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Abstract The goal of pool-based active learning is to choose the best input points to gather
output values from a ‘pool’ of input samples. We develop two pool-based active learning
criteria for linear regression. The first criterion allows us to obtain a closed-form solution
so it is computationally very efficient. However, this solution is not necessarily optimal in
the single-trial generalization error analysis. The second criterion can give a better solution,
but it does not have a closed-form solution and therefore some additional search strategy is
needed. To cope with this problem, we propose a practical procedure which enables us to
efficiently search for a better solution around the optimal solution of the first method. Sim-
ulations with toy and benchmark datasets show that the proposed active learning method
compares favorably with other active learning methods as well as the baseline passive learn-
ing scheme. Furthermore, the usefulness of the proposed active learning method is also
demonstrated in wafer alignment in semiconductor exposure apparatus.

Keywords Pool-based active learning · Approximate linear regression · Covariate shift ·
Importance-weighted least-squares · ALICE

1 Introduction

Active learning1 (or experimental design) is a problem of optimally designing the location
of training input points in supervised learning scenarios (Fedorov 1972). Choice of training

1In this paper, we use the term “active learning” for batch selection of training input location. However, these
days, it tends to be used for a sequential choice of training input location in an interactive manner.
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input location is particularly important when the sampling cost of output values is very high,
which is often the case in the analysis of, e.g., medical data (Coomans et al. 1983), biological
data (Baldi and Brunak 1998), or chemical data (Warmuth et al. 2003).

1.1 Population-based vs. pool-based active learning

Depending on the situations, active learning can be categorized into two types: population-
based and pool-based.

Population-based active learning indicates the situation where we know the distribution
of test input points and we are allowed to locate training input points at any desired po-
sitions (e.g., Wiens 2000; Kanamori and Shimodaira 2003; Sugiyama 2006). The goal of
population-based active learning is to find the optimal training input density from which we
generate training input points.

On the other hand, in pool-based active learning, the test input distribution is unknown
but samples from the test input distribution are given (e.g., McCallum and Nigam 1998;
Bach 2007; Kanamori 2007). The goal of pool-based active learning is to choose the best
input samples from the pool of test input samples. If we have infinitely many test input
samples, the pool-based problem is reduced to the population-based problem.

In this paper, we address the problem of pool-based active learning in linear regression
scenarios and propose a new algorithm.

1.2 Active learning with misspecified models and covariate shift

In traditional active learning research (Fedorov 1972; Cohn et al. 1996; Fukumizu 2000),
it is often assumed that the model used for function learning is correctly specified, i.e.,
it can exactly realize the learning target function. However, such an assumption may not
be satisfied in reality and the violation of this assumption can cause significant performance
degradation (Wiens 2000; Kanamori and Shimodaira 2003; Sugiyama 2006). For this reason,
we do not assume from the beginning that our model is correct in this paper. This highly
enlarges the range of application of active learning techniques.

In the active learning scenarios, the distribution of training input points is generally dif-
ferent from that of test input points since the location of training input points is designed by
users. Such a situation is often referred to as covariate shift in statistics (Shimodaira 2000).
Covariate shift does not matter when the model is correctly specified. However, when we
deal with misspecified models, covariate shift has a significant influence—for example, or-
dinary least-squares (OLS) is no longer unbiased even asymptotically. Therefore, we need
to explicitly take the bias caused by covariate shift into account when we work with mis-
specified models. A standard approach to alleviating the influence of covariate shift is to
use an importance-weighting technique (Fishman 1996), where the term ‘importance’ refers
to the ratio of test and training input densities. For example, in parameter learning, OLS
is biased, but Importance-Weighted Least-Squares (IWLS) is asymptotically unbiased (Shi-
modaira 2000).

1.3 Importance estimation in pool-based active learning

In population-based active learning, importance-weighting techniques can be employed for
bias reduction in a straightforward manner since the test input distribution is accessible by
assumption and the training input distribution is also known since it is designed by ourselves
(Wiens 2000; Kanamori and Shimodaira 2003; Sugiyama 2006). However, in pool-based
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active learning, the test and training input distributions may both be unknown and therefore
the importance weights cannot be directly computed. A naive approach to coping with this
problem is to estimate the training and test input distributions from training and test input
samples. However, density estimation is known to be a hard problem particularly in high
dimensional problems. Therefore, such a naive approach may not be useful in practice. This
difficulty could be eased by employing recently developed methods of direct importance
estimation (Huang et al. 2007; Bickel et al. 2007; Sugiyama et al. 2008), which allow us
to obtain the importance weight without going through density estimation. However, these
methods still contain some estimation error.

A key observation in pool-based active learning is that we choose training input points
from the pool of test input points. This implies that our training input distribution is defined
over the test input distribution, i.e., the training input distribution can be expressed as a
product of the test input distribution and a resampling bias function. This decomposition
allows us to directly compute the importance weight based on the resampling bias function,
which is more accurate and computationally more efficient than the naive density estimation
approach and the direct importance estimation approaches.

1.4 Single-trial analysis of generalization error

In practice, we are only given a single realization of training samples. Therefore, ideally,
we want to have an estimator of the generalization error that is accurate in each single trial.
However, we may not be able to avoid taking the expectation over the training output noise
since it is not generally possible to know the realized value of noise. On the other hand,
the location of the training input points is accessible by nature. Motivated by this fact, we
propose to estimate the generalization error without taking the expectation over training
input points. More specifically, we evaluate the unbiasedness of the generalization error in
terms of the conditional expectation of training output noise given training input points (see
also Sugiyama et al. 2009).

To illustrate a possible advantage of this conditional expectation approach, let us consider
a simple population-based active learning scenario where only one training sample (x, y) is
gathered (see Fig. 1). Suppose that the input x is drawn from a user-chosen training input
distribution and y is contaminated by additive noise ε. The solid curves in Fig. 1(a) depict
Gpa (ε|x), the generalization error for a training input density pa as a function of the training
output noise ε given a training input point x. The three solid curves correspond to the cases
where the realizations of the training input point x are a1, a2, and a3, respectively. The
value of the generalization error for the training input density pa in the full-expectation
approach is depicted by the dash-dotted line, where the generalization error is expected over
both the training output noise ε and the training input points x (i.e., the mean of the three
solid curves). The values of the generalization error in the conditional-expectation approach
are depicted by the dotted lines, where the generalization errors are expected only over the
training output noise ε, given x = a1, a2, a3, respectively (i.e., the mean of each solid curve).
The graph in Fig. 1(b) depicts the generalization errors for another training input density pb

in the same manner.
In the full-expectation framework, the density pa is judged to be better than pb regardless

of the realization of the training input point since the dash-dotted line Fig. 1(a) is lower than
that in Fig. 1(b). However, as the solid curves show, pa is often worse than pb in single trials.
On the other hand, in the conditional-expectation framework, the goodness of the density is
adaptively judged depending on the realizations of the training input point x. For example,
pb is judged to be better than pa if a2 and b3 are realized, or pa is judged to be better than pb
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Fig. 1 Schematic illustrations of the conditional-expectation and full-expectation of the generalization error

if a3 and b1 are realized. That is, the conditional-expectation framework may provide a finer
choice of the training input density (and the training input points) than the full-expectation
framework.

1.5 Contributions of this paper

We extend two population-based active learning methods proposed by Wiens (2000) and
Sugiyama (2006) to pool-based scenarios. The pool-based extension of the method by Wiens
(2000) allows us to obtain a closed-form solution of the best resampling bias function; thus
it is computationally very efficient. However, this method is based on the full-expectation
analysis of the generalization error, so the obtained solution is not necessarily optimal in
terms of the single-trial generalization error. On the other hand, the pool-based extension
of the method by Sugiyama (2006) can give a better solution since it is based on the
conditional-expectation analysis of the generalization error. However, it does not have a
closed-form solution and therefore some additional search strategy is needed.

To cope with this problem, we propose a practical procedure by combining the above
two pool-based active learning methods—we use the analytic optimal solution of the
full-expectation method for efficiently searching for a better solution in the conditional-
expectation method. Simulations with toy and benchmark datasets show that the proposed
active learning method compares favorably with other active learning methods as well as
the baseline passive learning scheme. Furthermore, the proposed active learning method is
shown to be also useful in wafer alignment in semiconductor exposure apparatus.
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The rest of this paper is organized as follows. In Sect. 2, the complete algorithm of
the proposed active learning method is described. In Sect. 3, derivation and justification of
the proposed algorithm is given. In Sect. 4, the relation between the proposed and existing
active learning methods is discussed. In Sect. 5, numerical results using toy and benchmark
datasets are presented. In Sect. 6, the proposed method is applied to a wafer alignment
problem in semiconductor exposure apparatus. Finally, in Sect. 7, concluding remarks and
future prospects are given.

2 A new pool-based active learning method

In this section, we formulate the pool-based active learning problem in linear regression
scenarios and describe our new algorithm. Derivation of the proposed algorithm is given in
Sect. 3.

2.1 Formulation of pool-based active learning in regression

We address a regression problem of learning a real-valued function f (x) defined on D ⊂ R
d .

We are given a ‘pool’ of test input points, {x te
j }nte

j=1, which are drawn independently from an
unknown test input distribution with density pte(x). We assume that pte(x) > 0 for all x ∈ D.
From the pool, we are allowed to choose ntr (�nte) input points for observing output values.
Let {x tr

i }ntr
i=1 be input points selected from the pool and {y tr

i }ntr
i=1 be corresponding output

values, which are called training samples:

{(x tr
i , y

tr
i ) | y tr

i = f (x tr
i ) + εtr

i }ntr
i=1, (1)

where {εtr
i }ntr

i=1 are i.i.d. noise with mean zero and unknown variance σ 2.
The goal of the regression task is to accurately predict the output values {f (x te

j )}nte
j=1 at

all test input points2 {x te
j }nte

j=1. The squared loss is adopted as our error metric:

1

nte

nte∑

j=1

(
f̂ (x te

j ) − f (x te
j )

)2
, (2)

where f̂ (x) is a function learned from the training samples {(x tr
i , y

tr
i )}ntr

i=1.
The above formulation is summarized in Fig. 2.

2.2 Weighted least-squares for linear regression models

The following linear regression model is used for learning:

f̂ (x) =
t∑

�=1

θ�ϕ�(x), (3)

2Under the assumption that ntr � nte, the difference between the prediction error at all test input points
{xte

j
}nte
j=1 and the remaining test input points {xte

j
}nte
j=1\{xtr

i
}ntr
i=1 is negligibly small. More specifically, if

ntr = o(
√

nte), all the discussions in this paper is still valid even when the prediction error is evaluated only
at the remaining test input points.
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Fig. 2 Regression problem

where {ϕ�(x)}t
�=1 are fixed linearly independent basis functions. θ = (θ1, θ2, . . . , θt )

� are
parameters to be learned, where � denotes the transpose of a vector or a matrix.

The parameter θ of our regression model is learned by Weighted Least-Squares (WLS)
with a weight function w(x) (>0 for all x ∈ D), i.e.,

θ̂W = argmin
θ

[
ntr∑

i=1

w(x tr
i )

(
f̂ (x tr

i ) − y tr
i

)2

]
, (4)

where the subscript ‘W’ denotes ‘Weighted’. Our specific choice of the weight function will
be shown later. Note that the solution θ̂W is invariant under constant scaling of the weight
function w(x) (> 0). Let X be the ntr × t matrix with the (i, �)-th element

Xi,� = ϕ�(x
tr
i ). (5)

Let W be the ntr × ntr diagonal matrix with the i-th diagonal element

Wi,i = w(x tr
i ). (6)

Then θ̂W is given in a closed-form as

θ̂W = LWy tr, (7)

where

LW = (X�WX)−1X�W , (8)

y tr = (y tr
1 , y tr

2 , . . . , y tr
ntr

)�. (9)

2.3 Proposed active learning algorithm: P-ALICE

The goal of pool-based active learning is, from the pool of test input points {x te
j }nte

j=1, to
choose the best input points {x tr

i }ntr
i=1 for gathering output values {y tr

i }ntr
i=1 that minimizes the

prediction error (2). Here, our pool-based active learning algorithm is summarized without
going into the technical details; the derivation as well as its justification will be given in
Sect. 3.

First, a candidate set of training input points {x tr
i }ntr

i=1 is prepared, which is a subset of
{x te

j }nte
j=1. More specifically, a resampling bias function b(x) (>0 for all x ∈ D) is prepared



Mach Learn (2009) 75: 249–274 255

and ntr training input points are chosen from the pool of test input points {x te
j }nte

j=1 with
probability proportional to

{b(x te
j )}nte

j=1. (10)

Later, we explain how a family of useful resampling bias functions is prepared. Then the
‘quality’ of the candidate training input points {x tr

i }ntr
i=1 is evaluated by

P-ALICE = tr(ÛLWL�
W), (11)

where the weight function w(x) included in LW via W is defined as3

w(x te
j ) = 1

b(x te
j )

. (12)

Û is the t × t matrix with the (�, �′)-th element

Û�,�′ = 1

nte

nte∑

j=1

ϕ�(x
te
j )ϕ�′(x te

j ). (13)

We call the above criterion pool-based ALICE (PALICE), which is a pool-based ex-
tension of a population-based active learning criterion ALICE (Active Learning using the
Importance-weighted least-squares learning based on Conditional Expectation of the gen-
eralization error) (Sugiyama 2006); P-ALICE is an estimator of the prediction error defined
by (2), which will be detailed in Sect. 3.

Then the above evaluation is repeated for each resampling bias function in our candidate
set and the best one with the smallest P-ALICE score is chosen. Once the resampling bias
function and the training input points are chosen, training output values {y tr

i }ntr
i=1 are gathered

at the chosen location and a linear regression model (3) is trained using WLS with the chosen
weight function.

In the above procedure, the choice of the candidates of the resampling bias function
b(x) is arbitrary. As a heuristic, we propose using the following family of resampling bias
functions parameterized by a scalar λ:

bλ(x) =
(

t∑

�,�′=1

[Û−1]�,�′ϕ�(x)ϕ�′(x)

)λ

. (14)

The parameter λ controls the ‘shape’ of the training input distribution—when λ = 0, the
weight is uniform over all test input samples. Thus the above choice includes passive learn-
ing (the training and test distributions are equivalent) as a special case. The best value of λ

3The expectation over a probability density q(x) can be transformed into the expectation over another proba-
bility density p(x) by setting the weight function w(x) as the ratio of two input densities, w(x) = p(x)/q(x):

∫
A(x)q(x)dx =

∫
A(x)w(x)p(x)dx,

which is known as the importance sampling technique (Fishman 1996). The situation where training and test
input distributions are different is called covariate shift (Shimodaira 2000). Active learning naturally induces
covariate shift and the bias caused by covariate shift can be compensated by the use of importance-weighted
LS (see Sect. 4.1 for detail). In Sect. 3.2, we will show that the importance weight in the pool-based setting is
given by the reciprocal of the resampling bias function. Note that this importance-weighting idea is a general
result and its application is not limited to active learning.
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Input: Test input points {x te
j }nte

j=1 and basis functions {ϕ�(x)}t
�=1.

Output: Learned parameter θ̂W

Compute the t × t matrix Û with Û�,�′ = 1
nte

∑nte
j=1 ϕ�(x

te
j )ϕ�′(x te

j );
For several different values of λ (possibly around λ = 1/2)

Compute {bλ(x
te
j )}nte

j=1 with bλ(x) = (
∑t

�,�′=1[Û−1]�,�′ϕ�(x)ϕ�′(x))λ;
Choose X tr

λ = {x tr
i }ntr

i=1 from {x te
j }nte

j=1 with probability proportional to {bλ(x
te
j )}nte

j=1;
Compute the ntr × t matrix Xλ with [Xλ]i,� = ϕ�(x

tr
i );

Compute the ntr × ntr diagonal matrix W λ with [Wλ]i,i = (bλ(x
tr
i ))

−1;
Compute Lλ = (X�

λ W λXλ)
−1X�

λ W λ;
Compute P-ALICE(λ) = tr(ÛLλL

�
λ );

End
Compute λ̂ = argminλ P-ALICE(λ);
Gather training output values y tr = (y tr

1 , y tr
2 , . . . , y tr

ntr
)� at X tr

λ̂
;

Compute θ̂W = Lλ̂y
tr;

Fig. 3 Pseudo code of proposed pool-based active learning algorithm

may be searched for by simple multi-point search, i.e., the value of P-ALICE is computed
for several different values of λ and the minimizer is chosen. In practice, solution search
may be intensively carried out around λ = 1/2 (the reason will be explained in Sect. 3.6; an
example of intensive search around λ = 1/2 is given in Sect. 5.1).

A pseudo code of the proposed pool-based active learning algorithm is described in
Fig. 3.

3 Justification of proposed active learning algorithm

In this section, we explain how we came up with the active learning algorithm described in
Sect. 2.3.

3.1 Overview of this section

The proposed P-ALICE criterion (11) is an extention of a population-based active learn-
ing criterion called ALICE (Active Learning using the Importance-weighted least-squares
learning based on Conditional Expectation of the generalization error)4 (Sugiyama 2006) to
pool-based scenarios. Our choice of candidates of the resampling bias function (14) is moti-
vated by a pool-based extension of another population-based active learning method which
we call Full-expectation Variance-only active learning for WLS (FVW) (Wiens 2000).

We review ALICE in Sect. 3.2 and extend it to the pool-based scenarios in Sect. 3.3. Then
we review FVW in Sect. 3.4 and extend it to the pool-based scenarios in Sect. 3.5. Finally,
in Sect. 3.6, P-ALICE and P-FVW are combined and the proposed active learning algorithm
is obtained.

4ALICE corresponds to Conditional-expectation Variance-only active learning for WLS (CVW), if we ex-
press the name consistent with other methods.
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3.2 Population-based active learning criterion: ALICE

Here we review a population-based active learning criterion ALICE.
In the population-based framework, the test input density pte(x) is given (e.g., Fukumizu

2000; Wiens 2000; Kanamori and Shimodaira 2003; Sugiyama 2006). The goal is to de-
termine the best training input density ptr(x) from which training input points {x tr

i }ntr
i=1 are

drawn.
The aim of the regression task in the population-based framework is to accurately predict

the output values for all test input samples drawn from pte(x). Thus the error metric (often
called the generalization error) is

G′ =
∫ (

f̂ (x te) − f (x te)
)2

pte(x
te)dx te. (15)

Suppose the regression model (3) approximately5 includes the learning target function
f (x), i.e., for a scalar δ such that |δ| is small, f (x) is expressed as

f (x) = g(x) + δr(x), (16)

where g(x) is the optimal approximation to f (x) by the model (3):

g(x) =
t∑

�=1

θ∗
� ϕ�(x). (17)

θ∗ = (θ∗
1 , θ∗

2 , . . . , θ∗
t )� is the unknown optimal parameter defined by

θ∗ = argmin
θ

G′. (18)

δr(x) in (16) is the residual function, which is orthogonal to {ϕ�(x)}t
�=1 under pte(x) (see

Fig. 4):
∫

r(x te)ϕ�(x
te)pte(x

te)dx te = 0 for � = 1,2, . . . , t. (19)

The function r(x) governs the nature of the model error, while δ is the possible magnitude
of this error. In order to separate these two factors, the following normalization condition on
r(x) is further imposed:

∫ (
r(x te)

)2
pte(x

te)dx te = 1. (20)

Let E{εi }ntr
i=1

be the expectation over the noise {εtr
i }ntr

i=1. Then, the generalization error ex-

pected over the training output noise can be decomposed into6 the (squared) bias term B ,

5In traditional active learning literature (Fedorov 1972; Cohn et al. 1996; Fukumizu 2000), the model is often
assumed to be correctly specified, i.e., the target function f (x) can be realized by the model (3). However,
this may not be satisfied in practice and these methods are shown to perform poorly when model correctness
is not fulfilled (e.g., Wiens 2000; Kanamori and Shimodaira 2003; Sugiyama 2006). On the other hand, some
domain-specific knowledge is often available and it may be possible to construct a ‘good’ model, which is not
exactly correct, but approximately correct. This is the situation we are addressing here. When the model is
heavily misspecified, it is necessary to perform model selection, which is discussed in Sugiyama and Rubens
(2008); see also Sect. 7.
6Sometimes B + δ2 is referred to as the bias, but they are treated separately here since B is reducible while

δ2 is constant for a fixed model.
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Fig. 4 Orthogonal
decomposition of f (xtr)

the variance term V , and the model error δ2:

E
{εi }ntr

i=1

G′ = B + V + δ2, (21)

where

B =
∫ (

E
{εi }ntr

i=1

f̂ (x te) − g(x te)

)2

pte(x
te)dx te, (22)

V =
∫

E
{εi }ntr

i=1

(
f̂ (x te) − E

{εi }ntr
i=1

f̂ (x te)

)2

pte(x
te)dx te. (23)

Since δ is constant which depends neither on ptr(x) nor {x tr
i }ntr

i=1, δ2 is subtracted from G′

and define it by G.

G = G′ − δ2. (24)

For parameter learning, importance-weighted least-squares (IWLS) is used (Shimodaira
2000), i.e., (4) with the weight function w(x) being the ratio of densities called the impor-
tance ratio:

w(x) = pte(x)

ptr(x)
. (25)

The solution θ̂W is given by (7).
Let GW, BW, and VW be G, B , and V for the learned function obtained by IWLS, respec-

tively. Let U be the t × t matrix with the (�, �′)-th element

U�,�′ =
∫

ϕ�(x
te)ϕ�′(x te)pte(x

te)dx te. (26)

Then, for IWLS with an approximately correct model, B and V are expressed as follows
(Sugiyama 2006):

BW = Op(δ2n−1
tr ), (27)

VW = σ 2tr(ULWL�
W) = Op(n−1

tr ). (28)
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Note that the asymptotic order in the above equations is in probability since random vari-
ables {x tr

i }ntr
i=1 are included. The above equations imply that if7 δ = op(1),

E
{εi }ntr

i=1

GW = σ 2tr(ULWL�
W) + op(n−1

tr ). (29)

The active learning criterion ALICE is motivated by this asymptotic form, i.e., ALICE
chooses the training input density ptr(x) from the set P of all strictly positive probability
densities8 as

pALICE
tr = argmin

ptr∈P
ALICE, (30)

where

ALICE = tr(ULWL�
W). (31)

Practically, P may be replaced by a finite set P̂ of strictly positive probability densities and
choose the one that minimizes ALICE from the set P̂ .

3.3 Extension of ALICE to pool-based scenarios: P-ALICE

Our basic idea of P-ALICE is to extend the population-based ALICE method to the pool-
based scenario, where pte(x) is unknown, but a pool of test input samples {x te

i }nte
i=1 drawn

independently from pte(x) is given. Under the pool-based setting, the following two quanti-
ties included in ALICE are inaccessible:

(A) The expectation over pte(x) contained in U .
(B) The importance ratio pte(x)/ptr(x) at training input points {x tr

i }ntr
i=1 contained in LW

through W .

Regarding (A), the expectation over pte(x) may be approximated by the expectation over
test input samples {x te

i }nte
i=1, which is known to be consistent. However, approximating (B) is

not straightforward (as explained in Sect. 1.3).
In pool-based active learning, training input points are chosen from the pool of test in-

put points following a resampling bias function b(x). This implies that our training input
distribution is defined over the test input distribution, i.e., the training input distribution is
expressed as a product of the test input distribution and a resampling bias function b(x)

(cf. Kanamori 2007):

ptr(x
te
j ) ∝ pte(x

te
j )b(x te

j ). (32)

This immediately shows that the importance weight w(x te
j ) is given by

w(x te
j ) ∝ 1

b(x te
j )

. (33)

7Since δ is the model error which is a constant, the expression δ = op(1) is not achievable in reality. However,
such an assumption seems common in the analysis of approximately correct models and this roughly means
δ is small.
8More precisely, ALICE depends not only on the training input density ptr(x), but also the realized values
{xtr

i
}ntr
i=1 of the input points. See Sect. 7 for some additional discussions on this issue.
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Note that the scaling factor of w(x) is irrelevant in IWLS (cf. (4)). Equation (33) is more
accurate and computationally more efficient than the naive density estimation approach and
the direct importance estimation approaches. Consequently, we obtain the P-ALICE crite-
rion (11).

3.4 Population-based active learning criterion: FVW

Next, we show how we came up with the candidate set of resampling bias functions
given in (14). Our choice is based on a population-based active learning method proposed
by Wiens (2000). First, we consider the population-based setting and briefly review this
method.

For IWLS, Kanamori and Shimodaira (2003) proved that the generalization error ex-
pected over training input points {x tr

i }ntr
i=1 and training output noise {εtr

i }ntr
i=1 is asymptotically

expressed as

E
{xi }ntr

i=1

E
{εi }ntr

i=1

GW = 1

ntr
tr(U−1S) + σ 2

ntr
tr(U−1T ) + O(ntr

− 3
2 ), (34)

where E{xi }ntr
i=1

is the expectation over training input points {x tr
i }ntr

i=1. S and T are the t × t

matrices with the (�, �′)-th elements

S�,�′ = δ2
∫

ϕ�(x
te)ϕ�′(x te)

(
r(x te)

)2
w(x te)pte(x

te)dx te, (35)

T�,�′ =
∫

ϕ�(x
te)ϕ�′(x te)w(x te)pte(x

te)dx te, (36)

where w(x) above is the importance ratio (25). Note that 1
ntr

tr(U−1S) corresponds to the

squared bias while σ 2

ntr
tr(U−1T ) corresponds to the variance.

It can be shown (Kanamori and Shimodaira 2003; Sugiyama 2006) that if δ = o(1),

E
{xi }ntr

i=1

E
{εi }ntr

i=1

GW = σ 2

ntr
tr(U−1T ) + o(ntr

−1). (37)

Based on this asymptotic form, a population-based active learning criterion, which we refer
to as Full-expectation Variance-only active learning for WLS (FVW), is given as follows
(Wiens 2000):

p
FVW
tr = argmin

ptr∈P
FVW, (38)

where

FVW = 1

ntr
tr(U−1T ). (39)

A notable feature of FVW is that the optimal training input density p
FVW
tr (x) can be ob-

tained in a closed-form (Wiens 2000; Kanamori 2007):

p
FVW
tr (x) ∝ pte(x)bFVW(x), (40)
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where

bFVW(x) =
(

t∑

�,�′=1

[U−1]�,�′ϕ�(x)ϕ�′(x)

) 1
2

. (41)

Note that (40) implies that the importance ratio for the optimal training input density
p

FVW
tr (x) is given by

wFVW(x) ∝ 1

bFVW(x)
. (42)

3.5 Extension of FVW to pool-based scenarios: P-FVW

If the values of the function bFVW(x) at the test input points {x te
j }nte

j=1 are available, they
can be used as a resampling bias function in pool-based active learning. However, since U

is unknown in the pool-based scenario, it is not possible to directly compute the values of
bFVW(x) at the test input points {x te

j }nte
j=1. To cope with this problem, we propose replacing U

with an empirical estimate Û . Then, the resampling bias function {bP-FVW(x te
j )}nte

j=1 is given
by

bP-FVW(x te
j ) =

(
t∑

�,�′=1

[Û−1]�,�′ϕ�(x
te
j )ϕ�′(x te

j )

) 1
2

. (43)

The importance weight is given as

wP-FVW(x te
j ) ∝ 1

bP-FVW(x te
j )

. (44)

3.6 Combining P-ALICE and P-FVW

It was shown that P-FVW has a closed-form solution of the optimal resampling bias function.
This directly suggests to use bP-FVW(x te

j ) for active learning. Nevertheless, we argue that it
is possible to further improve the solution.

The point of our argument is the way the generalization error is analyzed—the optimality
of FVW is in terms of the expectation over both training input points {x tr

i }ntr
i=1 and training out-

put noise {εtr
i }ntr

i=1 (see (34)), while ALICE is optimal in terms of the conditional expectation
over training output noise {εtr

i }ntr
i=1 given {x tr

i }ntr
i=1. The former is called the full-expectation

(or data-independent) analysis while the latter is called the conditional-expectation (or input-
dependent) analysis (Sugiyama et al. 2009).

What we really want to evaluate in reality is the single-trial generalization error, i.e.,
the generalization error where both {x tr

i }ntr
i=1 and {εtr

i }ntr
i=1 are given and fixed. However, the

single-trial generalization error cannot be directly evaluated since the noise {εtr
i }ntr

i=1 is not
accessible in practice. On the other hand, the training input points {x tr

i }ntr
i=1 are known and

accessible in the current setting. The idea of the conditional-expectation approach is to make
use of the information provided by the realized input points {x tr

i }ntr
i=1. It was shown that the

conditional-expectation approach is provably more accurate in the single-trial analysis than
the full-expectation approach (Sugiyama 2006), which is explained below.

ALICE and FVW are both variance estimators; the difference is that ALICE is an estima-
tor of conditional variance expected over {εtr

i }ntr
i=1 given {x tr

i }ntr
i=1, while FVW is an estimator
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of full variance expected over both {εtr
i }ntr

i=1 and {x tr
i }ntr

i=1. ALICE (31) and FVW (39) are
related to each other by

ALICE = FVW + Op(n
− 3

2
tr ), (45)

implying that they are actually equivalent asymptotically. However, they are different in

the order of n−1
tr ; indeed, if δ = op(n

− 1
4

tr ) and terms of op(n−3
tr ) are ignored, the following

inequality holds (see Sugiyama 2006, for its proof):

E
{εi }ntr

i=1

(σ 2FVW − GW)2 ≥ E
{εi }ntr

i=1

(σ 2ALICE − GW)2. (46)

This implies that σ 2ALICE is asymptotically a more accurate estimator of the single-trial
generalization error GW than σ 2FVW.

This analysis suggests that using P-ALICE is more suitable than P-FVW. However, a
drawback of P-ALICE is that a closed-form solution is not available—thus, candidates of
training input samples need to be prepared and the best solution should be searched for
from the candidates. To ease this problem, our heuristic is to use the closed-form solution
of P-FVW as a ‘base’ candidate and search for a better solution around the vicinity of the
P-FVW solution. More specifically, a family of resampling bias functions (14) is consid-
ered, which is parameterized by λ. This family consists of the optimal solution of P-FVW

(λ = 1/2) and its variants (λ �= 1/2); passive learning is also included as a special case
(λ = 0) in this family. We note that the way the resampling bias function is parameterized
in (14) is just a heuristic; alternative strategies may be used for parameterizing resampling
bias functions. Using a richer function family will improve the search performance, but this
increases the computation time in turn. The current heuristic is very simple and contain only
one parameter λ, but we experimentally show in Sect. 5 that this simple heuristic works
well.

The extensive experimental results in Sect. 5 show that an additional search using
P-ALICE tends to improve the active learning performance over P-FVW.

4 Relation to existing methods

In this section, the proposed active learning method is qualitatively compared with existing
methods.

4.1 Conditional-expectation variance-only active learning for OLS: CVO

Let us begin with population-based scenarios. A traditional way to learn the parameters in
the regression model (3) is Ordinary Last-Squares (OLS), i.e., the parameter vector θ is
determined as follows.

θ̂O = argmin
θ

[
ntr∑

i=1

(
f̂ (x tr

i ) − y tr
i

)2

]
, (47)

where the subscript ‘O’ denotes ‘Ordinary’. θ̂O is analytically given by

θ̂O = LOy tr, (48)
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where

LO = (X�X)−1X�. (49)

Let GO, BO, and VO be G, B , and V for the learned function obtained by OLS, re-
spectively. For an approximately correct model, BO and VO are expressed as follows (e.g.,
Sugiyama 2006):

BO = O(δ2), (50)

VO = σ 2tr(ULOL�
O) = Op(n−1

tr ). (51)

Motivated by these asymptotic forms, a population-based active learning method, which
we refer to as CVO (Conditional-expectation Variance-only active learning for OLS), opti-
mizes the training input density by the following criterion (Fedorov 1972; Cohn et al. 1996;
Fukumizu 2000).

p
CVO
tr = argmin

ptr∈P
CVO, (52)

where

CVO = tr(ULOL�
O). (53)

As shown in Sugiyama (2006), if δ = op(n
− 1

2
tr ),

E
{εi }ntr

i=1

GO = σ 2VO + op(n−1
tr ). (54)

Thus, CVO requires δ = op(n
− 1

2
tr ) for its valid use. On the other hand, ALICE requires δ =

op(1), which is weaker than CVO. Therefore, ALICE has a wider range of applications than
CVO. This difference comes from the fact that in active learning, the training input points and
test input points are generally drawn from different distributions, which is often referred to as
covariate shift (Shimodaira 2000). Under covariate shift, if the model is misspecified, OLS
is not unbiased even asymptotically; instead, IWLS is asymptotically unbiased. Asymptotic
unbiasedness of IWLS would be intuitively understood by the following identity (Fishman
1996):

∫ (
f̂ (x te) − f (x te)

)2
pte(x

te)dx te =
∫ (

f̂ (x tr) − f (x tr)
)2

w(x tr)ptr(x
tr)dx tr, (55)

where w(x) above is the importance ratio (25).
CVO can be immediately extended to a pool-based method just by replacing U with Û ,

i.e.,

P-CVO = tr(ÛLOL�
O). (56)

Note that CVO is often referred to as the Q-optimal design (Fedorov 1972). The A-
optimal design and D-optimal design are related active learning criteria which minimize the
trace and determinant of the covariance matrix LOL�

O, respectively. Although A-optimality
and D-optimality are different from Q-optimality, they all share the common drawback for
misspecified models, i.e., the bias B can be large.
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4.2 Full-expectation bias-and-variance active learning for OLS and WLS: FBVOW

Let us again begin with population-based scenarios. Let H be the t × t matrix defined by

H = S + σ 2T , (57)

where S and T are defined in (35) and (36), respectively. Then (34) is expressed as

E
{xi }ntr

i=1

E
{εi }ntr

i=1

GW = 1

ntr
tr(U−1H ) + O(n

− 3
2

tr ). (58)

Kanamori and Shimodaira (2003) developed a method to approximate H by a two-stage
sampling scheme: the training samples gathered in the first stage are used for estimating
H and the distribution of the remaining training input points is optimized based on the
estimated H in the second stage. A more detailed description is given below.

First, ñtr (≤ntr) initial training input points {̃x tr
i }ñtr

i=1 are created independently following
the test input distribution with density pte(x), and corresponding output values {ỹ tr

i } ñtr
i=1 are

observed. Let D̃ and Q̃ be the ñtr × ñtr diagonal matrices with the i-th diagonal elements

D̃i,i = pte(̃x
tr
i )

ptr(̃x
tr
i )

, (59)

Q̃i,i = [̃y tr − X̃(X̃
�
X̃)−1X̃

�
ỹ tr]i , (60)

where X̃ is the ñtr × t matrix with the (i, �)-th element

X̃i,� = ϕ�(̃x
tr
i ), (61)

and

ỹ tr = (ỹ tr
1 , ỹ tr

2 , . . . , ỹ tr
ñtr

)�. (62)

Then an approximation H̃ of the unknown matrix H in (58) is given by

H̃ = 1

ñtr
X̃

�
D̃Q̃

2
X̃. (63)

Based on this approximation, a population-based active learning criterion, which we
refer to as Full-expectation Bias-and-Variance active learning for OLS and WLS method
(FBVOW), is given as

p
FBVOW
tr = argmin

ptr∈P
FBVOW, (64)

where

FBVOW = 1

ntr
tr(Ũ

−1
H̃ ), (65)

Ũ = 1

ñtr
X̃

�
X̃. (66)

Note that in (65), U is replaced by its consistent estimator Ũ . However, this replacement
may not be necessary when the test input density pte(x) is known (Sugiyama 2006).
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After determining the optimal density p
FBVOW
tr (x), the remaining (ntr − ñtr) training in-

put points {x tr
i }ntr−ñtr

i=1 are generated independently following p
FBVOW
tr (x) and corresponding

training output values {y tr
i }ntr−ñtr

i=1 are observed. Finally, the parameter θ is learned using
{(̃x tr

i , ỹ
tr
i )}ñtr

i=1 and {(x tr
i , y

tr
i )}ntr−ñtr

i=1 as

θ̂OW = argmin
θ

[
ñtr∑

i=1

(
f̂ (̃x tr

i ) − ỹ tr
i

)2 +
ntr−ñtr∑

i=1

wFBVOW(x tr
i )

(
f̂ (x tr

i ) − y tr
i

)2

]
, (67)

where

wFBVOW(x) = pte(x)

p
FBVOW
tr (x)

. (68)

The subscript ‘OW’ denotes ‘Ordinary and Weighted’. Note that FBVOW depends on the
realization of {̃x tr

i }ñtr
i=1, but is independent of the realization of {x tr

i }ntr−ñtr
i=1 .

Kanamori and Shimodaira (2003) proved that for ñtr = o(ntr), limntr→∞ ñtr = ∞, and
δ = O(1),

E
{xi }ntr

i=1

E
{εi }ntr

i=1

GW = FBVOW + o(ntr
−1), (69)

by which the use of FBVOW is justified. The order of δ required above is weaker than
that required in ALICE or FVW. Therefore, FBVOW has a wider range of applications than
ALICE or FVW. However, this property may not be practically so valuable since learning
with totally misspecified models (i.e., δ = O(1)) may not work well due to large model
error (e.g., when a highly non-linear function is approximated by a straight line). Further-
more, the fact that ñtr training input points should be gathered following pte(x) in the first
stage implies that we are only allowed to optimize the location of ntr − ñtr remaining train-
ing input points. This is highly restrictive when the total number ntr is not so large, which
would be a usual case in active learning (e.g., Coomans et al. 1983; Baldi and Brunak 1998;
Warmuth et al. 2003).

It was shown that the optimal training input density p
FBVOW
tr (x) can be expressed in a

closed-form as follows (Kanamori and Shimodaira 2003; Kanamori 2007):

p
FBVOW
tr (x) ∝ pte(x)bFBVOW(x), (70)

where

bFBVOW(x) =
(

t∑

�,�′=1

[U−1]�,�′ϕ�(x)ϕ�′(x)(δ2r2(x) + σ 2)

) 1
2

. (71)

However, since (δ2r2(x) + σ 2) is inaccessible, the above closed-form cannot be directly
used for active learning. To cope with this problem, Kanamori (2007) proposed using a re-
gression method. It can be shown that a consistent estimate of the value of

(
bFBVOW(x)

)2

at x̃ tr
i (i = 1,2, . . . , ñtr) is given by [Q̃2

X̃Ũ
−1

X̃
�]i,i . Based on the input-output sam-

ples {(̃x tr
i , [Q̃2

X̃Ũ
−1

X̃
�]i,i )}ñtr

i=1, a regression method is used for learning the function(
bFBVOW(x)

)2
. Let us denote the learned function by b̂FBVOW(x). Then the optimal training

input density and the importance weight are approximated as

p̂
FBVOW
tr (x) ∝ pte(x )̂bFBVOW(x), (72)
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ŵFBVOW(x) ∝ 1

b̂FBVOW(x)
. (73)

Since the value of b̂FBVOW(x) is available at any input location x, {̂bFBVOW(x te
j )}nte

j=1 can
be computed and used as a resampling bias function in pool-based active learning. However,
this method still suffers from the limitations caused by the two-stage approach pointed out
above. Furthermore, obtaining a good approximation b̂P-FBVOW(x) by regression is generally
difficult; thus P-FBVOW may not be so reliable in practice.

5 Simulations

In this section, the proposed and existing active learning methods are quantitatively com-
pared through numerical experiments.

5.1 Toy dataset

We first illustrate how the proposed and existing methods behave under a controlled setting.
Let the input dimension be d = 1 and let the learning target function be

f (x) = 1 − x + x2 + δr(x), (74)

where

r(x) = z3 − 3z√
6

with z = x − 0.2

0.4
. (75)

Note that the above r(x) is the Hermite polynomial, which ensures the orthonormality of
r(x) to the 2nd order polynomial model under a Gaussian test input distribution (see below
for detail). Let us consider the following three cases.

δ = 0,0.03,0.06. (76)

See the top graph of Fig. 5 for the profiles of f (x) with different δ.
Let the number of training samples to gather be ntr = 100 and let {εtr

i }ntr
i=1 be i.i.d. Gaussian

noise with mean zero and standard deviation σ = 0.3, where σ is treated as unknown here.
Let the test input density pte(x) be the Gaussian density with mean 0.2 and standard de-
viation 0.4; pte(x) is also treated as unknown here. See the bottom graph of Fig. 5 for the
profile of pte(x). Let us draw nte = 1000 test input points independently from the test input
distribution.

A polynomial model of order 2 is used for learning:

f̂ (x) = θ1 + θ2x + θ3x
2. (77)

Note that for these basis functions, the residual function r(x) in (75) fulfills the orthogonality
condition (19) and normalization condition (20).

In this experiment, we compare the performance of the following sampling strategies:

P-ALICE: Training input points are drawn following (14) for

λ ∈ 	coarse ∪ 	fine, (78)
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where

	coarse = {0,0.1,0.2 . . . ,1}, (79)

	fine = {0.4,0.41,0.42, . . . ,0.6}. (80)

Then the best value of λ is chosen from the above candidates based on (11). IWLS is used
for parameter learning.

P-FVW: Training input points are drawn following (44) (or equivalently (14) with λ = 0.5).
IWLS is used for parameter learning.

P-CVO: Training input points are drawn following (14) for (78) and the best value of λ is
chosen based on (56). OLS is used for parameter learning.

P-FBVOW: Initially, 50 training input-output samples are gathered based on the test input
distribution and they are used for learning the resampling bias function bFBVOW(x); the
resampling bias function is learned by kernel ridge regression with Gaussian kernels, where
the Gaussian width and ridge parameter are optimized based on 5-fold cross-validation
by exhaustive grid search. Then the remaining 50 training input points are chosen based
on (72). OLS+IWLS is used for parameter learning (see (67)).

Passive: Training input points are drawn uniformly from the pool of test input samples (or
equivalently (14) with λ = 0). OLS is used for parameter learning.

For references, the profile of p
FVW
tr (x) (the optimal training input density by FVW; see (40))

is also depicted in the bottom graph of Fig. 5.

Fig. 5 Learning target function and test input density function
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Table 1 The mean squared test error for the toy dataset (means and standard deviations over 100 trials). For
better comparison, the model error δ2 is subtracted from the error and all values are multiplied by 103. In each
row of the table, the best method and comparable ones by the Wilcoxon signed rank test at the significance
level 5% are indicated with ‘◦’

P-ALICE P-FVW P-CVO P-FBVOW Passive

δ = 0 ◦2.03 ± 1.81 2.59 ± 1.83 ◦1.82 ± 1.69 6.43 ± 6.61 3.10 ± 3.09

δ = 0.03 ◦2.17 ± 2.04 2.81 ± 2.01 2.62 ± 2.05 6.66 ± 6.54 3.40 ± 3.55

δ = 0.06 ◦2.42 ± 2.65 3.19 ± 2.59 4.85 ± 3.37 7.65 ± 7.21 4.12 ± 4.71

Average ◦2.21 ± 2.19 2.86 ± 2.18 3.10 ± 2.78 6.91 ± 6.79 3.54 ± 3.85

In Table 1, the mean squared test error (2) obtained by each method is described. The
numbers in the table are means and standard deviations over 100 trials. For better compari-
son, the model error δ2 is subtracted from the obtained error and all values are multiplied by
103. In each row of the table, the best method and comparable ones by the Wilcoxon signed
rank test (e.g., Henkel 1979) at the significance level 5% are indicated with ‘◦’.

When δ = 0, P-CVO works the best and is followed by P-ALICE. These two methods
have no statistically significant difference and are significantly better than the other meth-
ods. When δ is increased from 0 to 0.03, the performance of P-ALICE and P-FVW is al-
most unchanged, while the performance of P-CVO is considerably degraded. Consequently,
P-ALICE gives the best performance among all. When δ is further increased to 0.06, the
performance of P-ALICE and P-FVW are still almost unchanged. On the other hand, P-CVO

performs very poorly and is outperformed even by the baseline Passive method. P-FBVOW

does not seem to work well for all three cases.
Overall, P-ALICE and P-FVW are shown to be highly robust against model misspecifi-

cation, while P-CVO is very sensitive to the violation of the model correctness assumption.
P-ALICE significantly outperforms P-FVW, which would be caused by the fact that ALICE
is a more accurate estimator of the single-trial generalization error than FVW (see Sect. 3.6).

5.2 Benchmark datasets

The Bank, Kin, and Pumadyn regression benchmark data families provided by DELVE (Ras-
mussen et al. 1996) are used here. Each data family consists of 8 different datasets:

Input dimension d : Input dimension is either d = 8 or 32.
Target function type: The target function is either ‘fairly linear’ or ‘non-linear’ (‘f’ or ‘n’).
Unpredictability/noise level: The unpredictability/noise level is either ‘medium’ or ‘high’

(‘m’ or ‘h’).

Thus 24 datasets are used in total. Each dataset includes 8192 samples, consisting of d-
dimensional input and 1-dimensional output data. For convenience, every attribute is nor-
malized into [0,1].

All 8192 input samples are used as the pool of test input points (i.e., nte = 8192) and
ntr = 100 training input points are chosen from the pool when d = 8; ntr = 300 training
input points are chosen when d = 32. The following linear regression model is used for
learning:

f̂ (x) =
50∑

�=1

θ� exp

(
−‖x − c�‖2

2

)
, (81)
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Table 2 The mean squared test error (2) for 8-dimensional benchmark datasets (means and standard devia-
tions over 1000 trials). For better comparison, all the values are normalized by the mean error of the Passive
method. The best method and comparable ones by the Wilcoxon signed rank test at the significance level 5%
are indicated with ‘◦’

P-ALICE P-FVW P-CVO ALICE Passive

bank-8fm ◦0.89 ± 0.14 0.95 ± 0.16 0.91 ± 0.14 1.16 ± 0.26 1.00 ± 0.19

bank-8fh 0.86 ± 0.14 0.94 ± 0.17 ◦0.85 ± 0.14 0.97 ± 0.20 1.00 ± 0.20

bank-8nm ◦0.89 ± 0.16 0.95 ± 0.20 0.91 ± 0.18 1.18 ± 0.28 1.00 ± 0.21

bank-8nh 0.88 ± 0.16 0.95 ± 0.20 ◦0.87 ± 0.16 1.02 ± 0.28 1.00 ± 0.21

kin-8fm 0.78 ± 0.22 0.87 ± 0.24 0.87 ± 0.22 ◦0.39 ± 0.20 1.00 ± 0.25

kin-8fh 0.80 ± 0.17 0.88 ± 0.21 0.85 ± 0.17 ◦0.54 ± 0.16 1.00 ± 0.23

kin-8nm ◦0.91 ± 0.14 0.97 ± 0.16 0.92 ± 0.14 0.97 ± 0.18 1.00 ± 0.17

kin-8nh ◦0.90 ± 0.13 0.96 ± 0.16 0.90 ± 0.13 0.95 ± 0.17 1.00 ± 0.17

pumadyn-8fm ◦0.89 ± 0.13 0.95 ± 0.16 ◦0.89 ± 0.12 0.93 ± 0.16 1.00 ± 0.18

pumadyn-8fh 0.89 ± 0.13 0.98 ± 0.16 ◦0.88 ± 0.12 0.93 ± 0.15 1.00 ± 0.17

pumadyn-8nm ◦0.91 ± 0.13 0.98 ± 0.17 0.92 ± 0.13 1.03 ± 0.18 1.00 ± 0.18

pumadyn-8nh ◦0.91 ± 0.13 0.97 ± 0.14 0.91 ± 0.13 0.98 ± 0.16 1.00 ± 0.17

Average ◦0.87 ± 0.16 0.95 ± 0.18 0.89 ± 0.15 0.92 ± 0.30 1.00 ± 0.20

where {c�}50
�=1 are template points randomly chosen from the pool of test input points. Other

settings are the same as the toy experiments in Sect. 5.1.
In addition to the pool-based methods P-ALICE, P-FVW, and P-CVO, the population-

based method ALICE is also tested here. In this experiment, the test input density pte(x) is
unknown. So it is estimated using the uncorrelated multi-dimensional Gaussian density:

pte(x) = 1

(2πγ̂ 2
MLE)

d
2

exp

(
−‖x − μ̂MLE‖2

2γ̂ 2
MLE

)
, (82)

where μ̂MLE and γ̂MLE are the maximum likelihood estimates of the mean and standard
deviation obtained from all 8192 unlabeled samples. The training input density ptr(x) from
the set of uncorrelated multi-dimensional Gaussian densities with mean μ̂MLE and standard
deviation cγ̂MLE, where

c = 0.7,0.8,0.9, . . . ,2.4. (83)

Based on the training input density determined by a population-based method, input points
are chosen from the pool of unlabeled samples as follows. First, provisional input points
are created following the chosen training input density. Then the input points in the pool of
unlabeled samples that are closest to the provisional input points are chosen without overlap.

Tables 2 and 3 summarize the mean squared test error (2) for d = 8 and 32, respectively.
The numbers are the means and standard deviations over 1000 trials. For better comparison,
all the values are normalized by the mean error of the Passive method. The best method and
comparable ones by the Wilcoxon signed rank test at the significance level 5% are indicated
with ‘◦’.

When d = 8, all 3 pool-based active learning methods outperform the Passive method.
Among them, P-ALICE tends to significantly outperform P-FVW and P-CVO. The
population-based method ALICE works rather well, but it is not as good as the pool-based
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Table 3 The mean squared test error (2) for 32-dimensional benchmark datasets (means and standard devi-
ations over 1000 trials)

P-ALICE P-FVW P-CVO ALICE Passive

bank-32fm 0.97 ± 0.05 0.99 ± 0.05 ◦0.96 ± 0.04 1.04 ± 0.06 1.00 ± 0.06

bank-32fh 0.98 ± 0.05 0.99 ± 0.05 ◦0.96 ± 0.04 1.01 ± 0.05 1.00 ± 0.05

bank-32nm 0.98 ± 0.06 0.99 ± 0.07 ◦0.96 ± 0.06 1.03 ± 0.07 1.00 ± 0.07

bank-32nh 0.97 ± 0.05 0.99 ± 0.06 ◦0.96 ± 0.05 0.99 ± 0.05 1.00 ± 0.06

kin-32fm ◦0.79 ± 0.07 0.93 ± 0.09 1.53 ± 0.14 0.98 ± 0.09 1.00 ± 0.11

kin-32fh ◦0.79 ± 0.07 0.92 ± 0.08 1.40 ± 0.12 0.98 ± 0.09 1.00 ± 0.10

kin-32nm 0.95 ± 0.04 0.97 ± 0.04 ◦0.93 ± 0.04 1.03 ± 0.05 1.00 ± 0.05

kin-32nh 0.95 ± 0.04 0.97 ± 0.04 ◦0.92 ± 0.03 1.02 ± 0.04 1.00 ± 0.05

pumadyn-32fm 0.98 ± 0.12 0.99 ± 0.13 1.15 ± 0.15 ◦0.96 ± 0.12 1.00 ± 0.13

pumadyn-32fh 0.96 ± 0.04 0.98 ± 0.05 ◦0.95 ± 0.04 0.97 ± 0.04 1.00 ± 0.05

pumadyn-32nm 0.96 ± 0.04 0.98 ± 0.04 ◦0.93 ± 0.03 0.96 ± 0.03 1.00 ± 0.05

pumadyn-32nh 0.96 ± 0.03 0.98 ± 0.04 ◦0.92 ± 0.03 0.97 ± 0.04 1.00 ± 0.04

Average ◦0.94 ± 0.09 0.97 ± 0.07 1.05 ± 0.21 1.00 ± 0.07 1.00 ± 0.07

counterpart P-ALICE. This would be the fruit of directly defining the training distribution
over unlabeled samples.

When d = 32, P-CVO outperforms P-ALICE and P-FVW for many datasets. However, the
performance of P-CVO is unstable and it works very poorly for the kin32-fm, kin32-fh, and
pumadyn32-fm datasets. Consequently, the average error of P-CVO over all 12 datasets is
worse than the baseline Passive sampling scheme. On the other hand, P-ALICE and P-FVW

are still stable and consistently outperform the Passive method. Among these two methods,
P-ALICE tends to outperform P-FVW. The population-based method ALICE tends to be
outperformed by the pool-based counterpart P-ALICE.

P-ALICE and P-FVW are shown to be more reliable than P-CVO, and P-ALICE tends
to outperform P-FVW. When the input dimension is high, the variance tends to dominate
the bias due to sparsity of data points. Then the bias caused by model misspecification is
no longer critical and therefore P-CVO tends to be better. However, P-CVO has catastrophic
cases—which would be the situation where the bias is not negligibly small even in high-
dimensional cases. This is consistent with the illustrative experiments shown in Sect. 5.1.

Overall, the proposed method P-ALICE is shown to be robust against such catastrophic
cases even in high-dimensional cases and therefore would be more reliable in practice.

6 Real-world applications

Finally, we apply the proposed active learning method to a wafer alignment problem in
semiconductor exposure apparatus (see Fig. 6).

Recent semiconductors have the layered circuit structure, which are built by exposing
circuit patterns multiple times. In this process, it is extremely important to align the wafer at
the same position with very high accuracy. To this end, the location of markers are measured
to adjust the shift and rotation of wafers. However, measuring the location of markers is
time-consuming and therefore there is a strong need to reduce the number of markers to
measure for speeding up the semiconductor production process.
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Fig. 6 Semiconductor exposure
apparatus

Fig. 7 Silicon wafer with
markers. Observed markers based
on the conventional heuristic are
also shown

Figure 7 illustrates a wafer, where markers are printed uniformly over the wafer. Our
goal here is to choose the most ‘informative’ markers to measure for better alignment of the
wafer. A conventional choice is to measure markers far from the center in a symmetric way,
which would provide robust estimation of the rotation angle (see Fig. 7). However, this naive
approach is not necessarily the best since misalignment is not only caused by affine trans-
formation, but also by several other non-linear factors such as a warp, a biased characteristic
of measurement apparatus, and different temperature conditions. In practice, it is not easy
to model such non-linear factors accurately, so the linear affine model or the second-order
model is often used in wafer alignment. However, this causes model misspecification and
therefore our proposed active learning method would be useful in this application.
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Table 4 The mean squared test error for the wafer alignment problem (means and standard deviations over
220 wafers). ‘Conv.’ indicates the conventional heuristic of choosing the outer markers

Order P-ALICE P-FVW P-CVO Passive Conv.

1 ◦2.27 ± 1.08 2.29 ± 1.08 2.37 ± 1.15 2.32 ± 1.11 2.36 ± 1.15

2 ◦1.93 ± 0.89 2.09 ± 0.98 1.96 ± 0.91 2.32 ± 1.15 2.13 ± 1.08

Let us consider the functions whose input x = (u, v)� is the location on the wafer and
whose output is the horizontal discrepancy �u or the vertical discrepancy �v. These func-
tions are learned using the following second-order model.

�u or �v = θ0 + θ1u + θ2v + θ3uv + θ4u
2 + θ5v

2. (84)

We totally have 220 wafer samples and our experiment is carried out as follows. For each
wafer, ntr = 20 points are chosen from nte = 38 markers and the horizontal and the vertical
discrepancies are observed. Then the above model is trained and its prediction performance
is tested using all 38 markers in the 220 wafers. This process is repeated for all 220 wafers.
Since the choice of the sampling location by active learning methods is stochastic, the above
experiment is repeated for 100 times with different random seeds.

The mean and standard deviation of the squared test error over 220 wafers are sum-
marized in Table 4. This shows that the proposed P-ALICE method works significantly
better than the other sampling strategies and it provides about 10-percent reduction in the
squared error from the conventional heuristic of choosing the outer markers. Similar exper-
iments have also been conducted using the first-order model and confirmed that P-ALICE
still works the best.

7 Conclusions and outlook

We extended a population-based active learning method (FVW) to a pool-based scenario
(P-FVW) and derived a closed-form ‘optimal’ resampling bias function. This closed-form so-
lution is optimal within the full-expectation framework, but is not necessarily optimal in the
single-trial analysis. To further improve the performance, we extended another population-
based method (ALICE) to a pool-based scenario (P-ALICE). Since ALICE is derived within
the conditional-expectation framework and therefore input-dependent, it is provably more
accurate than FVW in the single-trial analysis. However, P-ALICE does not allow us to
obtain a closed-form solution due to its input-dependence. To cope with this problem,
we proposed a practical heuristic procedure which efficiently searches for a better solu-
tion around the P-FVW optimal solution. Numerical experiments with toy and benchmark
datasets showed that the proposed method consistently outperforms the baseline passive
learning scheme and compares favorably with other active learning methods. Furthermore,
the usefulness of the proposed active learning method was also demonstrated in wafer align-
ment in semiconductor exposure apparatus.

In P-ALICE, a reasonable candidate set of resampling bias functions needs to be pre-
pared. In this paper, (14) was chosen as a heuristic and was shown to be reasonable through
experiments. Even so, there is still room for further improvement and it is important to find
alternative strategies for preparing better candidates.

We focused on regression scenarios in this paper. A natural desire is to extend the same
idea to classification scenarios. We expect that the conceptual issues we addressed in this



Mach Learn (2009) 75: 249–274 273

paper—the usefulness of the conditional-expectation approach and the practical importance
of dealing with approximate correct models (Sect. 3)—are still valid in classification scenar-
ios. In the future, we will explore active learning problems in classification scenarios based
on these conceptual ideas.

The P-ALICE criterion is a random variable which depends not only on training input
distributions, but also on realizations of training input points. This is why the minimizer
of P-ALICE cannot be obtained analytically; we resorted to a greedy search around the
solution of P-FVW. On the other hand, this fact implies that the P-ALICE criterion allows
us to evaluate the goodness of not only training input distributions but also realizations of
training input points. We conducted preliminary experiments in which training input points
are drawn several times from the same training input distribution and experienced that the
experimental performance is sometimes further improved by multiple draws. Thus it would
be interesting to investigate this phenomenon more systematically. This issue seems to be
related to the sequential design of experiments and therefore further study along this line
would be fruitful.

Our active learning method is valid for approximately correct models, which is an ad-
vantage over traditional OLS-based active learning methods. However, when the model
is totally misspecified, it is necessary to perform model selection (e.g., Shimodaira 2000;
Sugiyama and Müller 2005; Sugiyama et al. 2007) since large model error will dominate
the bias and variance, and therefore learning with such a totally misspecified model is not
useful in practice. However, performing model selection and active learning at the same
time, which is called active learning with model selection, is not straightforward due to the
active learning/model selection dilemma (Sugiyama and Ogawa 2003).

• In order to select training input points by an existing active learning method, a model
must have been fixed (i.e., model selection must have been performed).

• In order to select the model by a standard model selection method, the training input
points must have been fixed (i.e., active learning must have been performed).

To cope with this dilemma, a novel approach has been explored recently (Sugiyama and
Rubens 2008). However, the existing study focuses on population-based scenarios and active
learning with model selection under pool-based settings seems to still be an open research
issue. We expect that the result given in this paper could be a basis for further investigating
this challenging topic.

The proposed method has been shown to be robust against the existence of bias. How-
ever, if the input dimensionality is very high, the variance tends to dominate the bias due
to sparsity of data samples and therefore the advantage of the proposed method tends to
be lost. Moreover critically, regression from data samples is highly unreliable in such high-
dimensional problems due to extremely large variance. To address this issue, it would be
important to first reduce the dimensionality of the data, which is another challenge in ac-
tive learning research. For classification active learning in high dimensional problems, see
Melville and Mooney (2004) and Schein and Ungar (2007).

We have focused on linear models. However, the importance weighting technique used
for compensating for the bias caused by model misspecification is valid for any empirical-
error based methods (Sugiyama et al. 2007). Thus another important direction to be pursued
would be to extend the current active learning idea to more complex models such as support
vector machines (Vapnik 1998) and neural networks (Bishop 1995).
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