata, up to the decision tree structures in Ar-
tificial Intelligence and Decision Theory, or the parsing structures in Compiler Design,
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in Natural Language Processing, or in the now-ubiquitous XML, trees often represent
an optimal compromise between the conceptual simplicity and processing efficiency of
strings and the harder but much richer knowledge representations based on graphs. Min-
ing frequent trees is becoming an important task, with broad applications including chem-
ical informatics (Hashimoto et al. 2008), computer vision (Liu and Geiger 1999), text re-
trieval (Weiss et al. 2004), bioinformatics (Shasha et al. 2004; Hein et al. 1995), and Web
analysis (Chakrabarti 2002; Zaki 2002). A wealth of variations of the basic notions, both of
the structures themselves (binary, bounded-rank, unranked, ordered, unordered) or of their
relationships (like induced or embedded top-down or bottom-up subtree relations) have been
proposed for study and motivated applications.

Closure-based mining on purely relational data, that is, itemset mining, is, by now, well-
established, and there are interesting algorithmic developments. Sharing some of the at-
tractive features of frequency-based summarization of subsets, it offers an alternative view
with several advantages; among them, there are the facts that, first, by imposing closure, the
number of frequent sets is heavily reduced, and, second, the possibility appears of devel-
oping a mathematical foundation that connects closure-based mining with lattice-theoretic
approaches like Formal Concept Analysis. A downside, however, is that, at the time of in-
fluencing the practice of Data Mining, their conceptual sophistication is higher than that of
frequent sets, which are, therefore, preferred often by non-experts. Thus, there have been
subsequent efforts in moving towards closure-based mining on structured data. We provide
now some definitions and, then, a discussion of existing work.

1.1 Preliminary definitions

Our trees will be rooted, unranked trees (that is, with nodes of unbounded arity), and we
will consider two kinds of trees: ordered trees, in which the children of any node form
a sequence of siblings, and unordered trees, in which they form a set of siblings. Note that
this difference is not intrinsic, but, rather, lies in the way we look at the trees (more precisely,
in the specifics of the implementation of some abstract data type primitives such as deciding
subtree relations—see below). The set of all trees will be denoted with T . We say that
t1, . . . , tk are the components of tree t if t is made of a node (the root) joined to the roots
of all the ti ’s. In the unordered case, the components form a set, not a sequence; therefore,
permuting them does not give a different tree. In our drawings of unordered trees, we follow
the convention that deeper, larger trees are drawn at the left of smaller trees.

A bottom-up subtree of a tree t is any connected subgraph rooted at some node v of t

which contains exactly the descendants of v in t . The level or level of a node is the length of
the path from the root to that node (the root has level 0). A bottom-up subtree of a tree t is
at level d if its root is at level d in t .

An induced subtree of a tree t is any connected subgraph rooted at some node v of t such
that its vertices and edges are subsets of those of t . An embedded subtree of a tree t is any
connected subgraph rooted at some node v of t that does not break the ancestor-descendant
relationship among the vertices of t . Formally, let s be a rooted tree with vertex set V ′ and
edge set E′, and t a rooted tree with vertex set V and edge set E. Tree s is an induced
subtree of t if and only if (1) V ′ ⊆ V , (2) E′ ⊆ E, and (3) the labeling of V ′ is preserved
in t . Tree s is an embedded subtree of t if and only if (1) V ′ ⊆ V , (2) (v1, v2) ∈ E′ (here, v1

is the parent of v2 in s) if and only if v1 is an ancestor of v2 in t , and (3) the labeling of V ′
is preserved in t .

In order to compare link-based structures, we will also be interested in a notion of subtree
where the root is preserved. In the unordered case, a tree t ′ is a top-down subtree (or simply
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a subtree) of a tree t (written t ′ � t ) if t ′ is a connected subgraph of t which contains the
root of t . Note that the ordering of the children is not relevant. In the ordered case, the order
of the existing children of each node must be additionally preserved. All along this paper,
the main place where it is relevant whether we are using ordered or unordered trees is what
is the choice of the implementation of the test for the subtree notion.

Given a finite dataset D of transactions, where each transaction s ∈ D is an unlabeled
rooted tree, we say that a transaction s supports a tree t if the tree t is a subtree of the
transaction s. The number of transactions in the dataset D that support t is called the support
of the tree t . A tree t is called frequent if its support is greater than or equal to a given
threshold min_sup. The frequent tree mining problem is to find all frequent trees in a given
dataset. Any subtree of a frequent tree is also frequent and, therefore, any supertree of a
nonfrequent tree is also nonfrequent.

We define a frequent tree t to be closed if none of its proper supertrees has the same
support as it has. Generally, there are much fewer closed trees than frequent ones. In fact,
we can obtain all frequent subtrees with their support from the set of closed frequent subtrees
with their supports, as explained later on: whereas this is immediate for itemsets, in the case
of trees we will need to employ some care because a frequent tree may be a subtree of
several incomparable frequent closed trees.

1.2 Related work

There exist already work about closure-based mining on structured data, particularly se-
quences (Yan et al. 2003; Balcázar and Garriga 2005), trees (Chi et al. 2001b; Termier et al.
2004) and graphs (Yan and Han 2003; Yan et al. 2005). One of the differences with closed
itemset mining stems from the fact that the set theoretic intersection no longer applies, and
whereas the intersection of sets is a set, the intersection of two sequences or two trees is
not one sequence or one tree. This makes it nontrivial to justify the word “closed” in terms
of a standard closure operator. Many papers resort to a support-based notion of closedness
of a tree or sequence (Chi et al. 2001b, see below); others (like Arimura 2005) choose a
variant of trees where a closure operator between trees can be actually defined (via least
general generalization). In some cases, the trees are labeled, and strong conditions are im-
posed on the label patterns (such as nonrepeated labels in tree siblings, Termier et al. 2004
or nonrepeated labels at all in sequences, Garriga and Balcázar 2004).

Yan and Han (2002, 2003) proposed two algorithms for mining frequent and closed
graphs. The first one is called gSpan (graph-based Substructure pattern mining) and dis-
covers frequent graph substructures without candidate generation; gSpan builds a new lex-
icographic order among graphs, and maps each graph to a unique minimum DFS code as
its canonical label. Based on this lexicographic order, gSpan adopts the depth-first search
strategy to mine frequent connected subgraphs. The second one is called CloseGraph and
discovers closed graph patterns. CloseGraph is based on gSpan, and is based on the de-
velopment of two pruning methods: equivalent occurrence and early termination. The early
termination method is similar to the early termination by equivalence of projected databases
method in CloSpan (Yan et al. 2003), an algorithm for mining closed sequential patterns
in large datasets published by the Illimine team. However, in graphs there are some cases
where early termination may fail and miss some patterns. By detecting and eliminating these
cases, CloseGraph guarantees the completeness and soundness of the closed graph patterns
discovered.
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1.2.1 Frequent tree mining algorithms

In the case of trees, only labeled tree mining methods are considered in the literature. There
are four broad kinds of subtrees: bottom-up subtrees, top-down subtrees, induced subtrees,
and embedded subtrees. Bottom-up subtree mining is the simplest subtree mining. Algo-
rithms for embedded labeled frequent trees are the following:

– Rooted Ordered Trees
– TreeMiner (Zaki 2002): This algorithm developed by Zaki, uses vertical representa-

tions for support counting, and follows the combined depth-first/breadth traversal idea
to discover all embedded ordered subtrees.

– Rooted Unordered Trees
– SLEUTH (Zaki 2005): This method presented by Zaki, extends TreeMiner to the

unordered case using two different methods for generating canonical candidates: the
class-based extension and the canonical extension.

Algorithms for induced labeled frequent trees include:

– Rooted Ordered Trees
– FREQT (Asai et al. 2002). Asai et al. developed FREQT. It uses an extension approach

based on the rightmost path. FREQT uses an occurrence list base approach to determine
the support of trees.

– Rooted Unordered Trees
– uFreqt (Nijssen and Kok 2003): Nijssen et al. extended FREQT to the unordered case.

Their method solves in the worst case, a maximum bipartite matching problem when
counting tree supports.

– uNot (Asai et al. 2003): Asai et al. presented uNot in order to extend FREQT. It uses
an occurrence list based approach which is similar to Zaki’s TreeMiner.

– HybridTreeMiner (Chi et al. 2004): Chi et al. proposed HybridTreeMiner, a method
that generates candidates using both joins and extensions. It uses the combined depth-
first/breadth-first traversal approach.

– PathJoin (Xiao et al. 2003): Xiao et al. developed PathJoin, assuming that no two
siblings are identically labeled. It presents the maximal frequent subtrees. A maximal
frequent subtree is a frequent subtree none of whose proper supertrees are frequent.

All the labeled frequent tree mining methods proposed in the literature are occurrence
based and solve these two problems:

– the computation of a tree inclusion relation
– the enumeration of all trees in a non-redundant way

A comprehensive introduction to the algorithms on unlabeled trees can be found in (Valiente
2002) and a survey of works on frequent subtree mining can be found in (Chi et al. 2001a).

1.2.2 Closed tree mining algorithms

Our main interest is related to closed trees since they, if appropriately organized as shown
below, give the same information as the set of all frequent trees in less space.

Chi et al. proposed CMTreeMiner (Chi et al. 2001b), the first algorithm to discover all
closed and maximal frequent labeled induced subtrees without first discovering all frequent
subtrees. CMTreeMiner shares many features with CloseGraph, and uses two pruning tech-
niques: the left-blanket and right-blanket pruning. The blanket of a tree is defined as the set
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of immediate supertrees that are frequent, where an immediate supertree of a tree t is a tree
that has one more vertex than t . The left-blanket of a tree t is the blanket where the vertex
added is not in the right-most path of t (the path from the root to the rightmost vertex of
t ). The right-blanket of a tree t is the blanket where the vertex added is in the right-most
path of t . Their method is as follows: it computes, for each candidate tree, the set of trees
that are occurrence-matched with its blanket’s trees. If this set is not empty, they apply two
pruning techniques using the left-blanket and right-blanket. If it is empty, then they check
if the set of trees that are transaction-matched but not occurrence matched with its blanket’s
trees is also empty. If this is the case, there is no supertree with the same support and then the
tree is closed. CMTreeMiner is a labeled tree method and it was not designed for unlabeled
trees. As the authors of CMTreeMiner say in their paper (Chi et al. 2001b): “Therefore, if
the number of distinct labels decrease dramatically (so different occurrences for the same
pattern increase dramatically), the memory usage of CMTreeMiner is expected to increase
and its performance is expected to deteriorate.”

Arimura and Uno proposed CLOATT (Arimura 2005) considering closed mining in at-
tribute trees, which is a subclass of labeled ordered trees and can also be regarded as a
fragment of description logic with functional roles only. These attribute trees are defined
using a relaxed tree inclusion.

Termier et al. proposed DRYADEPARENT (Termier et al. 2008) as a closed frequent at-
tribute tree mining method comparable to CMTreeMiner. Attribute trees are trees such that
two sibling nodes cannot have the same label. They extend to induced subtrees their previous
algorithm DRYADE (Termier et al. 2004).

The DRYADE and DRYADEPARENT algorithm are based on the computation of tiles
(closed frequent attribute trees of depth 1) in the data and on an efficient hooking strategy
that reconstructs the closed frequent trees from these tiles. Whereas CMTreeMiner uses a
classical generate-and-test strategy to build candidate trees edge by edge, the hooking strat-
egy of DRYADEPARENT finds a complete depth level at each iteration and does not need tree
mapping tests. The authors claim that their experiments have shown that DRYADEPARENT

is faster than CMTreeMiner in most settings and that the performances of DRYADEPAR-
ENT are robust with respect to the structure of the closed frequent trees to find, whereas the
performances of CMTreeMiner are biased toward trees having most of their edges on their
rightmost branch.

As attribute trees are trees such that two sibling nodes cannot have the same label,
DRYADEPARENT is not a method appropriate for dealing with unlabeled trees.

1.3 Contributions of this paper

Our focus in this paper is on unlabeled rooted trees and top-down subtrees, although we will
discuss briefly the labeled and induced case too. Thus our relevant information is the root and
the link structure. Our motivation arose from the analysis of web navigation patterns, where
we only looked at the sets of pages visited in each single session, structured in a tree-like
form and desiring to use, on purpose, no information beyond the links, as a way of exploring
the potential limitations of this source of information; this study was to be combined and
complemented with a development of a novel distributed, focused crawler that would rely on
the closures found among the navigation patterns to approximate the local users’ interests.
Unfortunately this complementary part of the project is currently postponed, but the closure-
based analysis of trees led already to the developments described here. We start discussing
the properties of the intersection operator as a foundation to a closure operator in Sect. 3,
along the lines of (Ganter and Wille 1999), (Balcázar and Garriga 2005), (Garriga 2006), or
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(Baixeries and Balcázar 2003) for unstructured or otherwise structured datasets; we study
algorithms to compute intersections in Sect. 2. Preliminary versions of these results were
announced at (Balcázar et al. 2006). A representation of ordered trees is studied in Sect. 4,
including an efficient algorithm to test the subtree relation, which is subsequently used to
design algorithms for mining closed ordered trees in Sect. 5. Section 6 extends the analysis
to unordered trees and Sect. 7 to induced subtrees and labeled trees. Section 8 discusses
an experimental comparison and other potential applications. Part of the results of Sects. 5,
6, and 8 appear in preliminary, quite incomplete form in (Balcázar et al. 2007), although
early, similar but weaker results appear also in (Balcázar et al. 2007).

2 Basic algorithmics and mathematical properties

This section discusses, mainly, to what extent the intuitions about trees can be formalized
in mathematical and algorithmic terms. As such, it is aimed just at building up intuition and
background understanding, and making sure that our later sections on tree mining algorithms
rest on solid foundations: they connect with these properties but make little explicit use of
them.

Given two trees, a common subtree is a tree that is subtree of both; it is a maximal
common subtree if it is not a subtree of any other common subtree. Two trees have always
some maximal common subtree but, as is shown in Fig. 1, this common subtree does not
need to be unique. This figure also serves the purpose of further illustrating the notion of
unordered subtree.

In fact, both trees X and Y in Fig. 1 have the maximum number of nodes among the
common subtrees of A and B .

From here on, the intersection of a set of trees is the set of all maximal common subtrees
of the trees in the set. Sometimes, the one-node tree will be represented with the symbol �,
and the two-node tree by � �.

2.1 Facts from combinatorics on trees

The number of trees with n nodes is known to be �(ρnn−3/2), where ρ = 0.3383218569
(Plotkin and Rosenthal 1994). We provide a more modest lower bound based on an easy
way to count the number of unordered binary trees; this will be enough to show in a few
lines an exponential lower bound on the number of trees with n nodes.

Define Bn as the number of unordered binary trees with n nodes, and set B0 = 1 for
convenience. Clearly, a root without children (tree �) is the only binary tree with one node,

Fig. 1 Trees X and Y are maximal common subtrees of A and B
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so B1 = 1, while a root with just one child which is a leaf (tree � �) is the only binary tree
with two nodes, so B2 = 1. Now note that each of the trees

has n nodes if A is a subtree with n−2 nodes and B is a subtree with n−1 nodes. Moreover,
since these two kinds of trees form disjoint subclasses of the trees with n nodes, it holds that
Bn ≥ Bn−1 + Bn−2 for all n ≥ 3, thus showing that Bn is bigger than the n-th Fibonacci
number Fn (note that the initial values also satisfy the inequality, since F0 = 0 and F1 =
F2 = 1). Since it is well-known that Fn+2 ≥ φn, where φ > 1.618 is the golden number, we
have the lower bound

φn−2 ≤ Fn ≤ Bn

which is also a lower bound for the total number of trees (both ordered and unordered) with
n nodes.

2.2 Number of subtrees

We can easily observe, using the trees A, B , X, and Y above, that two trees can have an
exponential number of maximal common subtrees.

Recall that the aforementioned trees have the property that X and Y are two maximal
common subtrees of A and B . Now, consider the pair of trees constructed in the following
way using copies of A and B . First, take a path of length n − 1 (thus having n nodes which
include the root and the unique leaf) and “attach” to each node a whole copy of A. Call this
tree TA. Then, do the same with a fresh path of the same length, with copies of B hanging
from their nodes, and call this tree TB . Graphically:

All the trees constructed similarly with copies of X or Y attached to each node of the
main path (instead of A or B) are maximal common subtrees of TA and TB . The fact that
the copies are at different depths assures that all the 2n possibilities correspond to different
subtrees. Therefore, the number of different maximal common subtrees of TA and TB is
at least 2n (which is exponential in the input since the sum of the sizes of TA and TB is
15n). Any algorithm for computing maximal common subtrees has, therefore, a worst case
exponential cost due to the size of the output.
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We must note, though, that experiments suggest that intersection sets of cardinality be-
yond 1 hardly ever arise unless looked for. In order to find how often two trees have intersec-
tion sets of cardinality beyond 1, we set up an empirical validation using the tree generation
program of Zaki (2002) to generate a random set of trees. This program generates a mother
tree that simulates a master website browsing tree. Then it assigns probabilities of following
its children nodes, including the option of backtracking to its parent, such that the sum of
all the probabilities is 1. Using the master tree, the dataset is generated selecting subtrees
according to these probabilities.

Using Zaki’s tree generator program we generate sets of 100 random trees of sizes from
5 to 50 and then we run our frequent tree mining algorithm with minimum support 2. Our
program doesn’t find any two trees with the same transactions list in any run of the algorithm.
This fact suggests that, as all the intersections came up to a single tree, the exponential blow-
up of the intersection sets is extremely infrequent.

2.3 Finding the intersection of trees recursively

Computing a potentially large intersection of a set of trees is not a trivial task, given that
there is no ordering among the components: a maximal element of the intersection may
arise through mapping smaller components of one of the trees into larger ones of the other.
Therefore, the degree of branching along the exploration is high. We propose a natural re-
cursive algorithm to compute intersections.

The basic idea is to exploit the recursive structure of the problem by considering all the
ways to match the components of the two input trees. Suppose we are given the trees t

and r , whose components are t1, . . . , tk and r1, . . . , rn, respectively. If k ≤ n, then clearly
(t1, r1), . . . , (tk, rk) is one of those matchings. Then, we recursively compute the maximal
common subtrees of each pair (ti , ri) and “cross” them with the subtrees of the previously
computed pairs, thus giving a set of maximal common subtrees of t and r for this particu-
lar identity matching. The algorithm explores all the (exponentially many) matchings and,
finally, eliminates repetitions and trees which are not maximal (by using recursion again).

We do not specify the data structure used to encode the trees. The only condition needed
is that every component t ′ of a tree t can be accessed with an index which indicates the
lexicographical position of its encoding 〈t ′〉 with respect to the encodings of the other com-
ponents; this will be COMPONENT(t, i). The other procedures are as follows:

– #COMPONENTS(t) computes the number of components of t , that is, the arity of the root
of t .

– MATCHINGS(n1, n2) computes the set of perfect matchings of the graph Kn1,n2 , that is,
of the complete bipartite graph with partition classes {1, . . . , n1} and {1, . . . , n2} (each
class represents the components of one of the trees). For example, MATCHINGS(2,3) =
{{(1,1), (2,2)}, {(1,1), (2,3)}, {(1,2), (2,1)}, {(1,2), (2,3)}, {(1,3), (2,1)}, {(1,3),
(2,2)}.

– CROSS(l1, l2) returns a list of trees constructed in the following way: for each tree t1 in l1
and for each tree t2 in l2 make a copy of t1 and add t2 to it as a new component.

– MAX SUBTREES(S1, S2) returns the list of trees containing every tree in S1 that is not a
subtree of another tree in S2 and every tree in S2 that is not a subtree of another tree in
S1, thus leaving only the maximal subtrees. This procedure is shown in Fig. 3. There is a
further analysis of it in the next subsection.

The fact that, as has been shown, two trees may have an exponential number of maxi-
mal common subtrees necessarily makes any algorithm for computing all maximal subtrees
inefficient. However, there is still space for some improvement.
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Fig. 2 Algorithm RECURSIVE INTERSECTION

Fig. 3 Algorithm MAX

SUBTREES

2.4 Finding the intersection by dynamic programming

In the above algorithm, recursion can be replaced by a table of precomputed answers for
the components of the input trees. This way we avoid repeated recursive calls for the same
trees, and speed up the computation. Suppose we are given two trees r and t . In the first
place, we compute all the trees that can appear in the recursive queries of RECURSIVE

INTERSECTION(r, t). This is done in the following procedure:

– SUBCOMPONENTS(t) returns a list containing t if t = �; otherwise, if t has the compo-
nents t1, . . . , tk , then, it returns a list containing t and the trees in SUBCOMPONENTS(ti)

for every ti , ordered increasingly by number of nodes.

The new algorithm shown in Fig. 4 constructs a dictionary D accessed by pairs of trees
(t1, t2) when the input trees are nontrivial (different from � and � �, which are treated sepa-
rately). Inside the main loops, the trees which are used as keys for accessing the dictionary
are taken from the lists SUBCOMPONENTS(r) and SUBCOMPONENTS(t), where r and t are
the input trees.

Note that the fact that the number of trees in SUBCOMPONENTS(t) is linear in the number
of nodes of t assures a quadratic size for D. The entries of the dictionary are computed by
increasing order of the number of nodes; this way, the information needed to compute an
entry has already been computed in previous steps.
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Fig. 4 Algorithm DYNAMIC PROGRAMMING INTERSECTION

Fig. 5 Table with all partial
results computed

The procedure MAX SUBTREES, which appears in the penultimate step of the two in-
tersection algorithms presented, was presented in Sect. 2.3. The key point in the procedure
MAX SUBTREES is the identification of subtrees made in steps 3 and 5 of Fig. 3. This is
discussed in depth below, but let us advance that, in the unordered case, it can be decided
whether t1 � t2 in time O(n1n

1.5
2 ) (Valiente 2002), where n1 and n2 are the number of nodes

of t1 and t2, respectively.
Finally, the table in Fig. 5 shows an example of the intersections stored in the dictionary

by the algorithm DYNAMIC PROGRAMMING INTERSECTION with trees A and B of Fig. 1
as input.

3 Closure operator on trees

Now we attempt at formalizing a closure operator for substantiating the work on closed
trees, with no resort to the labelings: we focus on the case where the given dataset consists
of unlabeled, rooted trees; thus, our only relevant information is the identity of the root



Mach Learn (2010) 78: 1–33 11

and the link structure. In order to have the same advantages as with frequent closed itemset
mining, we want to be able to obtain all frequent subtrees, with their support, from the set
of closed frequent subtrees with their supports. We propose a notion of Galois connection
with the associated closure operator, in such a way that we can characterize support-based
notions of closure with a mathematical operator.

For a notion of closed (sets of) trees to make sense, we expect to be given as data a finite
set (actually, a list) of transactions, each of which consisting of its transaction identifier (tid)
and a tree. Transaction identifiers are assumed to run sequentially from 1 to N , the size of
the dataset. We denote D ⊂ T the dataset. General usage would lead to the following notion
of closed tree:

Definition 1 A tree t is closed for D if no tree t ′ �= t exists with the same support such that
t � t ′.

We aim at clarifying the properties of closed trees, providing a more detailed justification
of the term “closed” through a closure operator obtained from a Galois connection, along the
lines of (Ganter and Wille 1999), (Balcázar and Garriga 2005), (Garriga 2006), or (Baixeries
and Balcázar 2003) for unstructured or otherwise structured datasets. However, given that
the intersection of a set of trees is not a single tree but yet another set of trees, we will find
that the notion of “closed” is to be applied to subsets of the transaction list, and that the
notion of a “closed tree” t is not exactly coincident with the singleton {t} being closed.

To see that the task is not fully trivial, note first that t � t ′ implies that t is a subtree
of all the transactions where t ′ is a subtree, so that the support of t is, at least, that of t ′.
Existence of a larger t ′ with the same support would mean that t does not gather all the
possible information about the transactions in which it appears, since t ′ also appears in the
same transactions and gives more information (is more specific). A closed tree is maximally
specific for the transactions in which it appears. However, note that the example of the
trees A and B given above provides two trees X and Y with the same support, and yet
mutually incomparable. This is, in a sense, a problem. Indeed, for itemsets, and several
other structures, the closure operator “maximizes the available information” by a process
that would correspond to the following: given tree t , find the largest supertree of t which
appears in all the transactions where t appears. But doing it that way, in the case of trees,
does not maximize the information: there can be different, incomparable trees supported by
the same set of transactions. Maximizing the information requires us to find them all.

There is a way forward, that can be casted into two alternative forms, equally simple and
essentially equivalent. We can consider each subtree of some tree in the input dataset as an
atomic item, and translate each transaction into an itemset on these items (all subtrees of
the transaction tree). Then we can apply the standard Galois connection for itemsets, where
closed sets would be sets of items, that is, sets of trees. The alternative we describe can be
seen also as an implementation of this idea, where the difference is almost cosmetic, and we
mention below yet another simple variant that we have chosen for our implementations, and
that is easier to describe starting from the tree-based form we give now.

3.1 Galois connection

A Galois connection is provided by two functions, relating two partial orders in a certain
way. Here our partial orders are plain power sets of the transactions, on the one hand, and
of the corresponding subtrees, in the other. On the basis of the binary relation t � t ′, the
following definition and proposition are rather standard.
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Definition 2 The Galois connection pair:

– For finite A ⊆ D, σ(A) = {t ∈ T | ∀ t ′ ∈ A(t � t ′)}.
– For finite B ⊂ T , not necessarily in D, τD(B) = {t ′ ∈ D | ∀ t ∈ B (t � t ′)}.

The use of finite parts of the infinite set T should not obscure the fact that the image of
the second function is empty except for finitely many sets B; in fact, we could use, instead
of T , the set of all trees that are subtrees of some tree in D, with exactly the same effect
overall. There are many ways to argue that such a pair is a Galois connection. One of the
most useful ones is as follows.

Proposition 1 For all finite A ⊆ D and B ⊂ T , the following holds:

A ⊆ τD(B) ⇐⇒ B ⊆ σ(A).

This fact follows immediately since, by definition, each of the two sides is equivalent to
∀ t ∈ B ∀ t ′ ∈ A(t � t ′).

It is well-known that the compositions (in either order) of the two functions that define a
Galois connection constitute closure operators, that is, are monotonic, extensive, and idem-
potent (with respect, in our case, to set inclusion).

Corollary 1 The composition τD ◦σ is a closure operator on the subsets of D. The converse
composition ΓD = σ ◦ τD is also a closure operator.

ΓD operates on subsets of T ; more precisely, again, on subsets of the set of all trees that
appear as subtrees somewhere in D. Thus, we have now both a concept of “closed set of
transactions” of D, and a concept of “closed sets of trees”, and they are in bijective corre-
spondence through both sides of the Galois connection. However, the notion of closure based
on support, as previously defined, corresponds to single trees, and it is worth clarifying the
connection between them, naturally considering the closure of the singleton set containing
a given tree, ΓD({t}), assumed nonempty, that is, assuming that t indeed appears as subtree
somewhere along the dataset. We point out the following easy-to-check properties:

1. t ∈ ΓD({t}).
2. t ′ ∈ ΓD({t}) if and only if ∀s ∈ D(t � s ⇒ t ′ � s).
3. t may be, or may not be, maximal in ΓD({t}) (maximality is formalized as: ∀t ′ ∈

ΓD({t})[t � t ′ ⇒ t = t ′]). In fact, t is maximal in ΓD({t}) if and only if ∀t ′(∀s ∈ D[t �
s ⇒ t ′ � s] ∧ t � t ′ ⇒ t = t ′).

The definition of closed tree can be phrased in a similar manner as follows: t is closed
for D if and only if: ∀t ′(t � t ′ ∧ supp(t) = supp(t ′) ⇒ t = t ′).

Theorem 1 A tree t is closed for D if and only if it is maximal in ΓD({t}).

Proof Suppose t is maximal in ΓD({t}), and let t � t ′ with supp(t) = supp(t ′). The data
trees s that count for the support of t ′ must count as well for the support of t , because t ′ � s

implies t � t ′ � s. The equality of the supports then implies that they are the same set, that
is, ∀s ∈ D(t � s ⇐⇒ t ′ � s), and then, by the third property above, maximality implies
t = t ′. Thus t is closed.

Conversely, suppose t is closed and let t ′ ∈ ΓD({t}) with t � t ′. Again, then supp(t ′) ≤
supp(t); but, from t ′ ∈ ΓD({t}) we have, as in the second property above, (t � s ⇒ t ′ � s)
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for all s ∈ D, that is, supp(t) ≤ supp(t ′). Hence, equality holds, and from the fact that t is
closed, with t � t ′ and supp(t) = supp(t ′), we infer t = t ′. Thus, t is maximal in ΓD({t}). �

Now we can continue the argument as follows. Suppose t is maximal in some closed set
B of trees. From t ∈ B , by monotonicity and idempotency, together with aforementioned
properties, we obtain t ∈ ΓD({t}) ⊆ ΓD(B) = B; being maximal in the larger set implies
being maximal in the smaller one, so that t is maximal in ΓD({t}) as well. Hence, we have
argued the following alternative, somewhat simpler, characterization:

Corollary 2 A tree is closed for D if and only if it is maximal in some closed set of ΓD .

A simple observation here is that each closed set is uniquely defined through its maximal
elements. In fact, our implementations chose to avoid duplicate calculations and redundant
information by just storing the maximal trees of each closed set. We could have defined
the Galois connection so that it would provide us “irredundant” sets of trees by keeping
only maximal ones; the property of maximality would be then simplified into t ∈ ΓD({t}),
which would not be guaranteed anymore (cf. the notion of stable sequences in Balcázar and
Garriga 2005). The formal details of the validation of the Galois connection property would
differ slightly (in particular, the ordering would not be simply a mere subset relationship)
but the essentials would be identical, so that we refrain from developing that approach here.
We would obtain a development somewhat closer to (Balcázar and Garriga 2005) than our
current development is, but there would be no indisputable advantages.

Now, given any set t , its support is the same as that of ΓD({t}); knowing the closed sets
of trees and their supports gives us all the supports of all the subtrees. As indicated, this
includes all the closed trees, but has more information regarding their joint membership in
closed sets of trees. We can compute the support of arbitrary frequent trees in the following
manner, that has been suggested to us by an anonymous reviewer of this paper: assume that
we have the supports of all closed frequent trees, and that we are given a tree t ; if it is
frequent and closed, we know its support, otherwise we find the smallest closed frequent
supertrees of t . Here we depart from the itemset case, because there is no unicity: there may
be several noncomparable minimal frequent closed supertrees, but the support of t is the
largest support appearing among these supertrees, due to the antimonotonicity of support.

For further illustration, we exhibit here, additionally, a toy example of the closure lattice
for a simple dataset consisting of six trees, thus providing additional hints on our notion
of intersection; these trees were not made up for the example, but were instead obtained
through six different (rather arbitrary) random seeds of the synthetic tree generator of Zaki
(2002).

Figure 6 depicts the closed sets obtained. It is interesting to note that all the intersections
came up to a single tree, a fact that suggests that the exponential blow-up of the intersection
sets, which is possible as explained in Sect. 2.2, appears infrequently enough.

Of course, the common intersection of the whole dataset is (at least) a “pole” whose
length is the minimal height of the data trees.

4 Level representations

The development so far is independent of the way in which the trees are represented. The
reduction of a tree representation to a (frequently augmented) sequential representation has
always been a source of ideas, already discussed in depth in Knuth (1997, 2005). We use
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Fig. 6 Lattice of closed trees for
the six input trees in the top row

here a specific data structure (Nakano and Uno 2003; Beyer and Mitchell Hedetniemi 1980;
Asai et al. 2003; Nijssen and Kok 2003) to implement trees that leads to a particularly
streamlined implementation of the closure-based mining algorithms.

We will represent each tree as a sequence over a countably infinite alphabet, namely, the
set of natural numbers; we will concentrate on a specific language, whose strings exhibit a
very constrained growth pattern. Some simple operations on strings of natural numbers are:

Definition 3 Given two sequences of natural numbers x, y, we represent by

– |x| the length of x.
– x · y the sequence obtained as concatenation of x and y.
– x + i the sequence obtained adding i to each component of x; we represent by x+ the

sequence x + 1.

We will apply to our sequences the common terminology for strings: the term subse-
quence will be used in the same sense as substring; in the same way, we will also refer to
prefixes and suffixes. Also, we can apply lexicographical comparisons to our sequences.

The language we are interested in is formed by sequences which never “jump up”: each
value either decreases with respect to the previous one, or stays equal, or increases by only
one unit. This kind of sequences will be used to describe trees.
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Definition 4 A level sequence or depth sequence is a sequence (x1, . . . , xn) of natural num-
bers such that x1 = 0 and each subsequent number xi+1 belongs to the range 1 ≤ xi+1 ≤
xi + 1.

For example, x = (0,1,2,3,1,2) is a level sequence that satisfies |x| = 6 or x = (0) ·
(0,1,2)+ · (0,1)+. Now, we are ready to represent trees by means of level sequences.

Definition 5 We define a function 〈·〉 from the set of ordered trees to the set of level se-
quences as follows. Let t be an ordered tree. If t is a single node, then 〈t〉 = (0). Other-
wise, if t is composed of the trees t1, . . . , tk joined to a common root r (where the ordering
t1, . . . , tk is the same of the children of r), then

〈t〉 = (0) · 〈t1〉+ · 〈t2〉+ · . . . · 〈tk〉+.

Here we will say that 〈t〉 is the level representation of t .

Note the role of the previous definition:

Proposition 2 Level sequences are exactly the sequences of the form 〈t〉 for ordered, un-
ranked trees t .

That is, our encoding is a bijection between the ordered trees and the level sequences.
This encoding 〈t〉 basically corresponds to a preorder traversal of t , where each number of
the sequence represents the level of the current node in the traversal. As an example, the
level representation of the tree

the level sequence (0,1,2,2,3,1). Note that, for example, the subsequence (1,2,2,3) cor-
responds to the bottom-up subtree rooted at the left son of the root (recall that our subse-
quences are adjacent). We can state this fact in general.

Proposition 3 Let x = 〈t〉, where t is an ordered tree. Then, t has a bottom-up subtree r at
level d > 0 if and only if 〈r〉 + d is a subsequence of x.

Proof We prove it by induction on d . If d = 1, then 〈r〉 + d = 〈r〉+ and the property holds
by the recursive definition of level representation.

For the induction step, let d > 1. To show one direction, suppose that r is a bottom-up
subtree of t at level d . Then, r must be a bottom-up subtree of one of the bottom-up subtrees
corresponding to the children of the root of t . Let t ′ be the bottom-up subtree at level 1 that
contains r . Since r is at level d − 1 in t ′, the induction hypothesis states that 〈r〉 + d − 1 is
a subsequence of 〈t ′〉. But 〈t ′〉+ is also, by definition, a subsequence of x. Combining both
facts, we get that 〈r〉 + d is a subsequence of x, as desired. The argument also works in the
contrary direction, and we get the equivalence. �
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Fig. 7 The Ordered Subtree test
algorithm

4.1 Subtree testing in ordered trees

Top-down subtree testing of two ordered trees can be obtained by performing a simultaneous
preorder traversal of the two trees (Valiente 2002). This algorithm is shown in Fig. 7. There,
post traverses sequentially the level representation of tree t and posst similarly traverses the
purported subtree st . The natural number found in the level representation of t at position
post is exactly level(t,post ).

Suppose we are given the trees st and t , and we would like to know if st is a subtree of t .
Our method begins visiting the first node in tree t and the first node in tree st . While we are
not visiting the end of any tree,

– If the level of tree t node is greater than the level of tree st node then we visit the next
node in tree t .

– If the level of tree st node is greater than the level of tree t node then we backtrack to the
last node in tree st that has the same level as tree node.

– If the level of the two nodes are equal then we visit the next node in tree t and the next
node in tree st .

If we reach the end of tree st , then st is a subtree of tree t .
The running time of the algorithm is clearly quadratic since for each node of tree t , it

may visit all nodes in tree st . An incremental version of this algorithm follows easily, as it
is explained in next section.

5 Mining frequent ordered trees

In the rest of the paper, our goal will be to obtain a frequent closed tree mining algorithm
for ordered and unordered trees. First, we present in this section a basic method for mining
frequent ordered trees. We will extend it to unordered trees and frequent closed trees in the
next section.

We begin showing a method for mining frequent ordered trees. Our approach here is
similar to gSpan (Yan and Han 2002): we represent the potential frequent subtrees to be
checked on the dataset in such a way that extending them by one single node, in all possible
ways, corresponds to a clear and simple operation on the representation. The completeness
of the procedure is assured, that is, we argue that all trees can be obtained in this way. This
allows us to avoid extending trees that are found to be already nonfrequent.
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We show now that our representation allows us to traverse the whole subtree space by an
operation of extension by a single node, in a simple way.

Definition 6 Let x and y be two level sequences. We say that y is a one-step extension of x

(in symbols, x �1 y) if x is a prefix of y and |y| = |x| + 1. We say that y is an extension of
x (in symbols, x � y) if x is a prefix of y.

Note that x �1 y holds if and only if y = x · (i), where 1 ≤ i ≤ j + 1, and j is the last
element of x. Note also that a series of one-step extensions from (0) to a level sequence x

(0) �1 x1 �1 · · · �1 xk−1 �1 x

always exists and must be unique, since the xi ’s can only be the prefixes of x. Therefore, we
have:

Proposition 4 For every level sequence x, there is a unique way to extend (0) into x.

For this section we could directly use gSpan, since our structures can be handled by that
algorithm. However, our goal is the improved algorithm described in the next section, to be
applied when the ordering in the subtrees is irrelevant for the application, that is, mining
closed unordered trees.

Indeed, level representations allow us to check only canonical representatives for the
unordered case, thus saving the computation of support for all (except one) of the ordered
variations of the same unordered tree. Figures 8 and 9 show the gSpan-based algorithm,
which is as follows: beginning with a tree of single node, it calls recursively the FRE-
QUENT_ORDERED_SUBTREE_MINING algorithm doing one-step extensions and checking
that they are still frequent. Correctness and completeness follow from Propositions 2 and 4
by standard arguments.

Since we represent trees by level representations, we can speed up these algorithms, using
an incremental version of the subtree ordered test algorithm explained in Sect. 4.1, reusing

Fig. 8 The Frequent Ordered
Mining algorithm

Fig. 9 The Frequent Ordered Subtree Mining algorithm
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Fig. 10 The Incremental
Ordered Subtree test algorithm

the node positions we reach at the end of the algorithm. If st1 is a tree extended from st in
one step adding a node, we can start ORDERED_SUBTREE(st1, t) proceeding from where
ORDERED_SUBTREE(st, t) ended. So, we only need to store and reuse the positions post

and posst at the end of the algorithm. This incremental method is shown in Fig. 10. Note that
ORDERED_SUBTREE can be seen as a call to INCREMENTAL_ORDERED_SUBTREE with
posst and post initialized to zero.

6 Unordered subtrees

In unordered trees, the children of a given node form sets of siblings instead of sequences of
siblings. Therefore, ordered trees that only differ in permutations of the ordering of siblings
are to be considered the same unordered tree.

6.1 Subtree testing in unordered trees

We can test if an unordered tree r is a subtree of an unordered tree t by reducing the problem
to maximum bipartite matching. Figure 11 shows this algorithm.

Suppose we are given the trees r and t , whose components are r1, . . . , rn and t1, . . . , tk ,
respectively. If n > k or r has more nodes than t , then r cannot be a subtree of t . We recur-
sively build a bipartite graph where the vertices represent the child trees of the trees and the
edges the relationship “is subtree” between vertices. The function BIPARTITEMATCHING

returns true if it exists a solution for this maximum bipartite matching problem. It takes time
O(nrn

1.5
t ) (Valiente 2002), where nr and nt are the number of nodes of r and t , respectively.

If BIPARTITEMATCHING returns true then we conclude that r is a subtree of t .
To speed up this algorithm, we store the computation results of the algorithm in a dictio-

nary D, and we try to reuse these computations at the beginning of the algorithm.

6.2 Mining frequent closed subtrees in the unordered case

The main result of this subsection is a precise mathematical characterization of the level
representations that correspond to canonical variants of unordered trees. Luccio et al. (2004,
2001) showed that a canonical representation based on the preorder traversal can be obtained
in linear time. Nijssen and Kok (2003), Chi et al. (2005) and Asai et al. (2003) defined similar
canonical representations.
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Fig. 11 The Unordered Subtree test algorithm

We select one of the ordered trees corresponding to a given unordered tree to act as a
canonical representative: by convention, this canonical representative has larger trees always
to the left of smaller ones. More precisely,

Definition 7 Let t be an unordered tree, and let t1, . . . , tn be all the ordered trees obtained
from t by ordering in all possible ways all the sets of siblings of t . The canonical repre-
sentative of t is the ordered tree t0 whose level representation is maximal (according to
lexicographic ordering) among the level representations of the trees ti , that is, such that

〈t0〉 = max{〈ti〉 | 1 ≤ i ≤ n}.

We can use, actually, the same algorithm as in the previous section to mine unordered
trees; however, much work is unnecessarily spent in checking repeatedly ordered trees that
correspond to the same unordered tree as one already checked. A naive solution is to com-
pare each tree to be checked with the ones already checked, but in fact this is an inefficient
process, since all ways of mapping siblings among them must be tested.

A far superior solution would be obtained if we could count frequency only for canonical
representatives. We prove next how this can be done: the use of level representations allows
us to decide whether a given (level representation of a) tree is canonical, by using an intrinsic
characterization, stated in terms of the level representation itself.

Theorem 2 A level sequence x corresponds to a canonical representative if and only if for
any level sequences y, z and any d ≥ 0 such that (y + d) · (z + d) is a subsequence of x, it
holds that y ≥ z in lexicographical order.

Proof Suppose that x corresponds to a canonical representative and that (y + d) · (z + d)

is a subsequence of x for some level sequences y, z and d ≥ 0. In this case, both y + d and
z+d are subsequences of x and, by Proposition 3, 〈y〉 and 〈z〉 are two subtrees of 〈x〉. Since
their respective level representations, y and z, appear consecutively in x, the two subtrees
must be siblings. Now, if y < z, the reordering of siblings y and z would lead to a bigger
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level representation of the same unordered tree, and x would not correspond to a canonical
representative. Therefore, y ≥ z in lexicographical order.

For the other direction, suppose that x does not correspond to a canonical representative.
Then, the ordered tree t represented by x would have two sibling subtrees r and s (appearing
consecutively in t , say r before s) that, if exchanged, would lead to a lexicographically
bigger representation. Let y = 〈r〉 and z = 〈s〉. If r and s are at level d in t , then (y + d) ·
(z + d) would be a subsequence of x = 〈t〉 (again by Proposition 3). Then, it must hold that
y < z in lexicographical order. �

Corollary 3 Let a level sequence x correspond to a canonical representative. Then its exten-
sion x · (i) corresponds to a canonical representative if and only if, for any level sequences
y, z and any d ≥ 0 such that (y + d) · (z + d) is a suffix of x · (i), it holds that y ≥ z in
lexicographical order.

Proof Suppose that x corresponds to a canonical representative, and let i be such that x ·
(i) is a level sequence. At this point, we can apply Theorem 2 to x · (i): it is a canonical
representative if and only if all subsequences of the form (y + d) · (z + d) (for appropriate
y, z, and d) satisfy that y ≥ z. But such subsequences (y + d) · (z + d) can now be divided
into two kinds: the ones that are subsequences of x and the ones that are suffixes of x · (i).

A new application of Theorem 2 to x assures that the required property must hold for
subsequences of the first kind. So, we can characterize the property that x · (i) corresponds
to a canonical representative just using the subsequences of the second kind (that is, suffixes)
as said in the statement. �

We build an incremental canonical checking algorithm, using the result of Corollary 3.
The algorithm is as follows: each time we add a node of level d to a tree t , we check for all
levels less than d that the last two child subtrees are correctly ordered. As it is an incremental
algorithm, and the tree that we are extending is canonical, we can assume that child subtrees
are ordered, so we only have to check the last two ones.

6.3 Closure-based mining

In this section, we propose TREENAT, a new algorithm to mine frequent closed trees. Fig-
ure 12 illustrates the framework.

Figure 13 shows the pseudocode of CLOSED_UNORDERED_SUBTREE_MINING. It is
similar to UNORDERED_SUBTREE_MINING, adding a checking of closure in lines 10–13.
Correctness and completeness follow from Propositions 2 and 4, and Corollary 3.

The main difference of TREENAT, with CMTreeMiner is that CMTreeMiner needs to
store all occurrences of subtrees in the tree dataset to use its pruning methods, whereas our
method does not. That means that with a small number of labels, CMTreeMiner will need to
store a huge number of occurrences, and it will take much more time and memory than our
method, that doesn’t need to store all that information. Also, with unlabeled trees, if the tree
size is big, CMTreeMiner needs more time and memory to store all possible occurrences.
For example, an unlabeled tree of size 2 in a tree of size n has n − 1 occurrences. But when
the number of labels is big, or the size of the unlabeled trees is small, CMTreeMiner will
be fast because the number of occurrences is small and it can use the power of its pruning
methods. Dealing with unordered trees, CMTreeMiner doesn’t use bipartite matching as we
do for subtree testing. However, it uses canonical forms and the storing of all occurrences.
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Fig. 12 The Closed Unordered
Mining algorithm

Fig. 13 The Closed Unordered Subtree Mining algorithm

7 Induced subtrees and labeled trees

Our method can be extended easily to deal with induced subtrees and labeled trees in order to
compare it with CMTreeMiner in Sect. 8, working with the same kind of trees and subtrees.

7.1 Induced subtrees

In order to adapt our algorithms to all induced subtrees, not only rooted, we need to
change the subtree testing procedure with a slight variation. We build a new procedure
for checking if a tree r is an induced subtree of t using the previous procedure SUB-
TREE(r, t) (ORDERED_SUBTREE(r, t) for ordered trees or UNORDERED_SUBTREE(r, t)

for unordered trees) that checks whether a tree r is a top-down subtree of tree t . It is as
follows: for every node n in tree t we consider the top-down subtree t ′ of tree t rooted at
node n. If there is at least one node that SUBTREE (r, t ′) returns true, then r is an induced
subtree of t , otherwise not. Applying this slight variation to both ordered and unordered
trees, we are able to mine induced subtrees as CMTreeMiner.

7.2 Labeled trees

We need to use a new tree representation to deal with labels in the nodes of the trees. We
represent each labeled tree using labeled level sequences (Asai et al. 2003; Nijssen and Kok
2003), a labeled extension of the level representations explained earlier.
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Fig. 14 A dataset example

Fig. 15 Example of Galois
Lattice of Closed trees

Definition 8 A labeled level sequence is a sequence ((x1, l1), . . . , (xn, ln)) of pairs of natural
numbers and labels such that x1 = 0 and each subsequent number xi+1 belongs to the range
1 ≤ xi+1 ≤ xi + 1.
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Fig. 16 Synthetic data
experimental results on Ordered
Trees: Support versus Running
Time and Memory

For example, x = ((0,A), (1,B), (2,A), (3,B), (1,C)) is a level sequence that satisfies
|x| = 6 or x = ((0,A)) · ((0,B), (1,A), (2,B))+ · ((0,C))+. Now, we are ready to represent
trees by means of level sequences (see also Chi et al. 2004).

Definition 9 We define a function 〈·〉 from the set of ordered trees to the set of labeled level
sequences as follows. Let t be an ordered tree. If t is a single node, then 〈t〉 = ((0, l0)).
Otherwise, if t is composed of the trees t1, . . . , tk joined to a common root r (where the
ordering t1, . . . , tk is the same of the children of r), then

〈t〉 = ((0, l0)) · 〈t1〉+ · 〈t2〉+ · . . . · 〈tk〉+.

Here we will say that 〈t〉 is the labeled level representation of t .

This encoding is a bijection between the ordered trees and the labeled level sequences.
This encoding 〈t〉 basically corresponds to a preorder traversal of t , where each natural
number of the node sequence represents the level of the current node in the traversal.

Figure 14 shows a finite dataset example using labeled level sequences.
The closed trees for the dataset of Fig. 14 are shown in the Galois lattice of Fig. 15.
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Fig. 17 Synthetic data
experimental results on
Unordered Trees: Support versus
Running Time and Memory

8 Applications

We tested our algorithms on synthetic and real data, and compared the results with
CMTreeMiner (Chi et al. 2001b).

All experiments were performed on a 2.0 GHz Intel Core Duo PC machine with 2 Giga-
byte main memory, running Ubuntu 7.10. As far as we know, CMTreeMiner is the state-of-
art algorithm for mining induced closed frequent trees in databases of rooted trees.

8.1 Datasets for mining closed frequent trees

We present the datasets used in this section for empirical evaluation of our closed frequent
tree mining methods. GAZELLE is a new unlabeled tree dataset. The other datasets are the
most used ones in frequent tree mining literature.

– ZAKI Synthetic Datasets. Datasets generated by the tree generator of Zaki (2002). This
program generates a mother tree that simulates a master website browsing tree. Then it
assigns probabilities of following its children nodes, including the option of backtracking
to its parent, such that the sum of all the probabilities is 1. Using the master tree, the
dataset is generated selecting subtrees according to these probabilities. It was used in
CMTreeMiner (Chi et al. 2001b) empirical evaluation.
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Fig. 18 Synthetic data
experimental results on
Unordered Trees varying the
number of nodes: Support versus
Running Time on level 1 trees
and on linear trees

– CSLOGS Dataset (Zaki 2002). It is available from Zaki’s web page. It consists of web
logs files collected over one month at the Department of Computer Science of Rensselaer
Polytechnic Institute. The logs touched 13,361 unique web pages and CSLOGS dataset
contains 59,691 trees. The average tree size is 12.

– NASA multicast data (Chalmers and Almeroth 2001). The data was measured during the
NASA shuttle launch between 14th and 21st of February, 1999. It has 333 vertices where
each vertex takes an IP address as its label. Chi et al. (2001b) sampled the data from this
NASA data set in 10 minute sampling intervals and got a data set with 1,000 transactions.
Therefore, the transactions are the multicast trees for the same NASA event at different
times.

– GAZELLE Dataset. It is obtained from KDD Cup 2000 data (Kohavi et al. 2000). This
dataset is a web log file of a real internet shopping mall (gazelle.com). This dataset of size
1.2 GB contains 216 attributes. We use the attribute ‘Session ID’ to associate to each user
session a unique tree. The trees record the sequence of web pages that have been visited
in a user session. Each node tree represents a content, assortment and product path. Trees
are not built using the structure of the web site, instead they are built following the user
streaming. Each time a user visit a page, if he has not visited it before, we take this page
as a new deeper node, otherwise, we backtrack to the node this page corresponds to, if it
is the last node visited on a concrete level. The resulting dataset consists of 225,558 trees.
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Fig. 19 CSLOGS real data
experimental results on Ordered
Trees: Support versus Running
Time and Memory

8.2 Unlabeled trees

We compare two methods of TREENAT, our algorithm for obtaining closed frequent trees,
with CMTreeMiner. The first one is TREENAT TOP-DOWN that obtains top-down subtrees
and the second one is TREENAT INDUCED that works with induced subtrees.

On synthetic data, we use the ZAKI Synthetic Datasets for rooted ordered trees restricting
the number of distinct node labels to one. We call this dataset T1MN1.

In the T1MN1 dataset, the parameters are the following: the number of distinct node
labels is N = 1, the total number of nodes in the tree is M = 10,000, the maximal level of
the tree is D = 10, the maximum fanout is F = 10 and the number of trees in the dataset is
T = 1,000,0000.

The results of our experiments on synthetic data are shown in Figs. 16 and 17. We see
there that our algorithm TREENAT compares well to CMTreeMiner for top-down subtrees,
using less memory in both ordered and unordered cases. Our induced subtree algorithm
has similar performance to CMTreeMiner in the ordered case, but it’s a bit worse for the
unordered case, due to the fact that we take care of avoiding repetitions of structures that are
isomorphic under the criterion of unordered trees (which CMTreeMiner would not prune).
In these experiments the memory that our method uses depends mainly on the support, not
as CMTreeMiner.
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Fig. 20 CSLOGS real data
experimental results on
Unordered Trees: Support versus
Running Time and Memory

In order to understand the behavior of TREENAT and CMTreeMiner respect to the tree
structure of input data, we compare the mining performances of TREENAT and CMTree-
Miner for two sets of 10,000 identical unlabeled trees, one where all the trees are linear
with 10 nodes and another one where all the trees are of level 1 with 10 nodes (1 root and
9 leaves). We notice that

– CMTreeMiner cannot mine the dataset with unordered trees of level 1 and 10 nodes. The
maximum number of nodes of unordered trees that CMTreeMiner is capable of mining
is 7.

– TREENAT INDUCED has worst performance than CMTreeMiner for linear trees. How-
ever, TREENAT TOP-DOWN has similar results to CMTreeMiner.

Figure 18 shows the results of these experiments varying the number of nodes.
CMTreeMiner outperforms TREENAT with linear trees, and TREENAT outperforms
CMTreeMiner with trees of level 1. CMTreeMiner needs to store all subtree occurrences,
but it can use it pruning methods. When the number of leaf nodes is large, the number of
occurrences is large and CMTreeMiner has to keep a huge quantity of occurrences. When
the trees are linear, CMTreeMiner uses its pruning techniques to outperform TREENAT

INDUCED.
We tested our algorithms on two real datasets. The first one is the CSLOGS Dataset.

As it is a labeled dataset, we changed it to remove the labels for our experiments with
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Fig. 21 Gazelle real data
experimental results on Ordered
Trees: Support versus Running
Time and Memory

unlabeled trees. Figures 19 and 20 show the results. We see that CMTreeminer needs more
than 1 GB of memory to execute for supports lower than 31,890 in the ordered case and
50,642 for the unordered case. The combinatorial complexity of this dataset seems too hard
for CMTreeMiner, since it stores all occurrences of all possible subtrees of one label.

The second real dataset is GAZELLE. Figures 21 and 22 show the results of our experi-
ments on this real-life data: we see that our method is better than CMTreeMiner at all values
of support, both for ordered and unordered approaches. Again CMTreeMiner needs more
memory than available to run for small supports.

Finally, we tested our algorithms using the NASA multicast data. Neither CMTreeMiner
or our method could mine the data considering it unlabeled. The combinatorics are too hard
to try to solve it using less than 2 GB of memory. An incremental method could be useful.

8.3 Labeled trees

On synthetic data, we use the same dataset as for the unlabeled case. In brief, a mother tree is
generated first with the following parameters: the number of distinct node labels from N = 1
to N = 100, the total number of nodes in the tree M = 10,000, the maximal level of the tree
D = 10 and the maximum fanout F = 10. The dataset is then generated by creating subtrees
of the mother tree. In our experiments, we set the total number of trees in the dataset to be
from T = 0 to T = 8,000,000.
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Fig. 22 Gazelle real data
experimental results on
Unordered Trees: Support versus
Running Time and Memory

Figures 23 and 24 show the results of our experiments on these artificial data: we see that
our method outperforms CMTreeMiner if the number of labels is small, but CMTreeMiner
wins for large number of labels, both for ordered and unordered approaches. On the size of
datasets, we observe that the time and memory needed for our method and CMTreeMiner
are linear respect the size of the dataset. Therefore, in order to work with bigger datasets, an
incremental method is needed.

The main difference of TREENAT, with CMTreeMiner is that CMTreeMiner needs to
store all occurrences of subtrees in the tree dataset to use its pruning methods, whereas
our method does not. CMTreeMiner uses occurrences and pruning techniques based on
them. TREENAT doesn’t store occurrences. For labeled trees with a small number of la-
bels, CMTreeMiner will need to store a huge number of occurrences, and it will take much
more time and memory than TREENAT, that doesn’t need to store all that information. Also,
with unlabeled trees, if the tree size is big, CMTreeMiner needs more time and memory to
store all possible occurrences. But if the number of labels is big, CMTreeMiner will be fast
because the number of occurrences is small and it can use the power of its pruning methods.

On real dataset CSLOGS, CMTreeMiner outperforms our method as the number of labels
is not low as shown in Fig. 25.
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Fig. 23 Synthetic data
experimental results on Labeled
Trees: Number of Labels versus
Running Time and Memory

9 Conclusions

We have described a rather formal study of trees from the point of view of closure-based
mining. Progressing beyond the plain standard support-based definition of a closed tree, we
have developed a rationale (in the form of the study of the operation of intersection on trees,
both in combinatorial and algorithmic terms) for defining a closure operator, not on trees
but on sets of trees, and we have indicated the most natural definition for such an operator;
we have provided a mathematical study that characterizes closed trees, defined through the
plain support-based notion, in terms of our closure operator, plus the guarantee that this
structuring of closed trees gives us the ability to find the support of any frequent tree. Our
study has provided us, therefore, with a better understanding of the closure operator that
stands behind the standard support-based notion of closure, as well as basic algorithmics on
the data type. Then we have presented efficient algorithms for subtree testing and for mining
ordered and unordered frequent closed trees.

A number of variants have suggested themselves for further study: we have evaluated the
behavior of our algorithms if we take into account labels, a case where our algorithm does
not fare as well as in the unlabeled case; and we have considered also induced subtrees.

We believe that the sequential form of the representation used, where the number-
encoded level furnishes the two-dimensional information, is key in the fast processing of
the data, and will be useful in further studies, algorithms, and applications of similar tech-
niques. In particular, our recent work (Balcázar et al. 2008) includes an analysis of the
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Fig. 24 Synthetic data
experimental results on Labeled
Trees: Dataset Size versus
Running Time and Memory

Fig. 25 CSLOGS real data
experimental results on labeled
ordered trees: Support versus
Running Time

extraction of association rules of full confidence out of the closed sets of trees, along the
same lines as the corresponding process on itemsets, and we have found there an interest-
ing phenomenon that does not appear if other combinatorial structures are analyzed: rules
whose propositional counterpart is nontrivial are, however, always implicitly true in trees
due to the peculiar combinatorics of the structures. That study is not yet finished since we
have powerful heuristics to treat those implicit rules but wish to obtain a full mathemat-
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ical characterization. Additionally, we have recently tackled the problem of constructing
closed sets of trees in the case where the dataset is so large that it is not possible to store
it: we have proposed a development of algorithms based on those reported here for a Data
Stream model (Bifet and Gavaldà 2008). We hope to obtain further progress along these
lines: confidence-bounded association rules are not yet really understood, and the problem
of how to find them in the Data Stream model is also an interesting issue, worthy of further
study. We also keep in mind options for further work of a more applied nature, such as our
original motivation for this study, namely, the potential advantages of running closure-based
tree mining on navigation patterns in order to improve a novel, decentralized, adaptive web
crawler that resorts to a P2P-style of cooperation to offer a new notion of web search engine.
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