
Mach Learn (2008) 73: 313–336
DOI 10.1007/s10994-008-5088-0

Inductive transfer with context-sensitive neural networks

Daniel L. Silver · Ryan Poirier · Duane Currie

Received: 25 February 2007 / Revised: 8 September 2008 / Accepted: 17 September 2008 /
Published online: 21 October 2008
Springer Science+Business Media, LLC 2008

Abstract Context-sensitive Multiple Task Learning, or csMTL, is presented as a method of
inductive transfer which uses a single output neural network and additional contextual inputs
for learning multiple tasks. Motivated by problems with the application of MTL networks
to machine lifelong learning systems, csMTL encoding of multiple task examples was de-
veloped and found to improve predictive performance. As evidence, the csMTL method is
tested on seven task domains and shown to produce hypotheses for primary tasks that are
often better than standard MTL hypotheses when learning in the presence of related and
unrelated tasks. We argue that the reason for this performance improvement is a reduction in
the number of effective free parameters in the csMTL network brought about by the shared
output node and weight update constraints due to the context inputs. An examination of IDT
and SVM models developed from csMTL encoded data provides initial evidence that this
improvement is not shared across all machine learning models.

Keywords Inductive transfer · Artificial neural networks · Context-sensitive learning ·
Context attributes · Task relatedness · Machine lifelong learning

1 Introduction

Multiple task learning (MTL) is well recognized as a method of inductive transfer that is
able to develop superior performing hypotheses from impoverished training sets. Research
on MTL has occurred using traditional machine learning methods (Bakker and Heskes 2003;
Caruana 1997; Baxter 1997; Heskes 2000; Thrun and Pratt 1997; Ben-David and Schuller
2003), statistical regression methods (Greene 2002; Zellner 1962; Breiman and Friedman
1998), Bayesian methods involving constraints such as hyper priors (Allenby and Rossi
1999; Arora et al. 1998; Bakker and Heskes 2003), and most recently kernel methods such
as support vector machines (SVMs; Jebara 2004; Allenby and Rossi 2005). All of these

Editor: Risto Miikkulainen

D.L. Silver (�) · R. Poirier · D. Currie
Jodrey School of Computer Science, Acadia University, Wolfville, NS, Canada B4P 2R6
e-mail: danny.silver@acadiau.ca

mailto:danny.silver@acadiau.ca

314 Mach Learn (2008) 73: 313–336

approaches rely upon the development of multiple hypotheses under a constraint or regular-
ization that characterizes a similarity or relatedness between the tasks.

Multiple task learning (MTL) neural networks are one of the better documented methods
of inductive transfer of task knowledge (Caruana 1997; Silver and Mercer 1996). An MTL
network has an output for each task and develops internal representations that are shared
by all tasks. Inductive transfer occurs as a function of sharing these representations. We
have investigated the use of MTL networks for the purpose of developing a machine lifelong
learning system capable of retaining learned knowledge for use in future learning. A key
finding has been problems introduced by multiple outputs of MTL systems, such as the
build-up of redundant outputs from different sets of training examples for the same task
(O’Quinn et al. 2005; Silver and Poirier 2005). Perhaps, more importantly, MTL transfer
is dependent upon an elusive measure of task relatedness for selecting the more related
tasks for optimal inductive transfer (Caruana 1997; Thrun 1996). Lacking a solution to these
problems, we have investigated methods of MTL that do not require multiple outputs nor
depend upon a method of measuring task relatedness.

This paper presents context-sensitive multiple task learning, or csMTL, as a method of
inductive transfer that uses a standard back-propagation single-output neural network and
additional contextual inputs for learning multiple tasks. The goal of this paper is not to in-
troduce a new learning algorithm, but rather to study the effects of the encoding method on
existing algorithms, particularly, artificial neural networks. Our contribution is to demon-
strate the strengths and weaknesses of this approach in contrast to existing methods.

Toward this end, we show that the number of free parameters of csMTL networks are
lower than their MTL counterparts and that the shared output weights force an additional
constraint over a csMTL network’s hypothesis space. Experiments on two synthetic and five
real-world domains demonstrate that csMTL networks develop models that often perform
better than MTL networks. Most notably, we show empirically that csMTL hypotheses for a
primary task outperform MTL hypotheses when the examples from the secondary tasks are
drawn from the same function as the primary task.

Potentially, the csMTL approach allows multiple tasks to be learned by any single task
learning (STL) method. In the later portion of the paper we investigate this possibility.
Specifically, we show that Inductive Decision Trees and Support Vector Machines (with
linear and radial basis kernels) do not benefit from the introduction of context attributes
when learning multiple tasks. The resulting models are equivalent to STL models developed
only from the primary task examples. This suggests that neural networks have an ability to
capture regularities in the examples across the various tasks and associate these regularities
with the context inputs in a way that, at least, these two other methods cannot.

2 Background and notation

Standard classification or concept learning can be formalized as follows. Let X be a set on
�n (the reals), Y the set of {0,1} and error a function that measures the difference between
the expected target output and the actual output of the network for an example. Then for
single task learning (STL), the target concept is a function f that maps the set X to the set Y ,
f : X → Y , with some probability distribution, P , over X×Y . An example for STL is of the
form (x, f (x)), where x is a vector containing the input values x1, x2, . . . , xn and f (x) is the
target output. A training set, SSTL, consists of all available examples, SSTL = {(x, f (x))}. The
objective of the STL algorithm is to find a hypothesis, h within its hypothesis space, HSTL,
that minimizes the objective function,

∑
x∈SSTL

error[f (x), h(x)]. The assumption is that

Mach Learn (2008) 73: 313–336 315

Fig. 1 A multiple task learning
(MTL) network

HSTL ⊂ {f |f : X → Y } contains a sufficiently accurate h. Typically, a validation or tuning
set of examples is used to prevent over-fitting to the training data and promote generalization.

An MTL network is a feed-forward multi-layer network with an output for each task that
is to be learned (Caruana 1997). The standard back-propagation of error learning algorithm
is used to train all tasks in parallel. Consequently, MTL training examples are composed
of a set of input attributes and a target output for each task. Figure 1 shows a simple MTL
network containing a hidden layer of nodes that are common to all tasks. The sharing of in-
ternal representation in this common layer is the method by which inductive transfer occurs
within an MTL network (Baxter 1996). MTL is proven to be a good method of knowledge
transfer because it allows two or more tasks to share portions of the common feature layer to
the extent to which it is mutually beneficial. The more that tasks are related, the more they
will share representation and create positive inductive bias (Silver and Mercer 1996).

MTL can be defined as learning a set of target concepts, f = {f1, f2, . . . fk}, such that
each fi : X → Y with a probability distribution, Pi , over X × Y . We assume that the envi-
ronment delivers each fi based on a probability distribution, Q, over all Pi . Q is meant to
capture some regularity in the environment that constrains the number of tasks that the learn-
ing algorithm will encounter. Therefore, Q characterizes the domain of tasks to be learned.
An example for MTL is of the form (x, f(x)), where x is the same as defined for STL and
f(x) = {fi(x)}, a set of target outputs. A training set, SMTL, consists of all available exam-
ples, SMTL = {(x, f(x))}. The objective of the MTL algorithm is to find a set of hypotheses,
h = {h1, h2, . . . , hk}, within its hypothesis space, HMTL, that minimizes the objective func-
tion

∑
x∈SMTL

∑k

i=1 error[fi(x), hi(x)]. The assumption is that HMTL contains sufficiently
accurate hi for each fi being learned. Typically |HMTL| > |HSTL| in order to represent the
multiple hypotheses. As with STL, a validation or tuning set of examples is used to prevent
over-fitting and promote generalization.

3 Motivation for exploring an alternative to MTL

Machine lifelong learning, or ML3, a relatively new area of machine learning research,
is concerned with the persistent and cumulative nature of learning (Thrun 1996). Lifelong
learning considers situations in which a learner faces a series of different tasks and develops
methods of retaining and using prior knowledge to improve the effectiveness (more accurate
hypotheses) and efficiency (shorter training times) of learning.

Previously, we have investigated the use of MTL networks as a basis for developing an
ML3 system and have found them to have several limitations related to the multiple outputs
of the network (Silver and Mercer 2002; Silver and Poirier 2004; O’Quinn et al. 2005). First,

316 Mach Learn (2008) 73: 313–336

the MTL approach requires that training examples contain corresponding target values for
each task; this is impractical for lifelong learning systems as examples of each task are ac-
quired at different times and with unique combinations of input values. We have examined
methods of generating corresponding virtual target values but have found weaknesses re-
lated to the differences in the distribution of examples over the input space for various tasks
(Silver and Mercer 2002; O’Quinn et al. 2005). We have also found a way to train multi-
ple tasks with just one output target specified per example (Silver and Mercer 2002). The
solution is to assign a special unknown target value to all other task outputs and have the
back-propagation algorithm ignore these outputs when computing the cost function being
minimized by the back-propagation algorithm.1 This avoids having to generate correspond-
ing virtual target values for the multiple tasks; however, the approach does not eliminate
redundant task outputs.

It has been observed that inductive transfer in MTL networks is most beneficial when
it comes from related tasks (Baxter 1996; Caruana 1997; Silver and Mercer 1996). Thus a
measure of task relatedness is required in order for it to work optimally. This has remained
an open question for over 20 years (Utgoff 1986). With MTL, shared representation is lim-
ited to the hidden node layer and is not considered at the output nodes. The theory is that
optimal inductive transfer occurs when related tasks share the same hidden nodes (Baxter
1996). This perspective does not consider the sharing of knowledge at the example level
in the context of unrelated tasks. Consider two concept tasks where half of the MTL train-
ing examples have identical target values. From a MTL task-level perspective, using most
statistical and information theoretic measures, these sets of training examples would be con-
sidered unrelated and of little value to each other for inductive transfer. However, from an
example level perspective, the tasks are partially related in that half of their examples are
identical. Perhaps relatedness would be better judged at the example level of detail versus
the task level.

There is also the practical problem of how an MTL-based lifelong learning agent would
know to associate an example with a particular task. Clearly, the learning environment
should provide the contextual cues; however, this suggests additional inputs and not out-
puts. A more subtle, but related, problem is managing redundant representation that can
develop for nearly identical tasks in an MTL network. A lifelong learning system should
be capable of practising a task and closely related tasks and improving its models with new
examples over time. We have not been able to architect a solution that will scale up when
there are multiple outputs per task. It is unclear how the build-up of redundant task outputs
over time can be handled.

In response to the above problems, we have developed context-sensitive MTL, or csMTL.
The csMTL method uses examples that have only one target output, but additional inputs that
indicate the example context, such as the task to which it is associated. Section 4 describes
the csMTL network and the theory of how it functions.

3.1 Prior work on context input attributes

The idea of characterizing a portion of the input attributes as context is not new; how-
ever, it has not been studied as a component of inductive transfer until now. Related work
on context-sensitive machine learning can be found in Matwin and Kubat (1996), Turney
(1996a, 1996b). In Matwin and Kubat (1996) the importance of context to practical appli-
cations of machine learning for data mining is raised. The authors point out that context

1This technique is used in the experiments of Sect. 5 for several of the MTL comparisons.

Mach Learn (2008) 73: 313–336 317

information is often needed for the transfer of learned diagnostic rules from one group of
patients to another. For a nice summary of approaches to identifying context attributes see
Turney (1996a).

The survey article (Turney 1996b) discusses five strategies for managing context-
sensitive features in supervised machine learning. Of relevance to this paper are the strate-
gies of context classifier selection, context classification adjustment and context weighting.
Contextual classifier selection considers the selection of a specialized classifier from a set
of classifiers using the context inputs. The chosen classifier is used to classify the primary
inputs. Contextual classification adjustment uses the same steps but in reverse order—first
a classification is made by the primary inputs, then this base classification is adjusted by
a context-level model that accepts the context inputs and the base classification. Finally,
contextual weighting uses contextual features to weight the primary inputs, prior to classi-
fication. More importance is assigned to primary inputs that, in a given context, are more
useful for classification. An extreme form of this can be used to contextually ignore certain
primary input attributes, thus reducing the dimensionality of the input space.

Prior work on neural network based reinforcement leaning has used an approach similar
to that proposed in this paper but did not refer to it as a method of inductive transfer (Santa-
maria et al. 1998; Gross et al. 1998). Typically, a separate Q function is learned for predict-
ing the value of an action given the current state. Alternatively, it is possible to learn a single
function, Q′, for all actions over all states of an agent. This is particularly useful when both
the states and actions are continuous in nature. In this case, the actions can be considered
contextual inputs that select over the hypothesis space given the current state or vice versa.
Previous researchers have recognized that this approach can develop models that generalize
across both state and action spaces.

4 csMTL

Figure 2 presents the csMTL network. It is a feed-forward network architecture of input,
hidden and output nodes that uses the back-propagation of error training algorithm. The
csMTL network requires only one output node for learning multiple tasks.2 Similar to stan-
dard MTL neural networks, there are one or more layers of hidden nodes that act as feature
detectors. The input layer can be divided into two parts: a set of primary input variables for

Fig. 2 A context-sensitive
multiple task learning (csMTL)
network

2It is important to note that more outputs could be used for predicting a vector of values for each task. This
is a subject for future work.

318 Mach Learn (2008) 73: 313–336

the tasks and a set of inputs that provide the network with the context of each training ex-
ample. The context inputs can simply be a set of task identifiers that associate each training
example to a particular task.

Formally, let C be the set, C = {c|c ∈ {0,1}t ∧ ∑t

i=1 ci = 1}, representing the con-
text of the primary inputs from X as described for MTL. The csMTL method can be de-
fined as learning a target concept, f ′ : C × X → Y ; with a probability distribution, P ′, on
C × X × Y where P ′ is constrained by the probability distributions, P and Q, discussed
in the previous section for MTL. An example for csMTL takes the form (c,x, f ′(c,x)),
where f ′(c,x) = fi(x) when ci = 1 and fi(x) is the target output for task fi . A training
set, ScsMTL, consists of all available examples for all tasks and includes the additional con-
text inputs, ScsMTL = {(c,x, f ′(c,x))}. The objective of the csMTL algorithm is to find a
hypothesis, h′, within its hypothesis space, HcsMTL, that minimizes the objective function,∑

x∈ScsMTL
error[f ′(c,x), h′(c,x)]. The assumption is that HcsMTL ⊂ {f ′|f ′ : C × X → Y }

contains a sufficiently accurate h′. Typically, |HcsMTL| = |HMTL| for the same set of tasks
because the number of additional context inputs under csMTL matches the number of addi-
tional task outputs under MTL. As with STL and MTL, a validation or tuning set of examples
is used to prevent over-fitting and promote generalization.

With csMTL, the entire representation of the network is used to develop hypotheses for
all tasks, f ′(c,x), following the examples drawn according to P ′. The focus shifts from
learning a subset of shared representation for multiple tasks to learning a completely shared
representation for the same tasks. This presents a more continuous sense of domain knowl-
edge and the objective becomes that of learning internal representations that are helpful to
predicting the output of similar combinations of the primary and context input values. Dur-
ing learning, c selects an inductive bias over HcsMTL relative to the examples of secondary
tasks being learned in the network. Once f ′ is learned, if x is held constant, then c indexes
over the hypothesis space HcsMTL. Hence, c differentiates between otherwise conflicting
examples and selects internal representation used by related tasks.

4.1 Constraint over the csMTL hypothesis space

We have identified two important constraints that act on the csMTL network to promote
inductive transfer across the tasks so as to often produce superior hypotheses to standard
MTL. The first is because of a relationship between back-propagation changes to the base
bias weight of a hidden node and the changes to context weights of that same hidden node.
The second is because of a relationship between the changes to the context weights of a
hidden node and changes in the weight from that hidden node to the single output node.

4.1.1 Constraint between context and bias weights

Within sigmoid feed-forward neural networks, the output of a hidden node, j , is given by the
sigmoid equation oj = 1/(1 − exp

∑
i wij oi+bj); where wij is the weight from input node i (in

previous layer) to hidden node j ; oi is the output from node i, and bj is the bias term. If the
inputs are divided into a set of primary inputs, {x1, x2, . . . , xp}, and a mutually exclusive set
of contextual inputs, {c1, c2, . . . , ct }, the summation in the output equation can be expanded
to

∑
i wij oi + bj = c1wc1j + c2wc2j + · · · + ctwct j + x1wx1j + x2wx2j + · · · + xpwxpj + bj .

Since the contextual inputs form a vector in which cz = 1 when task z is selected, and all
other contextual inputs are 0, the summation for an example for task z can be reduced to:

∑

i

wij oi + bj = x1wx1j + x2wx2j + · · · + xpwxpj + wczj + bj . (1)

Mach Learn (2008) 73: 313–336 319

Thus, csMTL networks operate by selecting a bias, bj + wczj , in each hidden node,
according to the current task, z. Alternatively, one could say that they choose an appropriate
offset, wczj , to the base bias, bj , in each node in the hidden layer. In this way wczj can be
considered a selective bias for examples of task z.

Let us consider the updates to the context weights under the back-propagation algorithm
in a csMTL network. The algorithm adjusts weights between a node i, in one layer, and the
node j in the layer above it, according to the equation, �wij = −η

∂Ek

∂wij
= ηδjoi; where η is

the learning rate parameter, oi is the output from the lower layer node i, and δj is a function
of the error, Ek , observed at the output node, k, of the network. For a context input node, cz,
the notation becomes �wczj = ηδjocz .

During training, input from the context nodes are all 0, except for the context node corre-
sponding to the task for the given example, which has a value of 1. Therefore, for an example
for task z, context node cz has an output of ocz = 1, which leads to �wczj = ηδjocz = ηδj ,
For all other context nodes t , oct = 0 and �wct j = ηδjoct = 0. Therefore, only context
weight wczj is updated for an example for task z. In contrast, the bias term is updated for
every example, and by the same amount, since it can be viewed as a weight connected
to an input node with a permanent value of 1. Therefore, for each example of a task z,
�bj = �wczj . And over all n training examples for all tasks z,

∑

n

�bj =
∑

n

∑

z

�wczj . (2)

4.1.2 Constraint between context to hidden and output weights

Given the sum of squared errors as the cost function used by the back-propagation algorithm,
it can be shown that a change to the weight between hidden node j and output node k is given
by

�wjk = −η
∂Ek

∂wjk

= ηδkoj ; (3)

where δk depends on the cost function. Similarly, it can be shown that the change to a weight
between input node i and hidden node j is given by

�wij = −η
∂Ek

∂wij

= ηδjoi; (4)

where δj = oj (1 − oj)
∑

k δkwjk . The summation proportions the error for each of the out-
puts, k, in accord with the current weight, wjk , leading to that output. In the case of a csMTL
network, when there is only one output node k, then δj = oj (1 − oj)δkwjk and, therefore,

�wij = ηδjoi = η[oj (1 − oj)δkwjk]oi. (5)

Rearranging (5) and substituting in �wjk from (3) we have:

�wij = (1 − oj)[ηδkoj]wjkoi = (1 − oj)wjk�wjkoi (6)

or for a context input node, cz, when ocz = 1 we have or

�wczj = (1 − oj)wjk�wjk. (7)

320 Mach Learn (2008) 73: 313–336

Therefore, after several iterations through all training examples for all tasks, the change
in any input to hidden node weight of a csMTL network is constrained by the weight of
the associated hidden to output node. In this way a change in all weights associated with a
context node is constrained by the output weights shared by all tasks.

4.2 Comparing the number of free parameters of MTL and csMTL

In a three-layer neural network, let us assume k is the number of tasks, h is the number of
nodes in the hidden layer, and x is the number of input nodes. Each node in the hidden and
output layers contains a number of parameters equal to the number of nodes in the lower
layer plus one for the bias term. This leads to the following estimate of the number of free
parameters of an MTL network, PMTL:

PMTL = k(h + 1) + h(x + 1). (8)

For a csMTL network, assuming all parameters are free:

PcsMTL = (h + 1) + h(k + x + 1). (9)

However, due to the relationship described in (2), we may express the value of the bias
term as a function of the context weights, as follows:

bj = b0
j +

∑

n

∑

z

�wczj −
∑

z

w0
czj

(10)

where b0
j is the initial bias in node j , and w0

czj
is the initial value of the context weight for

task z in node j . Therefore, the k+1 parameters in each hidden node for the context weights
and the bias term represent, effectively, only k free parameters.

Revisiting our calculation of PcsMTL, given the knowledge that the context weights and
bias in each node form only k free parameters, we have:

PcsMTL = (h + 1) + h(k + x) (11)

which suggests that for k > 1, we can expect PcsMTL < PMTL by a difference of k − 1. This
suggests that fewer training examples will be required for learning under csMTL than MTL.

4.3 Context inputs and relatedness between csMTL hypotheses

Consider that the vector of context inputs, c, is a set of mutually exclusive task identifiers
per example. An early conjecture of our research was that relatedness between tasks could
be measured by the similarity of the weight vector leading forward from each context input
to the networks hidden nodes. The theory was that the single output node would constrain
the back-propagation algorithm to develop similar weights for the context inputs of similar
tasks. We now realize this is not correct.

If there is a large set of hidden nodes, and thus a large representational space, the back-
propagation algorithm will develop a rich set of internal features via the input to hidden
node weights. It is possible for two functionally equivalent hypotheses for identical tasks,
trained from the same set of examples, to have different context to hidden node weight
values. An examination of the weights from hypotheses for the same task, as described in
the experiment of Sect. 5.4, has demonstrated this to be the case. We conclude that the
context to hidden node weights cannot be used as a basis for judging task relatedness.

Mach Learn (2008) 73: 313–336 321

One might also conclude from the above that related csMTL hypotheses do not provide
inductive bias to each other during learning. This is not the case. The constraint �wczj =
(1 − oj)wjk�wjk will force the features chosen by a context input to produce an accurate
output for examples that are in common across two or more tasks. Training examples that
are the same except for a differing context input will generate hidden features that differ
only by their context bias weight, wckj . Over time, the back-propagated weight changes for
the two examples will encourage a set of features that generate the same summed weight
of their inputs to the networks output node. This functional constraint can be see as an
additional form of inductive transfer. In Sect. 5.4 we will demonstrate that this constraint
often produces models of superior performance as compared to MTL.

For the use of csMTL in an agent or robot, if the vector of context inputs, c, is a set of
real-valued inputs from the environment, then it can provide a grounded sense of relatedness
for learning a new task with transfer from secondary tasks. Although we do not explore
this in this paper, there is evidence from prior research (Matwin and Kubat 1996; Turney
1996a, 1996b) that real-valued contextual cues can make a significant difference during
learning.

4.4 Does csMTL work with other ML methods?

Sections 4.2 and 4.3 suggest a mathematical basis for why csMTL neural networks require
less data than MTL networks to develop a hypothesis of equal accuracy, where both net-
works have sufficient representation to develop such hypotheses. In Sect. 5, we provide
empirical evidence to demonstrate that csMTL networks develop models that perform better
than MTL models. Given these positive results, we were curious to see if the csMTL encod-
ing approach would work with other machine learning algorithms. To explore this question,
we have undertaken experiments using Inductive Decision Trees and Support Vector Ma-
chines. The results of these experiments are provided in Sect. 6.

5 Experimentation

This section presents a set of experiments that compares csMTL and MTL neural networks
in their ability to transfer knowledge with single task learning (STL) neural networks when
there is no transfer. A set of seven task domains are explored—two synthetic and five real-
world.

The first experiment compares the performance of hypotheses developed for the primary
task of the synthetic Logic domain as the number of hidden nodes varies from 5 to 200.
Similar preliminary experiments were carried out for all domains to ensure that each method
had sufficient number of hidden nodes (free parameters) to develop the very best models.
The second experiment examines the performance of hypotheses for the primary task of
one domain as the number of training examples varies from 10 to 200. This focuses on the
effectiveness of the methods as a function of sample complexity. The third experiment tests
csMTL’s and MTL’s ability to perform inductive transfer when the training examples for
all tasks are drawn from the same function. This will determine each method’s ability to
transfer knowledge in the most optimistic of conditions. The final experiment compares the
three neural network methods across all seven domains. This provides an assessment of the
methods’ abilities on a diversity of task domains.

It is important to note that the focus is on developing models from a small number of
training examples for the primary task so as to observe the effect of inductive transfer. Un-
der this condition, for several of the domains, a cross-validation approach would require

322 Mach Learn (2008) 73: 313–336

Table 1 Statistics on the five
domains of tasks used in the
experiments

Name Tasks Inputs Primary Task Secondary Task

Train Tune Test Train

Logic 6 10 20 10 1000 200

Band 7 2 10 5 200 50

fMRI 2 24 48 8 24 48

CoverType 6 10 30 20 5714 50

Dermatology 6 33 20 10 358 40

Glass 6 9 19 10 150 35

HeartDisease 3 5 14 6 79 130

hundreds of repetitions and promote unbalanced training sets. For this reason, repeated tri-
als using a random sampling approach was taken that ensured an even mix of positive and
negative examples in the training and tuning sets.

All experiments were conducted using a neural network inductive transfer system devel-
oped at Acadia. The results for several of the domains have been confirmed by conducting
similar runs using the MLP algorithm of the open source WEKA 3 machine learning pack-
age (Witten and Frank 2005).

5.1 The task domains

Seven domains have been studied using csMTL. Table 1 shows a number of the statistics
for each of these domains. Included is the number of tasks in the domain, the number of
input attributes, the number of primary task training, tuning, and test set examples, and the
number of examples used for each secondary task.

The Band domain, described in Silver and Mercer (2002), consists of seven synthetic
tasks. Each task has a band of positive examples across a 2-dimensional input space. The
tasks were synthesized so that the primary task, T0, would vary in its relatedness to the other
tasks based on the band orientation.

The Logic domain, described in Silver and McCracken (2003) consists of six synthetic
tasks. Each positive example is defined by a logical combination of 4 of the 10 real-valued
inputs of the form, T0 : (I0 > 0.5∨I1 > 0.5)∧(I2 > 0.5∨I3 > 0.5). The tasks of this domain
are more or less related in that they share zero, one or two features such as (I0 > 0.5 ∨ I1 >

0.5) with the other tasks. The Band and Logic domains have been designed so that all tasks
are non-linearly separable; each task requires the use of at least two hidden nodes of a neural
network to form an accurate hypothesis.

The fMRI domain challenges the learning systems to develop models that can classify 24
features extracted from fMRI images as a subject is reading a sentence or viewing a picture.3

Inductive transfer between two subject models is examined; from subject T1 for which good
models could be developed to a second subject T0 for which only poor models could be
developed.

The Covertype and Dermatology domain can be found at the UCI ML repository. The
Covertype domain contains data from four wilderness areas in northern Colorado. These
data, representing information such as elevation and soil type, are to be used to determine
the cover type, that is, the species of tree that grows there. There are six types of cover in

3Courtesy of the Brain Image Analysis Research Group and CALD, Carnegie Mellon University.

Mach Learn (2008) 73: 313–336 323

the data, including various types of spruces, firs, and pines. This is a large and noisy data set
for which previous methods have had a difficult time. The Dermatology domain concerns
the classification of six types of skin disease. Each data example contains 33 input skin
attributes per patient along with their classification. This domain has under 400 examples
but it has the largest input space of all of the domains.

The Glass and Heart Disease domain also come from the UCI ML repository. The Glass
domain classifies 214 examples of glass as being one of six types, such as building windows,
vehicle windows, containers, tableware, and headlamps. There are nine input attributes, in-
cluding the refractive index of the example and its chemical make-up. The Heart Disease
domain consists of clinical data from three hospitals in the USA and Hungary. The objective
is to develop a hypothesis that can accurately predict the likelihood of a patient having a
50% or greater narrowing of one or more coronary arteries. Five input attributes from the
original data was used in the study: age, gender, type of chest pain, resting blood pressure,
and resting electrocardiogram.

The Covertype, Dermatology, Glass, and Heart Disease domains were originally single-
task classification problems with examples that could be of n classes. Each was converted to
a domain of n binary tasks, one task for each class, where each example indicates if it is of
that class or not.

5.2 Comparison of methods varying number of hidden nodes

This experiment examines the performance of STL, MTL, and csMTL hypotheses developed
for the primary task of the synthetic Logic domain, and the real-world Dermatology, Glass
and CoverType domains as the number of hidden nodes vary. Similar experiments were done
for all domains to ensure that each method had sufficient number of hidden nodes, and thus
free parameters, to develop the very best models.

5.2.1 Method

The STL and MTL networks were configured with the appropriate number of input and out-
put nodes, respectively (see Table 1). The csMTL networks had additional context inputs and
only 1 output. The number of hidden nodes for all methods was varied from 5 to 200. The
learning rate for each method was optimized between 0.01 and 0.001 through preliminary
testing. The momentum term was fixed at 0.9 for all runs.

The objective is to learn the primary task of each domain (e.g. T0 for the Logic domain)
using an impoverished training set of examples (20 for the Logic domain) as shown in Ta-
ble 1. The secondary tasks of each domain have sufficient training examples to develop
models with accuracies greater than .75 using a STL network. Tuning sets with small num-
bers of examples for the primary task (6 for the Logic domain) are used to prevent the neural
network from over-fitting.

It is important to note, that in the case of csMTL, the training examples for the primary
task are duplicated to ensure an equal number of training examples as that of each secondary
task. In the case of the Logic domain, the 20 training examples for the primary task were
duplicated nine times to make a total of 200 training examples, the same number as each
of the secondary tasks. This is necessary to ensure a fair update to the weights for all tasks
being learned by the csMTL network which has a single output node. The duplication of
primary examples does not help with MTL which has a separate output for each task. With
duplicated examples, MTL develops hypotheses that quickly over-fit to the training data and
have less generalization accuracy.

324 Mach Learn (2008) 73: 313–336

(a) Logic (b) CoverType

(c) Dermatology (d) Glass

Fig. 3 Performance (test set accuracy) of hypotheses for the Logic, CoverType, Dermatology and Glass
domains as a function of number of hidden nodes

Table 2 Results (p-values) from
difference of means T-Tests
comparing csMTL to STL and
MTL models on the four domains

Domain csMTL vs STL csMTL vs MTL

Logic 1.357E-06 5.228E-08

CoverType 2.415E-07 0.251

Dermatology 2.564E-10 2.278E-11

Glass 4.301E-10 4.432E-07

An independent test set of examples is used to determine hypothesis performance (see
Table 1). A network output of 0.5 or greater is considered a positive classification. The mean
accuracies reported are from 5 repeated trials. For each repeated trial, the examples in the
data sets were randomly sampled from the available data.

5.2.2 Results

Figure 3 shows the mean accuracy of models for the four tasks developed under the three
methods as the number of hidden nodes increases. The p-values from a difference of means
T-test over the models for each task is shown in Table 2. All graphs show that the perfor-
mance of the MTL and csMTL models become statistically stable at 20 hidden nodes or
more. The STL models plateau at or before 100 hidden nodes. Therefore, all methods are

Mach Learn (2008) 73: 313–336 325

robust given sufficient representation and early stopping using a validation set to prevent
over-fitting.

The MTL and csMTL models perform statistically better than the STL models on all four
domains of tasks. The csMTL models perform statistically better than MTL models on the
Logic, Dermatology and Glass domains but at the same level of accuracy on the CoverType
domain. MTL, which takes advantage of shared representation and knowledge transfer from
the secondary tasks, produces better models than STL. csMTL, constrained by the common
output node and biased by the context inputs is able to build the most accurate hypotheses
for three of the domains.

5.3 Comparison of methods varying number of training examples

This experiment examines the performance of hypotheses developed for the primary Logic
domain task as the number of training examples varies from 10 to 200. This focuses on the
effectiveness of the methods as a function of sample complexity.

5.3.1 Method

STL, MTL, and csMTL networks were configured for the Logic domain as described in
Sect. 5.2, but with a fix number of 20 hidden nodes, sufficient for learning under all methods.

All three networks are presented with training sets of size 10 to 200 for the primary
task, increasing the number of examples by 10. For MTL and csMTL, the five secondary
tasks had training sets of 200 examples, which is sufficient to build accurate hypotheses for
this domain. For csMTL, the training examples for the primary task are duplicated as many
times as necessary to ensure 200 training examples for each run—the same number as that
of each secondary task. As discussed in Sect. 5.2, this is to ensure a fair update of network
weights for each task being learned by the csMTL network. Thus, for csMTL, variation in
the “number of training examples” means a variation in the number of unique examples in
the training set.

A tuning set of 20 examples for the primary task is used during training, and an indepen-
dent test set of size 1000 is used to measure accuracy. Mean test set accuracies from three
repeated studies each with random draws of examples are compared.

5.3.2 Results

Figure 4 shows the mean accuracy of models developed under the three methods as the
number of primary task examples increases. The results show that csMTL hypotheses are
consistently better than STL models, and beyond 30 training examples they are consistently
better than MTL models. This further suggests that the csMTL method is able to selectively
transfer knowledge from the more related secondary tasks, without an explicit measure of
relatedness.

5.4 Comparison of methods on a domain of equivalent tasks

This experiment tests the ability of the MTL and csMTL methods to transfer knowledge
from five secondary tasks to a primary task when the training examples for all tasks are
drawn from the same function. The models are compared to STL models developed from a
combination of all the training data. This will assess the ability of each method to transfer
knowledge in the most optimistic of conditions. Despite the mutually exclusive context in-
puts, we expect that csMTL will be able to beneficially combine the examples from the six
training sets during model development.

326 Mach Learn (2008) 73: 313–336

Fig. 4 Performance of
hypotheses for the Logic domain
as a function of number of
training examples

5.4.1 Method

The primary tasks for the synthetic Logic domain and the real-world Glass, Dermatology
and CoverType domains were used to generate four new domains called Logic, Glass, Derm
and Cover, each consisting of six tasks. The training examples for each task of a domain
were drawn from the original primary task for that domain; 20 examples per task for the
Logic domain, 10 for Glass, 20 for Derm and 30 for Cover. For each domain, the six sets
of training data were also combined into a large training set call STL-AllData. The STL-
AllData training set allowed us to develop the best possible primary task model for each of
the new domains using STL.

A csMTL network was configured for each of the domains as described in Sect. 5.3
with one output node, a layer of hidden nodes sufficient for learning all tasks (20 for the
Dermatology, Glass domains and 30 for the Covertype domain) and a layer of input nodes
equal to the number of primary inputs plus the number of tasks in the domain. For the
Logic domain the number of hidden nodes for all methods was varied from 2 to 200. The
STL networks used were identical to the csMTL networks less the context inputs. The MTL
networks were the same as the STL networks but with one output for each task. Independent
test sets for the primary task of each domain (see Table 1) were used to measure model
accuracies. Mean accuracies from three repeated studies were computed to compare model
performance.

As an additional study, the examples for one of the equivalent secondary tasks was re-
placed by the same number of examples of another task from each domain. In the case of the
synthetic Logic domain, we chose replacement tasks that were known to be least related to
the primary task. For the real-world domains, secondary tasks and examples were randomly
chosen. The intention was to observe the effect on the MTL and csMTL methods as the
diversity of tasks increased. The replacement of an equivalent task was repeated three times
until there were only two secondary tasks left with examples drawn from the same function
as the primary task. As before, independent test sets for the primary task of each domain
were used to compute mean accuracies so as to measure method performance.

5.4.2 Results

Figure 5(a) and (b) show the performance of each of the methods on the test sets for the
primary task for each domain. As expected, the combined data of STL-AllData produced

Mach Learn (2008) 73: 313–336 327

(a) Logic equivalent-task domain.

(b) Comparison over four domains.

Fig. 5 Comparison of STL, STL-AllData, MTL and csMTL models on four equivalent-task domains

the best models. The MTL and csMTL hypotheses are typically much more accurate than
the STL models developed from only small numbers of examples. The csMTL hypotheses
are always as good as the MTL hypotheses and in the case of the Logic and Cover domains
the csMTL hypotheses are statistically more accurate. The results indicate that inductive
bias occurs in the csMTL networks between the examples of the tasks to a level that is as
good as or better than the MTL networks.

328 Mach Learn (2008) 73: 313–336

(a) Logic (b) Cover

(c) Derm (d) Glass

Fig. 6 Test accuracy (95% conf) of MTL and csMTL methods on the equivalent-task domains as the number
of less related tasks increases.

Figure 6 shows how the performance of the MTL and csMTL methods vary as the num-
ber of less related secondary tasks increases in each domain. Clearly, the MTL method is
more affected by the variety of related tasks as compared to the csMTL method. The results
suggest that selective inductive bias is occurring in the csMTL network more effectively than
in the MTL network. The results on the Cover domain indicate that the last two secondary
tasks actually provided beneficial inductive bias to the primary task.

5.5 Comparison of methods on the seven task domains

The final experiment compares the STL, MTL and csMTL neural network methods across
the seven domains of tasks. This provides an assessment of the methods’ abilities on a di-
versity of synthetic and real-world task domains.

5.5.1 Method

A csMTL network was configured for each domain with one output node, a layer of hidden
nodes sufficient for learning all tasks (30 for the Band, 20 for the Logic, 10 for the fMRI, 30
for the Covertype and 20 for the Dermatology, Glass and HD domains) and a layer of input
nodes equal to the number of primary inputs plus the number of tasks in the domain. The
STL networks used were identical to the csMTL networks less the context inputs. The MTL
networks were the same as the STL networks but with one output for each task.

For all five domains, the objective is to learn the primary task using an impoverished
training set of examples as shown in Table 1. Each of the other tasks of the domain have 35

Mach Learn (2008) 73: 313–336 329

Fig. 7 csMTL compared to STL and previous MTL methods. Shown is the mean test set accuracy for primary
task hypotheses for each of seven domains of tasks

or more training examples that have been demonstrated to develop models with accuracies
greater than .75 using a STL network. A small tuning set of examples for the primary task
of each domain is used to prevent the neural network from over-fitting to the impoverished
training sets.

As described in Sect. 5.2, in the case of csMTL, the training examples for the primary
task are duplicated as many times as necessary to ensure an equal number of training ex-
amples to that of each secondary task. This ensures a fair update to the weights for all tasks
being learned by the csMTL network. As discussed in Sect. 5.2, this duplication of primary
examples does not help MTL in the same manner.

An independent test set is used to determine hypothesis performance. See Table 1 for de-
tails on the number of examples in each of these data sets. A network output of 0.5 or greater
is considered a positive classification. The mean accuracies reported are from repeated trials
(10 for the Band, fMRI, Heart Disease and Glass domains, 30 for the Logic, Covertype, and
Dermatology domains). For each repeated trial, the examples in the data sets were randomly
sampled from the available data ensuring a balance of positive and negative examples.

5.5.2 Results

Figure 7 and Table 3 show the results for the seven domains. They compare the mean test set
accuracy of the csMTL hypotheses developed for the primary tasks to hypotheses developed
with no inductive transfer under STL and with transfer under standard MTL. The MTL and
csMTL results demonstrate the advantage of knowledge transfer with mean accuracies that
are significantly better than STL models for all domains. Furthermore, csMTL performs
significantly better than MTL on all domains except Dermatology and Heart Disease. The
results suggest that the csMTL method is at least as good as standard MTL. It is able to
transfer knowledge from shared internal representation to a primary task when training on
examples of a mixture of tasks that are more or less related.

330 Mach Learn (2008) 73: 313–336

Table 3 Results (p-values) from
difference of means T-Tests
comparing csMTL to STL and
MTL models on the seven
domains

Domain csMTL vs STL csMTL vs MTL

Band 0.00128 0.04805

Logic 1.07276E-12 0.00027

fMRI 6.40698E-06 0.00402

Dermatology 4.10918E-26 0.52559

Covertype 8.47545E-13 0.00200

Glass 3.76788E-06 0.00011

HeartDisease 0.02256 0.20922

6 csMTL and other machine learning methods

The following experiments explore the use of encoding multiple tasks using context in-
puts with two other machine learning methods: IDTs and SVMs. Single task learning is
compared to csMTL learning under the two methods in the hope that inductive transfer is
observed.

6.1 csMTL and IDT models

Inductive Decision Trees, or IDTs, are a family of machine learning methods that divides
the input space into class regions based on input attribute-values. The classic ID3 and C4.5
algorithms recursively partitions a subspace, initially the entire input space, into two separate
subspaces by determining the attribute that provides the greatest gain in properly classify the
training examples (Quinlan 1993). IDTs are significantly different from neural networks,
in terms of their learning algorithm and model representation. We were curious to see if
IDTs could take advantage of csMTL encoding of multiple tasks in the same way as back-
propagation neural networks.

6.1.1 Method

The objective is to compare csMTL with STL IDTs using the Logic domain. The same
primary task and data used in Sect. 5.3 was used for this experiment. Similarly, we examined
the effect of varying the number of primary task examples from 10 to 100. There were 200
examples for each of the secondary tasks in the csMTL scenario. A set of 1000 primary task
examples is used to test prediction accuracy of the tree for task T0.

The trees were built using the J48 algorithm of open source software WEKA 3 (Witten
and Frank 2005). Preliminary experiments were conducted varying the branching confidence
level from 0.10 to 0.40 and the minimum number of instances per leaf from 2 to 30. A
confidence value of 0.25 and minimum number of instances per leaf of 15 were found to be
the best choices for the two methods.

6.1.2 Results

Figure 8 shows no significant difference between the csMTL and STL methods, regardless of
the number of primary task examples. Both methods benefit from an increase in the number
of training examples, but IDTs do not develop better models from related task examples
when they are encoded using additional context inputs.

Mach Learn (2008) 73: 313–336 331

Fig. 8 csMTL and STL IDT
performance on the Logic
domain. Shown is the mean test
set accuracy for T0 hypotheses

6.2 csMTL and SVM models

Support Vector Machines, or SVMs, bear some resemblance to neural networks in that they
develop a multi-layered functional model. The lower layer projects the inputs into a feature
space, and computes a value based upon a weighted combination of these features in order
to perform classification (Boser et al. 1992; Smola and Schoelkopf 1998).

However, there are also significant differences between the two models. The training in
SVMs is an optimization problem which does not depend upon the initial values of free
parameters. Also, the combination of kernel mapping functions as well as the selection of a
varying set of support points and parameters allows for very complex decision boundaries.

This combination of similarities and differences between SVMs and neural networks
make SVMs an appealing machine learning method to study with multiple tasks examples
encoded using context attributes.

6.2.1 Method

This experiment compares the mean accuracy of STL and csMTL SVM models for the
T0 task of the Logic domain. The experiment was developed in the R statistical program-
ming language using the SVM implementation in the e1071 library, which is based upon
libSVM (Chang and Lin 2001).

Each simulation consisted of selecting 20 examples at random from a pool of 1020 exam-
ples, under the constraint that 10 selected examples were of each class. These 20 examples
were used as the training set for T0, and the remaining 1000 examples were retained as the
independent test set. For each simulation, two SVMs were trained. The first was a single
task SVM using only the 20 training examples. The second was an SVM which used 200
examples from each of 5 other related tasks marked using additional contextual attributes,
and the 20 training examples were duplicated another 9 times to provide an equal degree of
weighting with the other tasks. The prediction accuracy of each SVM was determined using
the 1000 examples remaining in the test set for T0.

In order to select appropriate values for the kernel type and parameters for the STL and
csMTL SVMs, 50 repetitions were performed for:

332 Mach Learn (2008) 73: 313–336

• linear kernels with constraint violation costs of 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, and 1
• radial basis kernels with combinations of gamma equal 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, and 1, with constraint violation costs of 0.001, 0.005, 0.01, 0.05 , 0.1, 0.5, and 1

The best mean and standard deviations of prediction accuracy are reported for each method.

6.2.2 Results

The mean accuracy for the best STL SVM model was 71.4% with a 3.3% standard deviation,
occurring for a SVM model trained with a radial basis kernel using a gamma of 0.8 and a
constraint violation cost of 1.

The mean accuracy for the best csMTL SVM model built using primary and secondary
task data with contextual inputs was 72.4% with a 3.9% standard deviation, occurring for
a SVM model trained with a radial basis kernel using a gamma of 0.1 and a constraint
violation cost of 1.

The results indicate that there is no significant difference between STL and csMTL SVM
models that use linear or radial basis kernels. In future work we intend to explore other
kernels that may support csMTL encoded examples.

6.3 Discussion

The IDT method demonstrated no significant difference in performance between a single
task model, and a model given additional examples for related tasks using contextual at-
tributes. This shows that the IDT method does not experience inductive transfer through the
use of contextual attributes with data from related tasks. An analysis of several of the trees
that were developed indicate that the reason for this is that IDTs tend to create decision
boundaries using the context input attributes that lead to separate representations for each of
the tasks.

Similarly, the SVM method, using linear or radial basis kernels, neither improved nor
degraded from the use of contextual attributes with additional data from other tasks. The
SVM method with the given kernels does not appear to directly experience inductive transfer
through the use of contextual attributes in the same way as the neural networks. This may
be because with SVM, the radial basis kernel,

K(x,x ′) = exp(−γ ‖x − x ′‖2) (12)

produces higher values for the support vectors which belong to the same task as the exam-
ple being tested. Due to the difference in the contextual components of the input vectors,
‖x − x ′‖2 will be greater by 2 for support vectors from different tasks than for support
vectors from the same task. This effect will result in lower values for K(x,x ′) for support
vectors from different tasks, which in at least some situations may limit the degree of induc-
tive transfer from other tasks.

Based on these results, we conjecture that the performance improvement in csMTL over
MTL networks is not due to the transformation of the data from a multiple output format to
a single output format using contextual inputs, but rather is due to the manner in which a
neural network develops a model given this transformation of the data. As shown in Sect. 4,
the back-propagation algorithm places functional constraints on the parameters of the model,
which reduces the number of examples available to find an accurate hypothesis.

Mach Learn (2008) 73: 313–336 333

7 Hints to why csMTL works so well

Another area for consideration in explaining the observed benefits to performance under
csMTL is Abu-Mostafa’s extended VC Dimension, VC(G;H), and the application of virtual
examples (Abu-Mostafa 1995).

Abu-Mostafa has systematically researched the use of hints for reduction of the num-
ber of necessary training examples for selecting accurate hypotheses. Hints are defined as
properties of the primary task or the task domain that are known to be true although inde-
pendent of the primary training examples, such as monotonicity or symmetry of the output
with respect to the inputs. Hints can be expressed as virtual examples that are used to train
a single task network. In fact, Abu-Mostafa considers primary task training examples to be
just another form of hint. By minimizing the error across all of the hint examples, a more
accurate hypothesis for the primary task can be produced.

Within the context of a csMTL network, examples for secondary related tasks could be
considered virtual examples for the primary task. In future work, we intend to explore the
csMTL approach in the light of Abu-Mostafa’s theory.

8 Summary and conclusion

This paper has presented csMTL as a method of inductive transfer that uses a single output
neural network and additional context inputs for learning multiple tasks. The method was
developed in response to problems we had encountered in using MTL networks for develop-
ing machine lifelong learning (ML3) systems. Our goal was not to develop a new learning
algorithm, but rather to propose a new method of learning multiple tasks with standard single
task learning algorithms.

The introduction of context attributes to distinguish task examples has been found to
improve predictive performance of the models developed under the back-propagation algo-
rithm using a MSE cost function. Experimentation on seven domains of tasks has demon-
strated that csMTL may often produce hypotheses for a primary task that are significantly
better than standard MTL hypotheses when learning in the presence of related and unrelated
tasks.

The paper provides a theoretical justification for the csMTL performance improvement
over MTL. The structure of the csMTL network, with only one output and context inputs,
combined with the back-propagation training algorithm results in a network which has a
lower number of free parameters than an MTL network with the same number of hidden
nodes. This partially explains the positive results we have experienced with using csMTL for
inductive transfer—the reduced dimensionality of the free parameter space allows csMTL
networks to require less training data than MTL networks to achieve similar levels of ac-
curacy for the same mixture of tasks. We have also shown mathematically that the network
configuration may place additional constraints on the remaining parameters as a function of
having only one output node and therefore only one backward propagated error signal.

An examination of using classifier IDTs and SVMs (with linear and radial basis kernels)
using the same csMTL data has indicated that the improvement in model performance is not
shared by other machine learning methods, in general. Inductive transfer occurs in neural
networks, at least in part, because of functional constraints imposed on the weights of the
neural network model by the learning algorithm and the format of the csMTL input data. It
is possible that this phenomenon may occur in other machine learning methods that we have
yet to examine.

334 Mach Learn (2008) 73: 313–336

8.1 Benefits and limitations of csMTL

The csMTL method of encoding examples with context attributes was utilized in response
to problems that we encountered when using MTL networks to develop an ML3 system. We
have discovered that the approach satisfies most of these problems while at the same time
delivering superior inductive transfer.

• The csMTL examples discussed in this paper require one context input per task but only
one output. No corresponding secondary task target values are required.

• The csMTL method shifts the focus to learning a completely shared representation for all
tasks of the domain. The context inputs for each example can be seen as a selective bias
that indexes over the domain of tasks during and after model development.

• The csMTL method has been shown to develop superior models to that of MTL in the
presence of completely related tasks and a mix of related and unrelated tasks. There is
likely a class of tasks for which csMTL does not work as well as MTL. The characteriza-
tion of this class of tasks will be an important next step in our research.

The csMTL method is not without its limitations. One of the consequences of a more
highly constrained hypothesis space is that, under certain conditions, a larger amount of
internal representation may be required in order to store the same number of hypotheses as
MTL. Although we have not yet observed this effect, we feel it is worthy of further testing.

We have observed increases in training times using csMTL over MTL neural networks
when there are equal numbers of training examples. This is because of the larger number of
csMTL training examples and the relatively small learning rates required to produce good
models. This study has focused on model effectiveness; we leave a thorough examination of
the efficiency of model development to future work.

The csMTL approach suffers from the same scaling problems as standard back-
propagation neural network systems. The computational complexity of the standard back-
propagation algorithm is O(W 3), where W is the number of weights in the network. This
provides a strong motivation for discovering other standard machine learning algorithms
which can benefit from the use of context attributes in a similar way.

8.2 Future work

Our long-term goal is to develop an ML3 methodology and related system, based on csMTL,
which is capable of sequential knowledge retention and inductive transfer. The system is
meant to satisfy a number of ML3 requirements including the effective and efficient consol-
idation of task knowledge into a long-term network using task rehearsal (Silver and Mercer
2002), and effective and efficient inductive transfer during new learning. With this is long-
term goal in mind, our short-term directions for future research include:

• Performing a detailed analysis of the contribution of shared output node representation
on the reduction of number of necessary training examples. We believe that this does
not reduce the number of free parameters, per se, but rather reduces the effective size of
hypothesis space. Both mathematical analyses and experimentation will be necessary in
order to confirm or deny this belief.

• Examining the conditions under which csMTL networks will produce less accurate hy-
potheses than MTL networks. The reduction in the number of free parameters, and the
effective modification to the functional form of the model leads us to believe this may
occur. In order to best apply csMTL, it is important to have an understanding of the con-
ditions under which it is best used.

Mach Learn (2008) 73: 313–336 335

• Investigating more optimal methods of ensuring that small numbers of examples for the
primary task under csMTL are not overwhelmed by large numbers of examples for each
of the secondary tasks. In this research we simply duplicate the primary task examples to
equal the number for each secondary task. More optimal methods are likely possible.

• Experimenting with other machine learning methods to determine which methods, and
more importantly, which attributes of methods lead to better results given multi-task data
structured as per csMTL.

• Exploring if Abu-Mostafa’s theory of hints can be applied directly, or with some exten-
sions, to explain the effects of csMTL learning, and even of multi-task learning models in
general, when the multiple tasks are not the same task.

• Investigating the use of real-valued context inputs from the environment as a grounded
source of task relatedness.

• Investigating domains of tasks that have multiple outputs per task, such as image trans-
formation tasks.

References

Abu-Mostafa, Y. S. (1995). Hints. Neural Computation, 7, 639–671.
Allenby, G. M., & Rossi, P. E. (1999). Marketing models of consumer heterogeneity. Journal of Econometrics,

89, 57–78.
Allenby, G. M., & Rossi, P. E. (2005). Learning multiple tasks with kernel methods. Journal of Machine

Learning Research, 6, 615–637.
Arora, N., Allenby, G. M., & Ginter, J. (1998). A hierarchical Bayes model of primary and secondary demand.

Marketing Science, 17(1), 29–44.
Bakker, B., & Heskes, T. (2003). Task clustering and gating for Bayesian multi-task learning. Journal of

Machine Learning Research, 4, 83–99.
Baxter, J. (1996). Learning model bias. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances

in neural information processing systems (Vol. 8, pp. 169–175). Cambridge: The MIT Press.
Baxter, J. (1997). Theoretical models of learning to learn. Learning to Learn, 71–94.
Ben-David, S., & Schuller, R. (2003). Exploiting task relatedness for multiple task learning. In Proceedings

of computational learning theory (COLT) (pp. 185–192).
Boser, B. E., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In Compu-

tational learning theory (pp. 144–152).
Breiman, L., & Friedman, J. H. (1998). Predicting multivariate responses in multiple linear regression. Royal

Statistical Society Series B, 1, 3–54.
Caruana, R. A. (1997). Multitask learning. Machine Learning, 28, 41–75.
Chang, C., & Lin, C. (2001). LIBSVM: a library for support vector machines. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Greene, W. (2002). Econometric analysis (5th ed.). Englewood Cliffs: Prentice-Hall.
Gross, H., Stephan, V., & Krabbes, M. (1998). A neural field approach to topological reinforcement learning

in continuous action spaces. In Procedings of the international joint conference on neural networks
(IJCNN’98) (pp. 1992–1997). Anchorage, IEEE Press.

Heskes, T. (2000). Empirical Bayes for learning to learn. In P. Langley (Ed.), Proceedings of the international
conference on machine learning (ICML’00) (pp. 367–374).

Jebara, T. (2004). Multi-task feature and kernel selection for svms. In Proceedings of the international con-
ference on machine learning (ICML’04) (pp. 185–192).

Matwin, S., & Kubat, M. (1996). The role of context in concept learning. In Proceedings of ICML-96, work-
shop on learning in context-sensitive domains (pp. 1–5). Bari, Italy.

O’Quinn, R., Silver, D. L., & Poirier, R. (2005). Continued practice and consolidation of a learning task. In
Proceedings of the meta-learning workshop, 22nd international conference on machine learning (ICML
2005). Bonn, Germany.

Quinlan, R. J. (1993). C4.5: programs for machine learning. Los Altos: Morgan Kaufmann.
Santamaria, J., Sutton, R., & Ram, A. (1998). Experiments with reinforcement learning in problems with

continuous state and action spaces. Adaptive Behavior, 6, 163–218.
Silver, D. L., & McCracken, P. (2003). Selective transfer of task knowledge using stochastic noise. In Y. Xiang

& B. Chaib-draa (Eds.), Advances in artificial intelligence, 16th conference of the Canadian society for
computational studies of intelligence (AI’2003) (pp. 190–205). New York.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

336 Mach Learn (2008) 73: 313–336

Silver, D. L., & Mercer, R. E. (1996). The parallel transfer of task knowledge using dynamic learning rates
based on a measure of relatedness. Connection Science Special Issue: Transfer in Inductive Systems,
8(2), 277–294.

Silver, D. L., & Mercer, R. E. (2002). The task rehearsal method of life-long learning: overcoming impover-
ished data. In Advances in artificial intelligence, 15th conference of the Canadian society for computa-
tional studies of intelligence (AI’2002) (pp. 90–101).

Silver, D. L., & Poirier, R. (2004). Sequential consolidation of learned task knowledge. In Lecture notes in
artificial intelligence, 17th conference of the Canadian society for computational studies of intelligence
(AI’2004) (pp. 217–232).

Silver, D. L., & Poirier, R. (2005). Requirements for machine lifelong learning (Jodrey School of Computer
Science, TR-2005-009). November.

Smola, A. J., & Schoelkopf, B. (1998). A tutorial on support vector regression (Technical Report NC2-TR-
1998-030). NeuroCOLT2.

Thrun, S. (1996). Is learning the nth thing any easier than learning the first?. Advances in Neural Information
Processing Systems, 8, 8.

Thrun, S., & Pratt, L. Y. (Eds.) (1997). Learning to learn. Boston: Kluwer Academic.
Turney, P. D. (1996a). The identification of context-sensitive features: A formal definition of context for con-

cept learning. In 13th international conference on machine learning (ICML96), workshop on learning
in context-sensitive domains (Vol. NRC 39222, pp. 53–59). Bari, Italy.

Turney, P. D. (1996b). The management of context-sensitive features: A review of strategies. In 13th interna-
tional conference on machine learning (ICML96), workshop on learning in context-sensitive domains
(Vol. NRC 39222, pp. 60–65). Bari, Italy.

Utgoff, P. E. (1986). Machine learning of inductive bias. Boston: Kluwer Academic.
Witten, I. H., & Frank, E. (2005). Data mining: practical machine learning tools and techniques (2nd ed.).

San Francisco: Morgan Kaufmann.
Zellner, A. (1962). An efficient method for estimating seemingly unrelated regression equations and tests for

aggregation bias. Journal of the American Statistical Association, 57, 348–368.

	Inductive transfer with context-sensitive neural networks
	Abstract
	Introduction
	Background and notation
	Motivation for exploring an alternative to MTL
	Prior work on context input attributes

	csMTL
	Constraint over the csMTL hypothesis space
	Constraint between context and bias weights
	Constraint between context to hidden and output weights

	Comparing the number of free parameters of MTL and csMTL
	Context inputs and relatedness between csMTL hypotheses
	Does csMTL work with other ML methods?

	Experimentation
	The task domains
	Comparison of methods varying number of hidden nodes
	Method
	Results

	Comparison of methods varying number of training examples
	Method
	Results

	Comparison of methods on a domain of equivalent tasks
	Method
	Results

	Comparison of methods on the seven task domains
	Method
	Results

	csMTL and other machine learning methods
	csMTL and IDT models
	Method
	Results

	csMTL and SVM models
	Method
	Results

	Discussion

	Hints to why csMTL works so well
	Summary and conclusion
	Benefits and limitations of csMTL
	Future work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

