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Abstract Significant changes in the instance distribution or associated cost function of a
learning problem require one to reoptimize a previously-learned classifier to work under new
conditions. We study the problem of reoptimizing a multi-class classifier based on its ROC
hypersurface and a matrix describing the costs of each type of prediction error. For a binary
classifier, it is straightforward to find an optimal operating point based on its ROC curve and
the relative cost of true positive to false positive error. However, the corresponding multi-
class problem (finding an optimal operating point based on a ROC hypersurface and cost
matrix) is more challenging and until now, it was unknown whether an efficient algorithm
existed that found an optimal solution. We answer this question by first proving that the
decision version of this problem is NP-complete. As a complementary positive result, we
give an algorithm that finds an optimal solution in polynomial time if the number of classes n

is a constant. We also present several heuristics for this problem, including linear, nonlinear,
and quadratic programming formulations, genetic algorithms, and a customized algorithm.
Empirical results suggest that under both uniform and non-uniform cost models, simple
greedy methods outperform more sophisticated methods.

Preliminary results appeared in Deng et al. (2006).
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1 Introduction

We study the problem of re-weighting classifiers to optimize them for new cost models. For
example, given a classifier optimized to minimize classification error on its training set, one
may attempt to tune it to improve performance in light of a new cost model. Equivalently,
a change in the class distribution (the probability of seeing examples from each particular
class) can be handled by modeling such a change as a change in cost model. More formally,
we are concerned with finding a nonnegative weight vector (w1, . . . ,wn) to minimize

m∑

i=1

c
(
yi, argmax

1≤j≤n

{wj fj (xi)}
)
, (1)

given labeled examples {(x1, y1), . . . , (xm, ym)} ⊂ X × {1, . . . , n} for instance space X ,
a family of confidence functions fj : X → R

+ for 1 ≤ j ≤ n, and a cost function
c : {1, . . . , n}2 → R

+.
This models the problem of reoptimizing a multi-class classifier in machine learning.

A machine learning algorithm takes a set S = {(x1, y1), . . . , (xm, ym)} ⊂ X × {1, . . . , n} of
labeled training examples and selects a function F : X → {1, . . . , n} that minimizes misclas-
sification cost on S, which is

∑m

i=1 c(yi,F (xi)), where cost c(yi,F (xi)) is a nonnegative
function measuring the cost of predicting class F(xi) on example xi whose true label is yi .
For convenience, we will assume that the classifier F is represented by a set of nonnegative
functions fj : X → R

+ for j ∈ {1, . . . , n}, where fj (x) is the classifier’s confidence that x

belongs in class j , and F(x) = argmax1≤j≤n{fj (x)}. Each confidence function fj can be
seen as a “base learner” (as in a one-versus-rest strategy).

An obvious solution would be to simply rerun the base learning algorithm to reoptimize
each confidence function fj for the new cost function. However, this process may be very
expensive or even impossible. Thus, the task before us is to reoptimize F without discarding
the family of base learners. As an example, consider the machine learning application of
predicting where a company should drill for oil. In this example the set of instances X
consists of candidate drilling locations, each described by a set of attributes (e.g. fossil
history of the site, geographic features that quantify how well oil is trapped in an area,
etc.). The set of classes could be a discrete scale from 1 to n, where 1 indicates no oil
would be found, and n indicates a highly abundant supply. To learn its classifier F , the
learning algorithm was given a set S ⊂ X × {1, . . . , n} of instance-label pairs as well as
a nonnegative, asymmetric cost function c, where c(j, k) measures the cost of money and
resources of thinking that an area of class j really was class k. (This function not only
indicates the cost of committing excessive resources to an area with too little oil, but also of
committing too few resources to an area with abundant oil.) Once the function F is learned
and put into practice, it may become the case that the cost function changes from c to c′,
e.g. if new technologies in drilling and shipping of oil emerge. If this happens, then the
function F is no longer appropriate to use. One option to remedy this is to discard F and
train a new classifier F ′ on S under cost function c′. However this may not be an option if
the original data S is unavailable, say due to proprietary restrictions. In this case the best (or
perhaps only) choice is to reoptimize F based on a new (possibly smaller) data set. Such
problems have been studied extensively (Fieldsend and Everson 2005; Ferri et al. 2003;
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Hand and Till 2001; Lachiche and Flach 2003; Mossman 1999; O’Brien and Gray 2005;
Srinivasan 1999).

For learning tasks with only n = 2 classes, this problem is equivalent to that of finding
the optimal operating point of a classifier given a ratio of true positive cost to false pos-
itive cost and has a straightforward solution via Receiver Operating Characteristic (ROC)
analysis (Provost and Fawcett 1997, 1998, 2001; Lachiche and Flach 2003). ROC analy-
sis takes a classifier F that outputs confidences in its predictions (i.e. a ranking classi-
fier), and precisely describes the tradeoffs between true positive and false positive errors.
By ranking all examples x ∈ S by their confidences f (x) from largest to smallest (de-
noted S = {x1, . . . , xm}), one achieves a set of m + 1 binary classifiers by setting thresholds
{θi = (h(xi) + h(xi+1))/2,1 ≤ i < m} ∪ {h(x1) − ε,h(xm) + ε} for some constant ε > 0.
Given a relative cost c of true positive error to false positive error and a validation set S of
labeled examples, one can easily find the optimal threshold θ based on S and c (Lachiche
and Flach 2003). To do so, simply rank the examples in S, try every threshold θi as described
above, and select the θi minimizing the total cost of all errors on S.

Though the binary case lends itself to straightforward optimization, working with multi-
class problems makes things more difficult. A natural idea is to think of an n-class ROC
space having dimension n(n − 1). A point in this space corresponds to a classifier, with
each coordinate representing the misclassification rate of one class into some other class.1

According to Srinivasan (1999), the optimal classifier lies on the convex hull of these points.
Given this ROC polytope, a validation set, and an n × n cost matrix M with entries c(y, ŷ)

(the cost associated with misclassifying a class y example as class ŷ), Lachiche and Flach
(2003) define the optimization problem as finding a weight vector �w ≥ �0 to minimize (1).

No efficient algorithm is known to optimally solve this problem for n > 2, and Lachiche
and Flach (2003) speculate that the problem is computationally hard. We present a proof
that the decision version of this problem is in fact NP-complete. As a complementary pos-
itive result, we give an algorithm that finds an optimal solution in polynomial time (w.r.t.
the number of examples m) when the number of classes n is constant. We also present sev-
eral new heuristics for this problem, including an integer linear programming relaxation,
a sum-of-linear fractional functions (SOLFF) formulation, and a quadratic programming
formulation as well as a direct optimization of (1) with a genetic algorithm. Finally, we
present a new custom algorithm based on partitioning the set of all classes into two meta-
classes. This algorithm is similar to that of Lachiche and Flach (2003), but is more flexible
in how a hypothesis is formed.

We compared all methods on a substantial number of data sets in four settings: opti-
mization and generalization (performance on a training set and an independent testing set)
in both uniform and non-uniform cost settings. Though most algorithms were able to show
an improvement over the base learner, in every setting, our MetaClass algorithm, an off-
the-shelf genetic algorithm, and the algorithm of Lachiche and Flach (2003) consistently
outperformed other methods. Among these three leaders, there are instances in which our
MetaClass algorithm significantly outperforms the other two. However, overall, all three
methods are equally good at improving the base classifier while generalizing well.

The rest of this paper is as follows. In Sect. 2 we discuss related work. In Sect. 3 we
prove the decision version of this problem (which we call REWEIGHT) is NP-complete and
in Sect. 4 we present an algorithm for producing an optimal solution that is efficient for
a constant number of classes. Next, in Sect. 5 we discuss our heuristic approaches to this
problem. We then experimentally evaluate our algorithms in Sect. 6 and conclude in Sect. 7.

1Assuming that cost is zero if the classification is correct, we need only n(n − 1) instead of n2 dimensions.
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2 Related work

The success of binary ROC analysis gives hope that it may be possible to adapt similar ideas
to multi-class scenarios. However, research efforts (Srinivasan 1999; Hand and Till 2001;
Ferri et al. 2003; Lachiche and Flach 2003; Fieldsend and Everson 2005) have shown that
extending current techniques to multi-class problems is not a trivial task. One key aspect to
binary ROC analysis is that it is highly efficient to represent trade-offs of misclassifying one
class into the other via binary ROC curves. In addition, the “area under the curve” (AUC)
nicely characterizes the classifier’s ability to produce correct rankings without committing
to any particular operating point. Decisions can be postponed until a desired trade-off is
required (e.g. finding the lowest expected cost).

Now consider the problem of classification in an n-class scenario. A natural extension
from the binary case is to consider a multi-class ROC space as having dimension n(n − 1).
A point in this space corresponds to a classifier with each coordinate representing the mis-
classification rate of one class into some other class. Following from Srinivasan (1999), the
optimal classifier lies on the convex hull of these points.

Previous investigations have all shared this basic framework (Mossman 1999; Srinivasan
1999; Hand and Till 2001; Ferri et al. 2003; Lachiche and Flach 2003; Fieldsend and Ever-
son 2005; O’Brien and Gray 2005). They differ, however, in the metrics they manipulate
and in the approach they use to solve multi-class optimization problems. Mossman (1999)
addressed the special case of three-class problems, focusing on the statistical properties of
the volume under the ROC surface. This motivated the later work of Ferri et al. (2003),
Lachiche and Flach (2003), and O’Brien and Gray (2005). Hand and Till (2001) extended
the definition of two-class AUC by averaging pairwise comparisons. They used this new
metric in simple, artificial data sets and achieved some success. Ferri et al. (2003) took a
different approach in which they strictly followed the definition of two-class AUC by using
“volume under surface” (VUS). They were able to compute the bounds of this measure in a
three-class problem by using Monte Carlo methods. However, it is not known how well this
measure performs on more complex problems.

Fieldsend and Everson (2005), Lachiche and Flach (2003) and O’Brien and Gray (2005)
developed algorithms to minimize the overall multi-class prediction accuracy and cost given
some knowledge of a multi-class classifier. In particular, Fieldsend and Everson approximate
the ROC Convex Hull (ROCCH) (Provost and Fawcett 1997, 1998, 2001) using the idea of
Pareto front. Consider the following formulation: let Rj,k(θ) be the misclassification rate of
predicting examples from class j as class k. This is a function of some generalized parameter
θ that depends on the particular classifiers. For example, θ may be a combination of a weight
vector �w and hypothetical cost matrix M . The goal is to find θ that minimizes Rj,k(θ) for
all j, k with j 
= k. Consider two classifiers θ and φ. Fieldsend and Everson say θ strictly
dominates φ if all misclassification rates for θ are no worse than φ and at least one rate is
strictly better. The set of all feasible classifiers such that no one is dominated by the other
forms the Pareto front. Fieldsend and Everson present an evolutionary search algorithm to
locate the Pareto front. This method is particularly useful when misclassification costs are
not necessarily known.

More closely related to our work are the results of Lachiche and Flach (2003) and
O’Brien and Gray (2005). Lachiche and Flach considered the case when the misclassifi-
cation cost is known, and the goal is to find the optimal decision criterion that fits the train-
ing set. Recall that this can be solved optimally for the binary case. In particular, only one
threshold θ is needed to make the decision for two-class problems. Since there are only
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m + 1 possible thresholds for m examples, it is efficient enough to simply test all possibili-
ties and select the one that gives the minimum average error (or cost). However, the situation
is more complicated for multi-class problems.

Lachiche and Flach (2003) formulated the multi-class problem as follows. Suppose the
multi-class learning algorithm will output a positive, real-valued function
f : {x1, . . . , xm} × {C1, . . . ,Cn} → R

+. For convenience, we will use the notation fj (xi) =
f (i, j) to mean the confidence that example xi belongs to class j . The decision criterion
simply assigns example xi to the class with maximum score. Reweighting the classes in-
volves defining a nonnegative weight vector �w = (w1,w2, . . . ,wn), and predicting the class
for an example x as

h(x) = argmax
1≤j≤n

{
wj fj (x)

}
.

Since �w has only n − 1 degrees of freedom, we can fix w1 = 1.
Lachiche and Flach (2003) used a hill-climbing heuristic to find a good weight vector �w.

In particular, they took advantage of the fact that the optimal threshold for the two-class
problem can be found efficiently. For each coordinate in the weight vector, they mapped
the problem to a binary problem. The algorithm starts by assigning w1 = 1 and all other
weights 0. It then tries to decide the weight for one class at a time as follows. Let S be the
set of labeled examples and let j be the current class for which we want to assign a “good”
weight wj . Then the set of possible weights for wj is

{
maxi∈{1,...,j−1} fi(x)

fj (x)

∣∣∣∣ x ∈ S

}
.

It is not difficult to see that at any stage there are at most O(|S|) possible weights that
can influence the prediction. Thus choosing the optimal weight in this setting can be easily
achieved by checking all possibilities. Overall, their algorithm runs in time �(nm logm).
Though there is no guarantee that this approach can find an optimal solution, they gave
empirical results suggesting that it works well for optimizing 1BC, a logic-based Bayes
classifier (Lachiche and Flach 1999).

Although only briefly mentioned by Lachiche and Flach (2003), this ROC thresholding
technique is extensible to cost-sensitive scenarios. O’Brien and Gray (2005) investigated
the role of a cost matrix in partitioning the estimated class probability space and as a re-
placement for the weights. Assuming that M is a misclassification cost matrix, an optimal
decision criterion would be

h(x) = argmax
1≤j≤n

{
∑

1≤k≤n

c(j, k) p̂k(x)

}
.

If p̂k(x) is a good probability estimate of example x belonging to class k, this prediction
results in the lowest expected cost. However, if p̂k(x) is not an accurate probability estimate,
then to ensure optimality, the cost matrix M has to be altered accordingly. Thus the cost
matrix M plays a similar role as the weight vector of Lachiche and Flach (2003) in defining
the decision boundary in estimated probability space. O’Brien and Gray (2005) defined
several standard operations to manipulate the cost matrix M and proposed the use of a
greedy algorithm to find the altered cost matrix (called a boundary matrix).

While the multi-class problem has been studied via heuristics, no one has yet answered
the question as to whether this problem is hard, and no one has found efficient algorithms to
solve restricted cases of the multi-class problem. Below we provide answers to both of these
open questions as well as extend the current literature of heuristics.
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3 Hardness

We now prove our hardness result of this problem. For convenience, in this section we use
fij to denote fi(xj ) and identify true/false with 1/0. We will show hardness for the uniform
cost case, i.e. c(j, k) = 1 when j 
= k and 0 otherwise. This of course implies hardness for
the general case.

Definition 1 (Problem REWEIGHT)
Given: nonnegative real numbers fij (i = 1, . . . ,m, j = 1, . . . , n), integers yi ∈ {1, . . . , n},
and an integer K .
Question: does there exist a vector of nonnegative real numbers (w1, . . . ,wn) such that

∣∣∣∣

{
i : max

j 
=yi

{
wjfij

} ≥ wyi
fiyi

}∣∣∣∣ ≤ K? (2)

In other words, the problem is to find a vector �w = (w1, . . . ,wn) that maximizes how often
wjfij is maximized (over j ) by the correct label yi .

To prove the hardness of REWEIGHT, we will reduce from the minimum satisfiability
problem MINSAT, shown to be NP-complete by Kohli et al. (1994).

Definition 2 (Problem MINSAT (Kohli et al. 1994))
Given: a set of disjunctions of pairs of literals

�11 ∨ �12

�21 ∨ �22

...

�m1 ∨ �m2,

where each �ij is a boolean variable xi or its negation ¬xi . We are also given an integer K .
Question: does there exist a setting of x1, . . . , xn such that the number of satisfied clauses
(disjuncts) is at most K?

Theorem 1 REWEIGHT is NP-complete.

Proof First, it is easy to see that REWEIGHT is in NP. The certificate is simply the weight
vector �w. This certificate is sized polynomially in the size of the input since its required
precision is polynomially proportional to the precision of the input (the number of bits to
represent each fij ). We now reduce from MINSAT. Note that a special case of the constraint

max
j 
=yi

{
wjfij

} ≥ wyi
fiyi

used in (2) is an inequality of the form

wj0fij0 ≥ wyi
fiyi

(3)

for one particular j0 
= yi . This can be seen simply by setting all of the other fij ’s to zero,
which gives

max{0,wj0fij0} ≥ wyi
fiyi

. (4)
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Since in our construction the wj ’s and fij ’s are nonnegative, these are equivalent. So, in
what follows, we give constraints of the form of (3), but these really are of the form of
(4). Thus while for the sake of clarity we map instances of MINSAT to inequalities, it is
straightforward to convert these to a collection of fij and yi values in REWEIGHT.

Given an instance of MINSAT as above, we create an instance of REWEIGHT. The new
instance has n′ = 2n + 1 weights: v0; w1, . . . ,wn; and w′

1, . . . ,w
′
n. The weight v0 is forced

to be strictly positive, and is used as a reference for all other weights. Roughly speaking,
wi will correspond to boolean variable xi and w′

i will correspond to its negation. More
specifically, we will force wi to have a value close to 2v0 if xi is true, and a value close to v0

otherwise; w′
i will be forced to take just the opposite values (close to v0 if xi is true, close to

2v0 if xi is false). We will also construct constraints corresponding to the MINSAT clauses
that are satisfied if and only if the MINSAT clauses are satisfied.

To be more specific, we construct four classes of constraints. Each of these constraints
actually gets repeated several times in the construction of the reduced instance, meaning
that if the constraint holds, then it holds several times. In this way, the constraints can be
assigned varying importance weights.

A. First, we force v0 to be strictly positive. To do so, we include the constraint:

v0 ≤ 0.

(Recall that the goal is to minimize how many of these constraints are satisfied, which ef-
fectively means that it will be forced to fail so that v0 > 0.) This constraint gets repeated
rA times, as specified below.

B. Next, we force each wi and w′
i to have a value roughly between v0 and 2v0. To do so,

we simply include constraints:

wi ≤ 0.99v0

wi ≥ 2.01v0

w′
i ≤ 0.99v0

w′
i ≥ 2.01v0

for each i. Each of these is repeated rB times.
C. Next, we add constraints that will effectively force (for each i) exactly one of wi and w′

i

to be close to v0, and the other to be close to 2v0. These are the constraints:

wi ≤ 1.99w′
i

w′
i ≤ 1.99wi.

In the optimal solution, we will see that exactly one of these two constraints will hold.
These constraints each get repeated rC times.

D. Finally, we encode the actual clauses of the MINSAT instance. A MINSAT clause of the
form xi ∨ xj becomes the constraint

0.8w′
i ≤ wj .

A MINSAT clause of the form ¬xi ∨ xj becomes the constraint

0.8wi ≤ wj .
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A MINSAT clause of the form xi ∨ ¬xj becomes the constraint

0.8w′
i ≤ w′

j .

Finally, a MINSAT clause of the form ¬xi ∨ ¬xj becomes the constraint

0.8wi ≤ w′
j .

Each of these is repeated once.

The value K for the instance of REWEIGHT that we constructed is denoted K ′ (reserving
K for the corresponding value of the original MINSAT instance). We let:

rC = K + 1

K ′ = K + nrC

rB = K ′ + 1

rA = K ′ + 1.

This completes the construction, which is clearly polynomial in all respects. We now
need to argue that the MINSAT instance is “yes” if and only if the reduced REWEIGHT

instance is also “yes”.
Suppose that x1, . . . , xn satisfies at most K of the MINSAT clauses. In this case, we can

easily construct settings of the weights so that at most K ′ of the constructed constraints are
satisfied.

Let v0 = 1 and let

wi =
{

1 if xi = 0
2 if xi = 1,

and let

w′
i =

{
1 if wi = 2
2 if wi = 1.

Then none of the constraints of types A and B is satisfied. Exactly half of the constraints
of type C are satisfied, which means nrC constraints of type C are satisfied.

What about the constraints of type D? We claim that for each satisfied clause of the
MINSAT solution, the corresponding type-D constraint is satisfied. If a clause of the form
xi ∨ xj is satisfied, then xi = 1 or xj = 1, which means that wi = 2 or wj = 2, which means
w′

i = 1 or wj = 2, which means that 0.8w′
i ≤ wj . Conversely, if xi ∨ xj is not satisfied, then

xi = 0 and xj = 0, which means that wi = 1 and wj = 1, which means w′
i = 2 and wj = 1,

which means that 0.8w′
i 
≤ wj . (The arguments are the same when some of the variables

appear negated in the clause.)
Thus, because at most K of the clauses are satisfied, it follows that at most K of the

type-D constraints are satisfied. Therefore, the total number of satisfied constraints is at
most K + nrC = K ′.

We now argue the other direction. Suppose that v0,w1, . . . ,wn,w
′
1, . . . ,w

′
n satisfy at

most K ′ of the constructed constraints.
First of all, this means that

v0 > 0
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since rA > K ′. Also, since rB > K ′, this means that

0.99v0 < wi < 2.01v0 (5)

and

0.99v0 < w′
i < 2.01v0. (6)

Next, we claim that either

wi ≤ 1.99w′
i (7)

or

w′
i ≤ 1.99wi. (8)

Otherwise, if neither of these was true, then we would have

wi > 1.99w′
i > (1.99)2wi,

which implies that wi < 0. However, we have already established that wi > 0.99v0 > 0.
Further, we claim that at most one of (7) and (8) can be satisfied. We already have estab-

lished that at least one constraint of each pair must be satisfied. If, in addition, both held for
some pair, then the number of satisfied type-C constraints would be at least

(n − 1) rC + 2 rC = nrC + rC > K ′.

So exactly one of each pair of type-C constraints is satisfied.
We next claim that for each i, exactly one of wi and w′

i is in the interval (0.99v0,1.1v0)

and the other is in (1.9v0,2.01v0). We know that either (7) and (8) is satisfied. Suppose
w′

i > 1.99wi . If w′
i ≤ 1.9v0 then

wi <
w′

i

1.99
≤ 1.9v0

1.99
< 0.99v0,

a contradiction since we have already shown that wi > 0.99v0. Also, if wi ≥ 1.1v0, then

w′
i > 1.99wi ≥ 1.99 · 1.1v0 > 2.01v0,

again a contradiction since w′
i < 2.01v0. So in this case, wi < 1.1v0 and w′

i > 1.9v0.
Moreover, because (5) and (6) hold, we have in this case that wi ∈ (0.99v0,1.1v0) and
w′

i ∈ (1.9v0,2.01v0). In this case, we assign the boolean variable xi the value 0. By a similar
argument, if wi > 1.99w′

i then w′
i ∈ (0.99v0,1.1v0) and wi ∈ (1.9v0,2.01v0). In this case,

we assign the boolean variable xi the value 1.
We have established that exactly nrC type-C constraints are satisfied, and none of the

type-A and type-B constraints is satisfied. Since at most K ′ constraints are satisfied alto-
gether, this means that at most K type-D constraints are satisfied. We complete the reduc-
tion by showing that a type-D constraint is satisfied if and only if the corresponding MINSAT

clause is satisfied (according to the assignment constructed above), which will mean that at
most K of these are satisfied.

Suppose xi ∨ xj is satisfied. Then xi = 1 or xj = 1, which means either wi > 1.9v0 or
wj > 1.9v0, which means either w′

i < 1.1v0 or wj > 1.9v0. We claim, in either case, that
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the constraint 0.8w′
i ≤ wj is satisfied. For if w′

i < 1.1v0, then because wj > 0.99v0, we
have

0.8w′
i < 0.8 · 1.1v0 = 0.88v0 < 0.99v0 < wj .

And if wj > 1.9v0 then because w′
i < 2.01v0, we have

0.8w′
i < 0.8 · 2.01v0 = 1.608v0 < 1.9v0 < wj .

Conversely, if xi ∨ xj is not satisfied then xi = 0 and xj = 0, which means that wi < 1.1v0

and wj < 1.1v0, which means that w′
i > 1.9v0 and wj < 1.1v0, which means that

0.8w′
i > 0.8 · 1.9v0 = 1.52v0 > 1.1v0 > wj,

so the constraint 0.8w′
i ≤ wj is not satisfied. �

4 Constant-class algorithm

We now present an algorithm that finds an optimal solution for a non-uniform cost function
in polynomial time when the number of classes n is constant. Our algorithm takes as input a
set of nonnegative real numbers fij for i = 1, . . . ,m and j = 1, . . . , n, integers (labels) yi ∈
{1, . . . , n}, and a nonnegative cost function c : {1, . . . , n}2 → R

+. Assuming n is a constant,
in time polynomial in m it will output a vector of weights (w1, . . . ,wn) that minimizes (1).

Our algorithm is based on the observation that class j will be predicted for instance i

if and only if wj/wk > fik/fij for all k 
= j . Thus for a fixed (j, k) pair, there are only m

values of fik/fij that can affect the value of (1). We will call these values breakpoints. For
each (j, k) pair, one can easily compute all breakpoints, add in −∞ and +∞, sort them,
and place them in an ordered set Bjk = (−∞, f1k/f1j , . . . , fmk/fmj ,+∞). We use B

jk

� to

denote the �th element in Bjk . So a candidate range of values of wj/wk is
(
B

jk

� ,B
jk

�+1

]
.

We now define a configuration C as a set of pairs of breakpoints across all (j, k) pairs:

C =
⋃

j∈{1,...,n},k 
=j

{
B

jk

�jk
< wj/wk ≤ B

jk

1+�jk

}
,

for �jk ∈ {1, . . . ,m + 1}. We say that C is realizable if there exists a set of nonnegative
weights that satisfies all of its constraints. If no such set of weights exists, we say C is
unrealizable.

The idea of our algorithm is simple. It enumerates each configuration C and then uses
linear programming to test if C is realizable.2 If it is not, then we test the next configuration.
If instead C is realizable, then the weight vector returned by the linear programming algo-
rithm is one of our candidate solutions to minimize (1). Our algorithm stores this weight
vector with its cost and then checks the remaining configurations. Once all configurations
have been checked, the algorithm returns the one with minimum cost.

Consider an optimal solution �w∗. Let C∗ be the configuration it satisfies. Any other pos-
itive weight vector �w that also satisfies C∗ must also be optimal since it induces the same

2To handle the strict inequalities, we simply convert each constraint a > b to a ≥ b + ε, constrain 1 ≥ ε ≥ 0,
then maximize ε subject to the new constraints (note that we use the same ε for each strict constraint). If
a solution is returned with ε > 0 then we know the configuration is realizable. If no solution is found or if
ε = 0, then it is not realizable.
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collection of predictions and hence has the same value of (1). Since our algorithm tries all
configurations, it also tries C∗. Since C∗ is realizable, the algorithm finds a weight vector �w
satisfying it. Since �w must be optimal, our algorithm returns an optimal weight vector.

Each (j, k) pair has at most m + 2 breakpoints, which means that the number of
(B

jk

� ,B
jk

�+1) pairs for class pair (j, k) is at most m + 1. So the number of configurations
is at most

(m + 1)2(n
2) = (m + 1)n2−n,

which is polynomial for constant n. (We can also combine Bjk with Bkj before sorting,
which would reduce the number of configurations to (2m + 1)(

n
2).) Further, it takes poly-

nomial time to test each configuration for realizability via linear programming and it takes
polynomial time to compute the cost of each candidate solution. Therefore this algorithm
takes polynomial time.

Theorem 2 There exists an algorithm to produce an optimal solution to (1) that runs in
polynomial time when the number of classes n is constant.

5 Heuristics

For even modest values of n the time complexity of the constant-class algorithm in the
previous section is not practical. For this reason, we present several alternative heuristics to
solve the reoptimization problem, including several new mathematical programming formu-
lations. First, we reformulate the objective function (1) as a relaxed integer linear program.
We also give formulations as a sum of linear fractional functions (SOLFF) as well as a
quadratic program. Besides these formulations, we describe a tree-based heuristic algorithm
approach, MetaClass. Finally (in Sect. 6) we present experimental results from these formu-
lations. We give evidence that, under non-uniform costs, the objective function landscape
for this problem is highly discontinuous and thus more amenable to global optimization
methods such as genetic algorithms and margin maximization methods.

5.1 Mathematical programming formulations

5.1.1 Relaxed integer linear program

We start by reformulating (1) as follows:

minimize
�w

⎧
⎨

⎩

n∑

j=1

m∑

k=1

c(j, k)
∑

xi∈Cj

Ii,k

⎫
⎬

⎭ , (9)

where Cj ⊆ S is the set of instances of class j , c(j, k) is the cost of misclassifying an
example from class j as k, and

Ii,k =
{

1 if wkfk(xi) ≥ w�f�(xi), � 
= k

0 otherwise.

Recall that fk(xi) is the base learner’s confidence that example xi belongs to class k. Also,
we assume c(j, j) = 0 for all classes j . Formalizing this as a constrained optimization prob-
lem, we make �I a free variable in (9) and minimize it subject to

Ii,jwjfj (xi) = Ii,j max1≤k≤m{wkfk(xi)} (10)



230 Mach Learn (2008) 71: 219–242

m∑

j=1

Ii,j = 1 (11)

Ii,j ∈ {0,1} (12)

wj ≥ 0 (13)

where each constraint holds for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Equation (10) allows
only the class that has the max value of wkfk(xi) to be indicated by �I to be the predicted
class of example xi and (11) forces exactly one class to be predicted per example xi . We can
change the optimization problem in two ways to get an equivalent problem. First, we change
the “=” in (10) to “≥”. Second, we can relax (12) to be Ii,j ∈ [0,1].

Note that (10) (even when amended with “≥”) will only be satisfied if Ii,j = 0 for all Cj

that don’t maximize the RHS of (10). Thus, so long as we never have wkfk(xi) = wk′fk′(xi)

for some k 
= k′, the relaxation is equivalent to the original problem. Further, even if there
is such a tie for classes k and k′, it will not be an issue if the corresponding entries in the
cost matrix are different, since an optimal solution will set Ii,k = 1 and Ii,k′ = 0 if c(j, k) <

c(j, k′). The potential problem of both wkfk(xi) = wk′fk′(xi) and c(j, k) = c(j, k′) is fixed
by (after optimizing) checking for any Ii,k 
∈ {0,1} and arbitrarily choosing one to be 1 and
the rest 0. Note that since there is a tie in this case, the prediction can go either way and the
weight vector �w returned is still valid.

Everything except (10) is linear. We now reformulate it. First, for each i ∈ {1, . . . , n}, we
substitute γi for max1≤k≤m{wkfk(xi)}:

Ii,jwjfj (xi) ≥ γi Ii,j (14)

wkfk(xi) ≤ γi, (15)

for all i ∈ {1, . . . , n} and j, k ∈ {1, . . . ,m} where each γi is a new variable. Obviously (15)
is a linear constraint, but (14) is not even quasiconvex (Boyd and Vandenberghe 2004). The
complexity of this optimization problem motivates us to reformulate it a bit further.

Let us assume that fk(xi) ∈ (0,1] (e.g. if fk(·) are probability estimates from naïve Bayes
or logistic regression). Now we can optimize (9) (again with �I as a free variable) subject to:

γi − wjfj (xi) + Ii,j ≤ 1 (16)

γi ≥ wjfj (xi) (17)

m∑

j=1

Ii,j = 1 (18)

Ii,j ∈ {0,1} (19)

wj ≥ 0 (20)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
So long3 as wjfj (xi) ∈ (0,1] and Ii,j ∈ {0,1} for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

this is another equivalent optimization problem, this time a {0,1} integer linear program.
Unfortunately, we cannot relax (19) to Ii,j ∈ [0,1] as we did before to get an equivalent

3We can ensure this happens by bounding each wj appropriately.



Mach Learn (2008) 71: 219–242 231

problem. But we still use the relaxation as a linear programming heuristic. To help avoid
overfitting, we also add a linear regularization term to (9):

minimize
�w, �I

⎧
⎨

⎩

n∑

j=1

m∑

k=1

c(j, k)
∑

xi∈Cj

Ii,k + η‖ �w − �1‖1

⎫
⎬

⎭ (21)

where ‖ · ‖1 is the 1-norm, �1 is the all-1s vector, and η is a parameter. This regularizer
penalizes large deviations from the original classifier.

5.1.2 Sum of linear fractional functions formulation

Another formulation comes from changing how predictions are made from deterministic to
probabilistic. In this prediction model, given a new example x to predict on, first compute
wjfj (x) for each j ∈ {1, . . . , n}. Then predict class j for example x with probability

wjfj (x)∑n

k=1 wkfk(x)
.

Assuming that an instance x is uniformly drawn at random from the training set, the ex-
pected cost of this predictor is

n∑

j=1

m∑

k=1

c(j, k)
∑

xi∈Cj

ϕ(i, j), (22)

where

ϕ(i, j) = wjfj (xi)∑n

�=1 w�f�(xi)

subject to wj ≥ 0 for all j ∈ {1, . . . , n}. We now have eliminated the variables Ii,j and their
integer constraints. However, we now have a nonlinear objective function in (22). Each in-
dividual term of the summation of (22) is a linear fractional function, which is quasiconvex
and quasiconcave, and thus it is efficiently solvable optimally. However, the sum of linear
fractional functions (SOLFF) problem is known to be hard (Matsui 1996) and existing al-
gorithms for this problem are inappropriate in solving (22) (they either restrict to few terms
in the summation or to low-dimensional vectors). Instead, we apply a genetic algorithm to
directly optimize (22).

5.1.3 Quadratic programming formulation

Convex programming is a special case of nonlinear programming in which the objective
function and the inequality constraint functions are convex and the equality constraint func-
tions are affine. The theory of convex programming is well-established (Rockafellar 1970;
Stoer and Witzgall 1996). For a convex program, a local optimum is the global optimum and
there are well-studied efficient algorithms to find such a global optimum.

We tried several quadratic programming methods based on the idea of margin maxi-
mization in support vector machines. We found from our experiments that the ν-SVM-like
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formulation similar to that of Schölkopf and Smola (2001) gave the strongest result of the
SVM-like formulations we tested:

minimize
�w,�b,�ζ ,ρ

1

2
‖ �w‖2 + 1

m

m∑

i=1

ζi−νρ (23)

s.t. wjfj (xi) + bj ≤ wyi
fyi

(xi) + byi
+ ζi − ρ ∀i,∀j 
= yi (24)

��w ≤ �w ≤ �uw (25)

��b ≤ �b ≤ �ub (26)

�0 ≤ �ζ (27)

0 ≤ ρ (28)

where �w = (w1, . . . ,wn) is our weight vector and �b = (b1, . . . , bn) is a reweighting offset.
The vector �ζ = (ζ1, . . . , ζm) serves as set of slack variables and ρ as the margin with ν as a
parameter. Furthermore, �lw, �uw are the lower and upper bounds of �w and �lb, �ub are bounds
for �b, all tunable parameters. In order to capture non-uniform costs we replace ζi with ciζi

where ci = maxj=1,...,m{c(yi, j)}.
In our experiments, ν was fixed to be 0.1. The lower and upper bounds on w, �lw, �uw ,

were set to 0 and 1 respectively. We also tried several parameters for the offset, but little
difference was observed. Thus, our experimental results use no offset (the lower and upper
bounds on �b were set to 0).

5.2 The MetaClass heuristic algorithm

We now present a new algorithm that we call MetaClass (Algorithm 1). This algorithm
is similar to that of Lachiche and Flach (2003) in that we reduce the multi-class problem
to a series of two-class problems. However, we take what can be considered a top-down
approach while the algorithm of Lachiche and Flach (2003) can be considered bottom-up.
Moreover, MetaClass has a lower time complexity. The output of the algorithm is a decision
tree with each internal node labeled by two metaclasses and a threshold value. Each leaf
node is labeled by one of the classes in the original problem. At the root, the set of all
classes is divided into two metaclasses, C1 and C2. The criterion for this split may be based
on any statistical measure. For simplicity, experiments were performed by splitting classes
so that each metaclass would have roughly the same number of training examples by simply
sorting classes according to the number of examples and alternately partitioning them into
each metaclass. For each metaclass, our algorithm defines confidence functions g1(xi) and
g2(xi) for each instance xi , which are simply the sum of the confidences of the classes in
C1 and C2, respectively. The ratio G(xi) = g1(xi)/g2(xi) is used to find a threshold θ . We
find θ by sorting the instances according to G(xi) and choosing a threshold that minimizes
the error rate (or cost). The threshold will be the average of G(xi) and G(xi+1) for some
instance xi . Among equivalent thresholds (thresholds that induce the same error rate) we
choose the median. We recursively perform this procedure on the two metaclasses until
there is only a single class, at which point a leaf is formed.

The situation for non-uniform costs is slightly more complicated since it is not clear
which class among those in metaclass an example is misclassified as. Recall that our cost
function c(y, ŷ) represents the cost of misclassifying an instance x of class y as class ŷ.
However, in this case we need a cost function to quantify the cost of misclassifying an
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Fig. 1 Example run of MetaClass on Nursery, a 5-class problem

example into a set of classes. Formally, we need a function c′ : C × 2C → R
+. There are

numerous natural extensions from c to c′. For our experiments, c′ represents the average
cost of misclassifying instances into metaclasses in C1 and C2. More formally, if C′ ⊆ C, we
define c′(y,C′) to be 0 if y ∈ C′ (that is, x’s true label class is in the metaclass) and

1

|C′|
∑

j∈C′
c(y, j)

otherwise. The MetaClass algorithm is presented as Algorithm 1.
Figure 1 gives an example of a tree built by the MetaClass algorithm on the UCI (Blake

and Merz 2005) data set Nursery, a 5-class data set. At the root, the classes are divided into
two metaclasses, each with about the same number of training examples represented in their
respective classes. In this case, the threshold θ = 0.8169 favors the sum of confidences in
metaclass C1 = {4,3} as an optimal weight.

Predictions for a new example x are made as follows. Starting at the root node, we tra-
verse the tree towards a leaf. At each node T we compute the sum of confidences of x with
respect to each associated metaclass. We traverse left or right down the tree depending on
whether g1(x)/g2(x) ≥ θ . When a leaf is reached, a final class prediction is made.

The number of nodes created by MetaClass is �(n), where n is the number of classes.
Since the split into two metaclasses ensures each has an equal number of classes, MetaClass
results in a log (n)-depth tree. At each level, the most complex step is sorting at most m

instances according to the confidence ratio. Thus, the overall time complexity is bounded
by O(m log (m) log (n)). This represents a speedup to the algorithm of Lachiche and Flach
(2003), which requires �(nm log (m)) time. Classification is also efficient. At each node we
compute a sum over an exponentially shrinking number of classes. The overall number of
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Input: A set of instances, S = {x1, . . . , xm}; a set of classes, C = {1, . . . , n};
a learned confidence function f : S × C → R

+ and a tree node T
Output: A decision tree with associated weights.
if |C| = 1 then1

Stop, create a decision node and predict the class in C2

end3

Split C into two metaclasses C1,C2 such that each metaclass has about an equal4

number of classes.
foreach Instance xi ∈ S do5

g1(xi) = ∑
j∈C1

fj (xi)6

g2(xi) = ∑
j∈C2

fj (xi)7

G(xi) = g1(xi)/g2(xi)8

end9

Sort instances according to G10

Select a threshold θ that minimizes11

m∑

i=1

c′(yi,Mθ(xi))

where

Mθ(xi) =
{
C1 if θ ≥ G(xi)

C2 otherwise

Label T with θ,C1,C212

Create two children of T : Tleft, Tright13

Split S into two sets,14

S1 = {xi ∈ S | Mθ(xi) = C1}
S2 = {xi ∈ S | Mθ(xi) = C2}

Recursively perform this procedure on S1,C1, Tleft and S2,C2, Tright15

Algorithm 1: MetaClass

operations is thus

log (n)−1∑

i=0

n

2i
,

which is linear in the number of classes: �(n). This matches the time complexity of
Lachiche and Flach’s with respect to classification.

6 Experimental results

The following experiments were performed on 24 UCI data sets (Blake and Merz 2005),
using Weka’s naïve Bayes (Witten et al. 2005) as the baseline classifier and Matlab’s op-
timization functions for reoptimization. We ran experiments evaluating improvements both
in classification accuracy and under non-uniform costs. We used 10-fold cross validation
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for the error rate experiments. For the cost experiments, 10-fold cross validations were per-
formed on 10 different cost matrices for each data set. Costs were integer values between 1
and 10, assigned uniformly at random. Costs on the diagonal were set to zero.

We evaluated the performance of each heuristic both in how well it was able to optimize
the given cost function as well as how well the resultant classifier was able to generalize.
To this end, we present performance on the training set as well as the testing set. Results
for the optimization performance can be found in Table 1 while results for generalization
can be found in Table 2. In each table, results for the uniform (error rate) and non-uniform
cost models can be found in subtables (a) and (b) respectively. For uniform cost, the average
over the 10 folds is reported while for non-uniform costs, the average over all folds and cost
matrices is reported. Thus, the values for non-uniform costs represent the average cost over
all 100 experiments per data set, per algorithm.

In all tables, for each data set, n denotes the number of classes while m denotes the total
number of instances in each data set. The first column is the performance of our baseline
classifier. For comparison, we have included results of our implementation for the algorithm
of Lachiche and Flach (2003) on this baseline classifier (labeled “LF” in the tables). The re-
sults of the experiments on our heuristics can be found in the last five columns of each table.
Here, “MC” is the MetaClass algorithm (Algorithm 1). “LP” is a linear programming solver
(MOSEK ApS 2005) on (21) with η = 10−6. “GA1” is the sum of linear fractional func-
tions formulation (22) using a genetic algorithm. “GA2” is a genetic algorithm optimization
of (1). Both experiments used the GA implementation from Abramson (2005). Parameters
for both used the default Matlab settings with a population size of 20, a maximum of 200
generations and a crossover fraction of 0.8. The algorithm terminates if no change is ob-
served in 100 continuous rounds. In addition, the mutation function of Abramson (2005) is
guaranteed to only generate feasible solutions (in our case, all weights must be nonnegative).
Upon termination, a direct pattern search is performed using the best solution from the GA.
The final column is the quadratic program (QP) from Sect. 5.1.3 using the CVX software
package (Grant et al. 2006).

For all columns, values in italics indicate a worse performance than the baseline. En-
tries in bold indicate a significant difference from the baseline with at least a 95% confi-
dence according to a Student’s t method. The overall best classifier(s) for each data set are
underlined. Finally, the number of wins/losses (i.e. better/worse than the baseline) and those
that are significant are summarized in each column. A win indicates that the heuristic im-
proved upon the baseline while a loss indicates that the heuristic performed worse than the
baseline.

To measure how well each algorithm is able to optimize, it would be ideal to compare it
against an optimal solution. To do this, we could compute the optimal reweighting function
either by solving the integer linear program of (9) or by running the constant-class algo-
rithm presented in Sect. 4. Unfortunately, neither of these options is feasible. Even for n = 3
class data sets, the large number of instances forces an unmanageable number of variables
in the ILP formulation (likewise for the constant-class algorithm). Even the best ILP pack-
ages cannot handle such large numbers of variables. In lieu of such comparisons, we instead
report the performance of each heuristic on the training set (Table 1). That is, we report
how well the heuristic was able to optimize the given problem. For data sets with n = 2,
the algorithm of Lachiche and Flach (2003) and MetaClass are optimal since they simplify
to the two-class ROC threshold problem. However, in some instances, their performances
differ slightly. This is due to rounding errors and how each implementation deals with bor-
derline examples, thus the differences are negligible (in particular, the largest discrepancies
correspond to at most 11 instances over all 10 folds being classified differently by the two
algorithms).



236 Mach Learn (2008) 71: 219–242

Table 1 Optimization Performance. The two tables present the performance rates of each heuristic. Italicized
entries indicate the heuristic performed worse than the baseline (naïve Bayes) while non-italicized entries
indicate an improvement or tie. A bold entry indicates a statistically significant difference from the baseline
according to a Student’s t -test with a 95% confidence level. For each data set, the overall best performing
heuristic(s) are underlined

Data Set n m Naïve LF MC LP (21) GA1 (22) GA2 (1) QP

Bayes

(a) Error rates. The values in this table represent performance under a uniform cost model

Audiology 24 226 0.2143 0.0840 0.1425 0.1705 0.1145 0.1637 0.1754

Bridges 2 (material) 3 107 0.0757 0.0602 0.0405 0.0540 0.0882 0.0519 0.0570

Bridges 2 (rel-l) 3 107 0.1173 0.0778 0.0737 0.1069 0.1245 0.0747 0.1038

Bridges 2 (span) 3 107 0.0560 0.0508 0.0342 0.0570 0.0633 0.0321 0.0570

Bridges 2 (type) 6 107 0.1277 0.0904 0.1059 0.1277 0.1381 0.1090 0.1080

Bridges 2 (t-or-d) 2 107 0.0176 0.0124 0.0135 0.0218 0.0426 0.0124 0.0290

Car 4 1728 0.1291 0.0914 0.1024 0.1153 0.1639 0.0914 0.1158

Post-Op 3 1473 0.4830 0.4525 0.4666 0.4830 0.4805 0.4632 0.4693

Horse-colic (code) 3 368 0.2276 0.2173 0.2237 0.2276 0.2303 0.2149 0.2339

Horse-colic (surgical) 2 368 0.1657 0.1388 0.1370 0.1657 0.1497 0.1376 0.1515

Horse-colic (site) 63 368 0.2970 0.2161 0.2623 0.2844 0.2744 0.2412 0.2820

Horse-colic (subtype) 2 368 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

Horse-colic (type) 8 368 0.0105 0.0048 0.0045 0.0090 0.0057 0.0072 0.0072

Credit 2 1000 0.2288 0.2245 0.2255 0.2288 0.2594 0.2245 0.2371

Dermatology 6 366 0.0094 0.0042 0.0048 0.0078 0.0072 0.0051 0.0069

Ecoli 8 336 0.1134 0.0886 0.0962 0.1150 0.1031 0.0988 0.1180

Flags 8 194 0.2147 0.1523 0.1597 0.2090 0.1626 0.1718 0.2044

Glass 7 214 0.4522 0.3073 0.3172 0.4532 0.3525 0.4076 0.4449

Mushroom 2 8124 0.0419 0.0176 0.0177 0.0367 0.0188 0.0176 0.0266

Image Segmentation 7 2310 0.1948 0.1642 0.1361 0.1946 0.1215 0.1574 0.1982

Solar Flare (common) 8 1066 0.2189 0.1695 0.1671 0.2198 0.1707 0.1810 0.2011

Solar Flare (moderate) 6 1066 0.0660 0.0337 0.0332 0.0660 0.0337 0.0439 0.0469

Solar Flare (severe) 3 1066 0.0277 0.0045 0.0044 0.0223 0.0046 0.0182 0.0124

Vote 2 435 0.0968 0.0878 0.0883 0.0968 0.0906 0.0888 0.1031

Win/Loss – 23/1 23/0 11/5 15/8 23/0 16/7

Significant Win/Loss – 21/0 22/0 7/1 14/5 22/0 13/5

(b) Non-uniform costs. The values in this table represent performance under a non-uniform cost model.

Audiology 24 226 1.2300 0.6019 0.7500 0.9663 0.7969 0.7173 0.9345

Bridges 2 (material) 3 107 0.3943 0.3408 0.1755 0.2916 0.4556 0.2565 0.3030

Bridges 2 (rel-l) 3 107 0.6772 0.4741 0.3759 0.6149 1.1963 0.3675 0.5873

Bridges 2 (span) 3 107 0.3290 0.3057 0.1999 0.3639 0.6190 0.2065 0.3740

Bridges 2 (type) 6 107 0.6728 0.6261 0.4416 0.6549 1.0157 0.4936 0.6077

Bridges 2 (t-or-d) 2 107 0.0966 0.0554 0.0554 0.1297 0.4614 0.0604 0.1334

Car 4 1728 0.7481 0.5314 0.5924 0.6863 1.6442 0.5103 0.6577

Post-Op 3 1473 2.8495 2.5125 2.6544 2.9183 3.6382 2.5371 2.7441
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Table 1 (Continued)

Data Set n m Naïve LF MC LP (21) GA1 (22) GA2 (1) QP

Bayes

Horse-colic (code) 3 368 1.2740 1.1439 1.1797 1.2730 1.4168 1.1571 1.2972

Horse-colic (surgical) 2 368 1.0887 0.8043 0.7882 1.0926 1.2983 0.8309 0.9050

Horse-colic (site) 63 368 1.6023 1.4509 1.3801 1.5358 1.8110 1.1268 1.5908

Horse-colic (subtype) 2 368 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000

Horse-colic (type) 8 368 0.0597 0.0208 0.0197 0.0485 0.0325 0.0418 0.0397

Credit 2 1000 1.2160 0.9356 0.9372 1.2943 2.1381 0.9500 1.0035

Dermatology 6 366 0.0619 0.1426 0.0255 0.0520 0.0729 0.0325 0.0573

Ecoli 8 336 0.6024 0.5646 0.4768 0.6381 0.9202 0.4738 0.6535

Flags 8 194 1.2387 0.9360 0.8617 1.2092 1.0459 0.8970 1.1554

Glass 7 214 2.7112 1.6253 1.7130 2.7215 3.1616 2.2020 2.6379

Mushroom 2 8124 0.1926 0.0962 0.0962 0.1746 0.1247 0.0995 0.1348

Image Segmentation 7 2310 1.0715 1.2418 0.6963 1.0705 1.0546 0.8422 1.0791

Solar Flare (common) 8 1066 1.2229 0.8574 0.9157 1.2277 1.1494 0.8971 1.1500

Solar Flare (moderate) 6 1066 0.4174 0.2128 0.2076 0.4164 0.2709 0.2412 0.2935

Solar Flare (severe) 3 1066 0.1657 0.0260 0.0249 0.1468 0.0663 0.0948 0.0732

Vote 2 435 0.4527 0.3314 0.3335 0.4527 0.5320 0.4148 0.4539

Win/Loss – 21/3 23/0 14/8 8/15 23/0 17/6

Significant Win/Loss – 19/1 23/0 7/5 7/14 22/0 12/2

6.1 Generalization

Another measure of learning algorithms is how well they generalize beyond the training set.
Unfortunately, none of the heuristics has any generalization guarantees other than what can
be derived via standard PAC analysis. All algorithms could be adapted to use a validation
set as yet another heuristic to improve generalization and prevent over-fitting. However,
none of these techniques has any provable guarantees. In general, proving such guarantees
is quite difficult. Results for error rates (uniform costs) and non-uniform costs are reported
in Tables 2a and 2b, respectively.

6.2 Comparison and analysis

The significant wins and loses presented in Tables 1 and 2 provide a good reference to
how well each algorithm performs individually with respect to the baseline as well as how
much of an improvement each algorithm was able to achieve. As far as the optimization task
(performance on the training set) is concerned, LF, MC and GA2 all showed statistically
significant improvement over the baseline classifier in all or almost all data sets for both
classification error and under non-uniform costs. These three methods also had superior
performance in both settings with respect to the generalization task (performance on the test
set).

For a more rigorous analysis, we performed a Friedman rank test as suggested by Demšar
(2006) to compare the relative performances of multiple algorithms across multiple data sets.
The Friedman test is a non-parametric statistical test similar to the parametric repeated mea-
sures ANOVA. It is especially applicable in this case since we cannot make any normality
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Table 2 Generalization Performance. The two tables present the test error rates of each heuristic. Italicized
entries indicate the heuristic performed worse than the baseline (naïve Bayes) while non-italicized entries
indicate an improvement or tie. A bold entry indicates a statistically significant difference from the baseline
according to a Student’s t -test with a 95% confidence level. For each data set, the overall best performing
heuristic(s) are underlined

Data Set n m Naïve LF MC LP (21) GA1 (22) GA2 (1) QP

Bayes

(a) Error rates. The values in this table represent performance under a uniform cost model

Audiology 24 226 0.3094 0.2654 0.3227 0.2869 0.2826 0.2871 0.2737

Bridges 2 (material) 3 107 0.1581 0.2427 0.2527 0.2709 0.1763 0.2136 0.2436

Bridges 2 (rel-l) 3 107 0.3163 0.3527 0.3536 0.3081 0.3354 0.3454 0.3072

Bridges 2 (span) 3 107 0.2227 0.3290 0.3290 0.2427 0.4018 0.2799 0.2518

Bridges 2 (type) 6 107 0.4563 0.5499 0.4854 0.4654 0.4663 0.4654 0.4936

Bridges 2 (t-or-d) 2 107 0.1754 0.2418 0.2045 0.1754 0.1936 0.2499 0.1654

Car 4 1728 0.1464 0.1191 0.1249 0.1336 0.1723 0.1209 0.1331

Post-Op 3 1473 0.4948 0.4745 0.4833 0.4948 0.4989 0.4908 0.4853

Horse-colic (code) 3 368 0.3172 0.3148 0.3125 0.3172 0.2930 0.3120 0.3174

Horse-colic (surgical) 2 368 0.2089 0.1737 0.1764 0.2089 0.1791 0.1791 0.1980

Horse-colic (site) 63 368 0.7634 0.7770 0.7798 0.7634 0.7443 0.7660 0.7661

Horse-colic (subtype) 2 368 0.0027 0.0081 0.0081 0.0027 0.0027 0.0027 0.0027

Horse-colic (type) 8 368 0.0409 0.0407 0.0380 0.0409 0.0326 0.0353 0.0326

Credit 2 1000 0.2490 0.2569 0.2560 0.2490 0.2720 0.2579 0.2530

Dermatology 6 366 0.0272 0.0245 0.0274 0.0273 0.0272 0.0165 0.0219

Ecoli 8 336 0.1516 0.1427 0.1545 0.1545 0.1639 0.1368 0.1637

Flags 8 194 0.3760 0.4013 0.4318 0.3707 0.3705 0.3807 0.3860

Glass 7 214 0.5235 0.3792 0.4264 0.5235 0.4259 0.4958 0.5008

Mushroom 2 8124 0.0419 0.0179 0.0179 0.0374 0.0192 0.0178 0.0272

Image Segmentation 7 2310 0.1974 0.1809 0.1497 0.1974 0.1259 0.1727 0.1999

Solar Flare (common) 8 1066 0.2363 0.1726 0.1745 0.2363 0.1707 0.1979 0.2176

Solar Flare (moderate) 6 1066 0.0731 0.0337 0.0346 0.0731 0.0337 0.0506 0.0497

Solar Flare (severe) 3 1066 0.0281 0.0056 0.0046 0.0234 0.0046 0.0206 0.0141

Vote 2 435 0.0964 0.1081 0.1104 0.0964 0.0941 0.0965 0.1056

Win/Loss – 14/10 11/13 6/5 13/9 14/9 13/10

Significant Win/Loss – 7/3 7/2 3/1 6/0 7/1 5/2

(b) Non-uniform costs. The values in this table represent performance under a non-uniform cost model

Audiology 24 226 1.7719 1.6826 1.8207 1.6385 1.7245 1.5194 1.6877

Bridges 2 (material) 3 107 0.8610 1.2188 1.3630 1.4725 1.0059 1.2180 1.3585

Bridges 2 (rel-l) 3 107 1.9355 2.2336 1.9764 1.9002 2.5553 1.9875 1.9163

Bridges 2 (span) 3 107 1.1871 1.7075 1.6680 1.2930 1.9934 1.4490 1.3508

Bridges 2 (type) 6 107 2.4584 2.3840 2.3612 2.6020 2.7605 2.5219 2.7270

Bridges 2 (t-or-d) 2 107 0.9654 1.0452 0.9729 0.9568 1.0794 0.9704 0.8096

Car 4 1728 0.8483 0.6653 0.7414 0.8073 1.6665 0.6522 0.7558

Post-Op 3 1473 2.9242 2.6791 2.7872 2.9993 3.6611 2.7056 2.8282
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Table 2 (Continued)

Data Set n m Naïve LF MC LP (21) GA1 (22) GA2 (1) QP

Bayes

Horse-colic (code) 3 368 1.7914 1.6302 1.7247 1.7863 1.7950 1.6988 1.7726

Horse-colic (surgical) 2 368 1.3787 1.0191 1.0221 1.3890 1.6364 1.0629 1.1576

Horse-colic (site) 63 368 4.0891 3.9570 4.1976 4.1083 4.2647 4.0809 4.1560

Horse-colic (subtype) 2 368 0.0113 0.0432 0.0432 0.0113 0.0113 0.0113 0.0113

Horse-colic (type) 8 368 0.2225 0.2281 0.2086 0.2172 0.1704 0.1969 0.1894

Credit 2 1000 1.3202 1.0458 1.0477 1.3950 2.1906 1.0531 1.0805

Dermatology 6 366 0.1743 0.2649 0.1375 0.1564 0.1775 0.1146 0.1166

Ecoli 8 336 0.8104 0.8903 0.8168 0.8765 1.2116 0.7678 0.9218

Flags 8 194 2.1590 2.3070 2.3673 2.1407 2.3013 1.9888 2.1644

Glass 7 214 3.1308 2.0044 2.2886 3.1301 3.4910 2.6720 2.9600

Mushroom 2 8124 0.1929 0.0993 0.0994 0.1783 0.1262 0.1031 0.1382

Image Segmentation 7 2310 1.0854 1.2809 0.7733 1.0854 1.0989 0.8951 1.0883

Solar Flare (common) 8 1066 1.3079 0.9174 0.9662 1.3199 1.1622 0.9843 1.2331

Solar Flare (moderate) 6 1066 0.4644 0.2210 0.2216 0.4628 0.2749 0.2651 0.3030

Solar Flare (severe) 3 1066 0.1682 0.0361 0.0340 0.1556 0.0800 0.1069 0.0838

Vote 2 435 0.4510 0.3786 0.3699 0.4510 0.5346 0.4577 0.4605

Win/Loss – 14/10 15/9 12/9 6/17 17/6 15/8

Significant Win/Loss – 9/2 10/1 1/4 4/9 10/1 8/1

assumptions over dissimilar data sets from dissimilar domains. In each table (uniform/non-
uniform cost on the train/test sets) for each data set, algorithms are ranked 1–7 based on
their performance. A mean rank is taken for each algorithm and used to determine if some
subset of algorithms is statistically significantly better than others. With a 95% confidence
level, we can reject the hypothesis that all algorithms are equivalent for all four scenarios.
That is, we can conclude that some set of algorithms outperform other methods with a high
degree of certainty. Specific rankings can be found in Table 3.

We also performed a post-hoc analysis using a Tukey-Kramer pairwise test (Hochberg
and Tamhane 1987). The results of this analysis can be found in Fig. 2. For each table,
the pairwise Tukey-Kramer test induces a partial order among the heuristics such that a
relation from algorithm A to algorithm B (indicated by a directed edge A → B) implies
that A statistically significantly outperforms B . Transitive relations are implicit so that if
A outperforms B and B outperforms C, then A also outperforms C. If no relation exists
between two heuristics, then there is no statistically significant difference between them.

Following the post-hoc analysis, we can conclude that both greedy methods (MetaClass
and the algorithm of Lachiche and Flach 2003) and the second genetic algorithm formulation
(GA2) are consistently the top three performers. Only in the case of uniform cost in the
generalization setting does the first genetic algorithm outperform GA2. However they are
not statistically significantly different. Moreover, with respect to the optimization task in
both cost settings (as well as the non-uniform cost generalization), all three algorithms are
statistically significantly better than all other methods.

A case can now be made for preferring the simple greedy methods over the genetic algo-
rithm. First, in all instances, one of the greedy methods either outperforms or is not statisti-
cally significantly worse than GA2. In fact, it is never the case that GA2 statistically signifi-



240 Mach Learn (2008) 71: 219–242

Table 3 Mean ranks. For each
data set, a rank 1–7 is assigned to
algorithms according to their
performance. The table lists the
mean rank for each algorithm
over all data sets for the
optimization/generalization
problems in the
uniform/non-uniform cost
settings. The overall rank within
each column is shown in
parentheses

Algorithm Training Testing

Error Cost Error Cost

NB 5.7604 (7) 5.4167 (6) 4.4875 (7) 4.4250 (5)

LF 2.1771 (1) 2.6146 (3) 3.6542 (2) 3.3188 (2)

MC 2.4604 (2) 1.8708 (1) 3.8354 (3) 3.3229 (3)

LP 5.3125 (6) 5.1896 (5) 4.4583 (6) 4.7542 (6)

GA1 4.4146 (4) 5.7562 (7) 3.6292 (1) 5.0896 (7)

GA2 2.8750 (3) 2.4979 (2) 3.8458 (4) 3.1292 (1)

QP 5.0000 (5) 4.6542 (4) 4.0896 (5) 3.9604 (4)

(a) Error - Optimization. (b) Non-uniform Cost - Optimization.

(c) Error - Generalization. (d) Non-uniform Cost - Generalization.

Fig. 2 Relative performances. An arrow from algorithm A to B indicates A was statistically significantly
better than B . Transitive relations are implicit. Statistics are according to a Tukey-Kramer pairwise compari-
son with a 95% confidence level

cantly outperforms either of the two greedy methods. Second, MetaClass and the algorithm
of Lachiche and Flach were both light on computational resources. Each fold required only
a few seconds to execute for both algorithms. In contrast, the genetic algorithm (as well
as all other methods) were extremely computation-intensive, requiring several minutes of
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execution time. In addition, the genetic algorithm required a large number of generations;
terminating the GA early resulted in poor performance. Thus, the greedy methods that used
local decisions were just as good, and in most cases performed better, than the more sophis-
ticated methods.

We can also make a similar, though less strong, case for preferring MetaClass over the
algorithm of Lachiche and Flach. Though both performed very well, in most cases their
performance was statistically equivalent. However, for the non-uniform cost optimization
task, MetaClass statistically significantly outperformed LF. Though the time complexity
of MetaClass is faster than the algorithm of Lachiche and Flach, the data sets we used
did not contain a large enough number of classes for the speed to become a significant
advantage. However, in applications where the number of classes is large, this might become
a significant issue. In addition, while both have similar resource requirements, the design of
MetaClass is arguably more flexible. First, MetaClass learns what is essentially a decision
tree, which is a provably more expressive hypothesis than a linear reweighting function. Any
linear function can always be realized by a decision tree, but the converse is not true. Second,
the choice of how we divide into separate metaclasses also gives us greater control over the
learning process. In particular, since we can constrain the structure of the decision tree, we
can customize to fit a specific learning domain using prior information. For instance, such an
approach may fit well with hierarchical-class problems where we are given say, a taxonomy
(i.e. an existing tree structure), and simply have to learn MetaClass’s parameters.

7 Conclusions

Reoptimizing an already-learned classifier f is an important problem in machine learning,
particularly in applications where the cost model or class distribution of a learning problem
deviates from the conditions under which a classifier f was trained and the original training
data for f is unavailable. We answered the open problem concerning the hardness of this
reoptimization problem by showing that the decision version is NP-complete. Though im-
practical, we also presented an algorithm that produces an optimal solution in polynomial
time when the number of classes is constant. We also presented multiple algorithms for the
multi-class version of this problem. Our experimental results showed that the greedy algo-
rithms (our MetaClass algorithm and the algorithm of Lachiche and Flach 2003) and one
of our genetic algorithm approaches were roughly equally successful in reoptimizing under
both uniform and non-uniform cost models. We found that, despite MetaClass’s faster time
complexity, in our experiments the number of classes was not large enough to give it a sig-
nificant speed advantage. However, we also argued that MetaClass has several advantages
over the algorithm of Lachiche and Flach in terms of its more expressive hypothesis class
(trees) and its flexibility in partitioning the classes into metaclasses (e.g. in hierarchical clas-
sification settings). Future work is to precisely identify contexts in which these advantages
can be exploited.

There are several other avenues for future research. In the non-uniform cost setting, our
methodology omitted extreme skews in costs between classes. It may be of interest to exam-
ine such settings to see if the poor performing algorithms are able show improvement and
to see if the better, greedy approaches continue to perform well. It would also be of interest
to see if the greedy algorithms’ relative performance holds when we change the base clas-
sifier. Do the greedy approaches still dominate if the base classifier is a more sophisticated
learning algorithm like an SVM?

Finally, it is entirely possible that a better and more practical algorithm exists for the
constant class setting. If so, how does its performance compare to the other methods?



242 Mach Learn (2008) 71: 219–242

Acknowledgements The authors thank Nicolas Lachiche for helpful correspondence. We also thank the
anonymous reviewers for helpful suggestions and feedback. This work was supported in part by NSF grants
CCR-0325463, CCR-0092761 and CCF-0430991.

References

Abramson, M. A. (2005). Genetic algorithm and direct search toolbox. http://www.mathworks.com/.
Blake, C., & Merz, C. (2005). UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/

MLRepository.html.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning

Research, 7, 1–30.
Deng, K., Bourke, C., Scott, S. D., & Vinodchandran, N. V. (2006). New algorithms for optimizing multi-

class classifiers via ROC surfaces. In Proceedings of the ICML workshop on ROC analysis in machine
learning (pp. 17–24).

Ferri, C., Hernández-Orallo, J., & Salido, M. (2003). Volume under the ROC surface for multi-class problems.
In European conference on artificial intelligence (pp. 108–120).

Fieldsend, J., & Everson, R. (2005). Formulation and comparison of multi-class ROC surfaces. In Proceed-
ings of the ICML workshop on ROC analysis in machine learning (pp. 41–48).

Grant, M., Boyd, S., & Ye, Y. (2006). Disciplined convex programming. In L. Liberti & N. Maculan (Eds.),
Nonconvex Optimization and its Applications. Global optimization: From theory to implementation (pp.
155–210). Berlin: Springer. Available at http://www.stanford.edu/~boyd/cvx/.

Hand, D., & Till, R. (2001). A simple generalisation of the area under the ROC curve for multiple class
classification problems. Machine Learning, 45, 171–186.

Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. New York: Wiley.
Kohli, R., Krishnamurti, R., & Mirchandani, P. (1994). The minimum satisfiability problem. SIAM Journal

of Discrete Mathematics, 7, 275–283.
Lachiche, N., & Flach, P. (1999). 1BC: A first-order Bayesian classifier. In Proceedings of the 9th interna-

tional workshop on inductive logic programming (pp. 92–103).
Lachiche, N., & Flach, P. (2003). Improving accuracy and cost of two-class and multi-class probabilistic

classifiers using ROC curves. In Proceedings of the 20th international conference on machine learning
(pp. 416–423).

Matsui, T. (1996). NP-hardness of linear multiplicative programming and related problems. Journal of Global
Optimization, 9, 113–119.

MOSEK ApS (2005). The MOSEK optimization tools version 3.2. http://www.mosek.com/.
Mossman, D. (1999). Three-way ROCs. Medical Decision Making, 19(1), 78–89.
O’Brien, D. B., & Gray, R. M. (2005). Improving classification performance by exploring the role of cost

matrices in partitioning the estimated class probability space. In Proceedings of the ICML Workshop on
ROC Analysis in Machine Learning (pp. 79–86).

Provost, F. J., & Fawcett, T. (1997). Analysis and visualization of classifier performance: Comparison under
imprecise class and cost distributions. In Proceedings of the third international conference on knowledge
discovery and data mining (KDD-97) (pp. 43–48).

Provost, F. J., & Fawcett, T. (1998). Robust classification systems for imprecise environments. In Proceedings
of the 15th national conference on artificial intelligence (AAAI) (pp. 706–713).

Provost, F. J., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42,
203–231.

Rockafellar, R. (1970). Convex analysis (2nd edn.). Princeton: Princeton University Press.
Schölkopf, B., & Smola, A. J. (2001). Learning with kernels. Cambridge: MIT Press.
Srinivasan, A. (1999). Note on the location of optimal classifiers in n-dimensional ROC space (Technical

Report PRG-TR-2-99). Oxford University Computing Laboratory, Oxford.
Stoer, I. J., & Witzgall, C. (1996). Convexity and optimization in finite dimensions. Berlin: Springer.
Witten, I. H., et al. (2005). Weka machine learning toolbox. http://www.cs.waikato.ac.nz/ml/weka/.

http://www.mathworks.com/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.stanford.edu/~boyd/cvx/
http://www.mosek.com/
http://www.cs.waikato.ac.nz/ml/weka/

	On reoptimizing multi-class classifiers
	Abstract
	Introduction
	Related work
	Hardness
	Constant-class algorithm
	Heuristics
	Mathematical programming formulations
	Relaxed integer linear program
	Sum of linear fractional functions formulation
	Quadratic programming formulation

	The MetaClass heuristic algorithm

	Experimental results
	Generalization
	Comparison and analysis

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


