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Abstract Enforcing sparsity constraints has been shown to be an effective and efficient
way to obtain state-of-the-art results in regression and classification tasks. Unlike the sup-
port vector machine (SVM) the relevance vector machine (RVM) explicitly encodes the
criterion of model sparsity as a prior over the model weights. However the lack of an ex-
plicit prior structure over the weight variances means that the degree of sparsity is to a large
extent controlled by the choice of kernel (and kernel parameters). This can lead to severe
overfitting or oversmoothing—possibly even both at the same time (e.g. for the multiscale
Doppler data). We detail an efficient scheme to control sparsity in Bayesian regression by
incorporating a flexible noise-dependent smoothness prior into the RVM. We present an
empirical evaluation of the effects of choice of prior structure on a selection of popular data
sets and elucidate the link between Bayesian wavelet shrinkage and RVM regression. Our
model encompasses the original RVM as a special case, but our empirical results show that
we can surpass RVM performance in terms of goodness of fit and achieved sparsity as well
as computational performance in many cases. The code is freely available.

Keywords Sparse regression · Kernel regression · Smoothness prior · Relevance vector
machine

1 Introduction

In nonlinear regression a function of interest y is approximated by a linear combina-
tion of the input vector, x, projected onto a (typically fixed) set of nonlinear basis func-
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tions, {φm}M
m=1:

y(x) = w0 +
M∑

m=1

wmφm(x). (1)

Thus, provided with a set of N training input vectors {xn}N
n=1 and corresponding targets tn,

the task is to find the M + 1 weights wm that will yield the most faithful approximation to
y. For simplicity the following exposition will assume that the data is mean centered, so
that we can omit the bias w0 and work with M weights. Choosing φ(x) ≡ x regains linear
regression. Frequently the basis functions are derived from kernels centered at each of the
observations φm(x) = K(xm,x) in which case the regression is known as kernel regression,
however, the basis functions may be quite general functions, including for example wavelets,
and may form an over-complete dictionary.

Writing the true signal, y, as an N -vector and wm, the weights, as an M-vector, (1) is
conveniently written as y = �w, with the basis functions arranged as the columns of the
N × M design matrix �. Employing the standard assumption of zero-mean Gaussian noise
in the target observations, we have:

t = y + ε, ε ∼ N (0, σ 2IN). (2)

Demanding a sparse representation in the space spanned by a suitable set of such ba-
sis functions provides a general strategy to adjust the bias/variance trade-off in regression
and classification problems, as is evinced by the state-of-the-art results achieved by sup-
port vector machines (SVMs) in a variety of domains (e.g. Schölkopf and Smola 2002).
An important additional benefit of sparsity is that it also often translates into significant
computational savings.

1.1 Sparse Bayesian regression

Whilst in SVM regression a desirable level of sparsity has to be brought about indirectly
by determining an error or margin parameter via a cross-validation scheme, the Bayesian
formulation of the regression problem in the relevance vector machine (RVM) (Tipping
2000, 2001; Faul and Tipping 2002; Tipping and Faul 2003) allows for a prior structure that
explicitly encodes the desirability of sparse representations.

This is done by complementing the standard likelihood function (which follows directly
from the above assumptions):

p(t|w, σ 2) = (2πσ 2)− N
2 exp

(
−‖t − �w‖2

2σ 2

)
(3)

with an “automatic relevance determination” prior (MacKay 1992) over the weights:

p(w|α) = (2π)− M
2

M∏

m=1

α
1
2
m exp

(
−1

2
αmw2

m

)
(4)

that has the effect of “switching off” basis functions for which there is no evidence in the
data (more on this in Sect. 2).
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Whilst p(α) is effectively uniform,1 a standard inverse gamma prior is placed over the
noise variance σ 2:

p(σ 2) = IG(σ 2|g,h) = hg

Γ (g)
σ−2(g+1)e−h/σ 2

(5)

where g and h are fixed hyperparameters, usually set to some uninformative value (e.g.,
g = h = 10−4).

It should be stressed that in this scheme g and h are the only “true” hyperparameters, in
the sense that unlike everything else that is introduced in extending the standard regression
model (3) by a hierarchical prior (4), (5), they are additional parameters that require specifi-
cation by the user (and in the absence of any prior information about p(σ |g,h) just setting
them to some uninformative default will work fine). All the other variables (α etc.) are just
nuisance parameters that can be integrated out or determined by the Bayesian approach.

Thus everything else, including ultimately ŷ, the mean posterior prediction that we wish
to obtain is determined by the values of �, t, g and h.

This is the beauty of the Bayesian paradigm—it allows one to reap the benefits of a
probabilistic approach, without burdening the model with additional externally-determined
parameters (unlike the SVM, there is no need to expensively determine a regularization
parameter via cross-validation and furthermore confidence intervals, likelihood values and
posterior probabilities for the solution can easily be obtained).

The learning of the model parameters proceeds by an elegant type II likelihood max-
imization scheme in which values of α and σ that maximize the log marginal likelihood
L(α) = logp(t|α, σ 2) are found iteratively (Faul and Tipping 2002; Tipping and Faul 2003).
Weights wm for which the learned precision αm is large are effectively switched off because
wm is constrained to be close to zero.

1.1.1 Shortcomings of the classical RVM

Although the RVM carries the benefits of a probabilistic formulation, unfortunately it still
does not go far enough in its Bayesian encoding of the sparsity constraint—in practice one
finds that in spite of (4), the choice of highly resolving kernels for data which do not need
the many degrees of freedom offered by these kernels will still result in severe overfitting.
This overfitting is illustrated in Fig. 1 by using a symmlet wavelet basis for regression to
the Sinc data set (N = 128, SNR = 2) (Tipping 2001). As the top-left plot shows, the multi-
scale nature of the symmlet kernel results in drastic overfitting. Employing, for example,
Gaussian or linear spline (lspline; pictured) basis functions2 results in a good fit (bottom-
left) and an apparently sparse solution: only 7 of the 128 available lspline basis functions
are not switched off (have αm < ∞) compared with 127 symmlet basis functions.

Closer examination, however, reveals that the Gaussian and lspline bases, which do not
contain high frequency basis functions, simply have difficulty fitting the noise. In the case
of the Gaussian kernel (which with a kernel width that gives good results for the Sinc data
yields a very ill-conditioned design matrix3), this is already apparent in the least squares

1A Jeffreys’ prior is apparently advocated in (Tipping 2001), but (Tipping 2000; Faul and Tipping 2002;
Tipping and Faul 2003) and the published implementation use a uniform prior. This is discussed further in
see Sect. 5.1.
2See Sect. 6.1 for details of the kernel functions; the lspline examples use r = 3.0.
3Condition number κ = 6 × 1018 for N = 128, r = 3.0.
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Fig. 1 Classical RVM. The effect of kernel choice on the smoothness of the regression result (Sinc data
left, Bumps data right) when there is no prior over α. Choosing a flexible symmlet-wavelet kernel (top row)
results in drastic overfitting for the Sinc data set (top left; N = 128, SNR = 2.0). To obtain the appropriate
level of smoothing for the Sinc data one has to resort to a different kernel type, such as lspline (bottom left).
However an lspline kernel cannot resolve the Bumps data (bottom right; N = 128, SNR = 7.0) at all

estimate: choosing coefficients wm to minimize E = ‖t − ∑
m wmφm‖ yields a substantial

error that is in fact larger than ‖y −∑
m wmφm‖. The case is a bit more subtle for the lspline

kernel, because unlike the Gaussian kernel, a lspline kernel with a kernel width that gives
good results for (classical) RVM regression can still exactly represent t, just as the symmlet
kernel.

However, as illustrated by Fig. 2, on comparing individual basis functions from both
kernels, it becomes clear that whereas the symmlet basis offers multiscale resolution and
hence can fit a large proportion of the noise with relatively few components, a much greater
number of the exclusively low-frequency basis functions in the lspline kernel are needed to
fit a comparable proportion of the noise.

Consequently the relatively mild enforcement of sparsity of the classical RVM scheme,
which proves insufficient for symmlet kernels, is already enough to prevent overfitting for
lspline and Gaussian kernels.

The sparse regression provided by the RVM with lspline kernels thus partially depends
on a propitious choice of kernel. Although the aforementioned gauss or lspline kernels are
sufficiently resolving for the Sinc data, they cannot resolve data with genuine high fre-
quencies such as the Bumps data (Donoho and Johnstone 1994) which is therefore severely
oversmoothed (bottom-right of Fig. 1), although it poses no problems for the symmlet basis
(top-right).
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Fig. 2 Basis functions 1, 10, 23,
230 from N = 512 symmlet (left)
and lspline kernels (right).
Whereas the symmlet kernel
contains components at all
frequencies, the lspline kernel
only offers low-frequency
components. This explains why
the classical RVM’s relatively
weak sparseness enforcement
suffices for lspline kernels, but
not symmlets

In other words, it is apparent that a crucial aspect of sparsity control (kernel choice)
remains outside the principled probabilistic framework. Choosing kernel type (and in some
cases width parameters) via cross validation-schemes is not just cumbersome and wasteful
on data and computational resources, it also typically offers only a crude approach to sparsity
control, making it for example difficult or impossible to obtain good results with standard
kernels for multi-resolution data (for a good example see Fig. 5 later).

1.1.2 Amending the RVM; outlook and overview

Fortunately a strength of Bayesian models is their inherent extensibility by means of ad-
ditional prior structure; here we examine how to incorporate a wavelet-shrinkage inspired,
noise-dependent smoothness prior for RVM models without degrading the efficiency of Tip-
ping and Faul’s (2003) fast RVM scheme (in fact performance can in many cases be signifi-
cantly improved due to increased sparsity and the gained ability to obtain good results with
wavelet kernels which allow efficient (O(N)) implementations of operations which are cu-
bic in the general case). In brief, our prior is of the form, p(αm|σ 2) ∝ e−c/(1+σ 2αm) (where c

is a constant that controls the level of smoothing) and as is visible from inspection of Fig. 3
(cf. 1), or indeed the formula itself, it greatly promotes sparsity.

Having outlined the motivation for better prior-controlled sparsity control and briefly
introduced our proposed prior in this section, we discuss our smoothness prior in more detail
in Sect. 2. In Sect. 3 we show how the efficient scheme for learning the parameters in (Faul
and Tipping 2002) may be simply adapted to incorporate the smoothness prior. Results on
a variety of standard datasets showing that it effectively controls sparsity are provided in
Sect. 4, followed by a discussion of alternative priors and the summary and conclusion in
Sect. 5. More detailed theoretical discussions and proofs are relegated to the appendix. A
preliminary report on this work appeared in (Schmolck and Everson 2005).

2 The smoothness prior

On its own (4) does not appear to strongly favour sparsity, but of course the overall effect
on the weights depends on the prior assigned to α. Here we consider only priors of the form
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Fig. 3 sRVM. The smoothness prior means that enforcing sparsity is no longer mostly relegated to the choice
of kernel. A symmlet kernel (top row) no longer results in drastic overfitting for the Sinc data set (on the left).
The bottom row shows that the smoothness prior typically has no adverse effect when smoothing is already
mandated by the kernel. The data sets are identical to Fig. 1

p(α, σ 2) = ∏M

m=1 p(αm|σ 2)p(σ 2). Then, the effective prior on wm is found from:

p(wm|σ 2) =
∫

p(wm|αm)p(αm|σ 2)dαm. (6)

When the prior is a Gamma density, p(αm|σ 2) = p(αm) = Γ (αm)−1baαa−1
m e−bαm with

hyperparameters a and b, then p(wm) is a Student-t density. Tipping (2001) presents a
nice graphical illustration that the joint distribution p(w1,w2) of two Student-t densities
concentrates probability mass close to zero values of w1 and w2 rather than in regions
where both w1 and w2 are non-zero, thus encouraging sparse solutions. In fact, the prod-
uct of any two super-Gaussian4 prior densities p(wm) in combination with a Gaussian
noise model favours posterior solutions for which one or the other or both wm are close
to zero. This may be seen by noting that the log likelihood (3) is quadratic in w so that if
logp(w1,w2) = logp(w1) + logp(w2) ≈ w

q

1 + w
q

2 with q < 2, then as either coefficient
moves away from the coordinate axis the log likelihood decays more rapidly than the log
prior, thus encouraging a sparse posterior solution.

The expression (6) with the ARD prior (4) shows that p(wm) is a scale mixture of Gaus-
sians and so under quite general conditions has positive kurtosis (Clarkson and Barrett 2001;

4Densities whose tails decay more slowly than Gaussians.
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Lam and Goodman 2000). It appears, therefore, since almost any prior on α|σ 2 will favour
sparsity to some extent, that there is considerable freedom in its choice.

As it is empirically clear that the p(w) resulting from a uniform p(α|σ 2) (henceforward
None prior) does not enforce sparsity strongly enough for flexible kernel types (Fig. 1),
a well-founded, sparser prior over α|σ 2 is desirable. Since the question of existing and
proposed prior types for the RVM is somewhat convoluted, we postpone a more extensive
discussion till Sect. 5.1, and concentrate for now on a smoothness prior.

As our desire for sparse w is ultimately grounded in beliefs about the complexity and
structure of the signal y, it is in a way natural to work one’s way backwards, viz to fashion
the prior p(α|σ 2) so that the mean posterior prediction ŷ reflects these beliefs.

Given the posterior over the weights

p(w|t,α, σ 2) = p(w|t, σ 2)p(w|α)

p(t|α, σ 2)
= N (w|μ,�) (7)

with

� = (σ−2�T � + diag(α))−1, (8)

μ = σ−2��T t (9)

we obtain

ŷ = �μ = (�σ−2��T )t ≡ St (10)

where S is known as the smoothing matrix (Hastie and Tibshirani 1990). Note that without
the term diag(α), which can be regarded as a regularization term, St would just be the
projection of t into the column space of �, or equivalently, the least squares estimate

ŷLS = �(�T �)−1�T t = ��†t. (11)

Thus S computes the regularized or smoothed projection of t. Furthermore the special case
where all αi are identical is equivalent to ridge-regression (Hoerl and Kennard 1970) with
regularization parameter λ = σ 2α (the larger λ, the smoother the estimate, the more all
wi are shrunk towards zero compared to the least squares estimate). The “ridge-regression
prior” p(w|α) = N (0, α−1I) is naturally also just a special case of the ARD prior (4). Of
course indiscriminately shrinking coefficients for relevant as well as irrelevant basis func-
tions is unattractive, but ridge regression has the convenient property that the amount of
shrinking can be easily quantified.

However, even with an ARD prior, it is possible to quantify the degree of smoothing
imposed by the model by a single number: the degrees of freedom of S, given by its trace:

DF = tr S. (12)

It is helpful to consider the case of orthonormal basis functions (such as wavelets) so that
�T � = IM and the trace of the smoothing matrix is seen to be:

DF = tr S =
M∑

m=1

(1 + σ 2αm)−1. (13)

In (13) it is evident that basis functions with αm → ∞ make no contribution to the degrees
of freedom, whereas functions with αm = 0 contribute fully; DF thus counts the number of
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active basis functions, where the extent to which they are active is measured relative to the
noise magnitude.

These equations make the related roles of α and tr S for sparsity control and smoothing
apparent. As all αm → 0 we approach the least squares estimate (11). In this case tr S = N ,
there is no smoothing and the model interpolates the data (indeed for orthormal or invertible
�, the least squares estimate is just t). Conversely, as αm → ∞ the corresponding compo-
nent φm is turned off (wm = 0). Here tr S = 0 and the mean posterior estimate is zero.

As the model typically has roughly as many (for square N ×M design matrix �, M = N )
or more parameters (for overcomplete �, N < M) as training examples, the least squares es-
timate (all αm → 0) will almost always result in drastic overfitting (never mind severe com-
putational headaches5). Conversely all αm → ∞ will just yield a constant prediction as all
wm = 0. But since the RVM associates an unique hyperparameter αm with each weight wm a
suitable prior over α|σ 2 will bring about just the right amount of smoothing for each individ-
ual component when we maximize the posterior probability over the weights p(w|t,α, σ 2).
We expect most components to be turned off, hence most αm to be ∞ and thus their cor-
responding weights wm to be 0, but the few relevant components will have finite αm and
wm 	= 0.

2.1 Finding a suitable prior over α or wavelet shrinkage to the rescue

Similar observations lead Holmes and Denison (1999) to choose the following prior struc-
ture for encoding sparsity beliefs for the related problem of wavelet shrinkage:

p(α|σ 2) ∝ e−cDF. (14)

Since DF may be regarded as the effective number of parameters in the regression problem
with � fixed, different choices for the hyperparameter c may be related to different classical
model choice criteria (Holmes and Denison 1999):

c =

⎧
⎪⎨

⎪⎩

0 None, Bayes factor (so the classical RVM is just a special case),
1 AIC, Akaike information criterion,
log(N)/2 BIC, Bayesian information criterion,
log(N) RIC, Risk inflation criterion.

Thus we are left with 4 different weight variance priors, from least smoothing to most
smoothing as follows: None, AIC, BIC, RIC.

Using (13) to compute DF even in the non-orthogonal case yields a convenient prior
expression for an individual αi that does not depend on any of the other αj 	=i and we adopt
this form throughout:

p(αi |σ 2) ∝ e−c
∑M

i=1(1+σ 2αm)−1 
 e−cDF. (15)

This approximation finds justification beyond computational and analytical expediency.
Firstly, we have obtained good empirical results with this prior even when orthonormality is

5Apart from numerical issues, the asymptotic complexity of all standard direct solutions are cubic in M (see,
e.g. Golub and van Loan 1989). However, sparse greedy matrix approximations might be used to enhance the
convergence rates (Smola and Schölkopf 2000), and iterative schemes with improved convergence properties
have also been developed; in particular backfitting (Hastie and Tibshirani 1990) which D’Souza et al. (2004)
adapted to a Bayesian EM framework to obtain an O(MN) complexity RVM implementation.
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not present (e.g. with various spline kernels and even with overcomplete dictionaries with
M = 2N ; see e.g. Fig. 7). Secondly, we also ran some tests where, during model runs, we si-
multaneously computed the true DF expression and compared it to the approximation above
and have obtained very similar results. Thirdly our prior structure exerts strong pressure to
exclude6 redundant components, hence although the basis functions might not be orthogonal
the eventually included basis functions can be expected to be typically near-orthogonal.

A noteworthy and distinguishing characteristic of the smoothness prior is its noise depen-
dency. The degrees of freedom amounts to a count of the number of active basis functions.
As the noise increases, the DF decrease, i.e. S becomes more strongly smoothing. This is
what one would intuitively expect to happen: everything else staying fixed, if there is no
noise (σ 2 = 0) then the observations t ought to equal the true signal y and so should the
posterior estimate ŷ, thus S must be the identity. However as the level of noise increases,
more and more of the targets t has to be explained by the noise and hence S should become
more smoothing as the noise level increases.

Note that this means that basis functions with smaller αm have greater prior support when
the noise is larger, which may appear counter-intuitive at first.

Although (15) is an improper prior, a proper prior may be obtained by restricting αm to a
finite range [L,H ]. In this case we may write:

p(αi |σ 2) =
{

Ze−c
∑M

m=1(1+σ 2αm)−1
L ≤ αm ≤ H ,

0 otherwise
(16)

and the normalization constant Z is given by

Z = (σ−2 + H) exp(−c/(1 + σ 2H)) − (σ−2 + L) exp(−c/(1 + σ 2L))

+ cσ−2[Ei(c/(1 + σ 2L)) − Ei(c/(1 + σ 2H))] (17)

where Ei denotes the exponential integral function (Arfken 1985). In the work reported here
we choose L = 10−10, H = 1010. This expression is however only needed when we would
like to obtain the posterior probability of the result (see 6.6 for how to do so efficiently).
Furthermore we note that when σ 2H/c � 1 then Z → H .

To summarize: The smoothness prior clearly favours large αm, thus encoding a belief that
the weight wm should be close to zero and consequently a sparse solution. The prior has a
desirable dependency on the noise. The constant c controls the smoothness prior’s severity
(with the least severe prior c = 0 reducing to the classical RVM’s uniform prior). It is also
easy to prove that this prior results in a scale invariant posterior (i.e. our model will give the
same answers if we rescale t → kt and simultaneously σ → kσ , see 6.2).

Apart from the observations t and the choice of kernel �, the hyperparameters g,h and
c are the only parameters to be externally specified by the user. Moreover we find that
c = log(N)/2, the value for BIC makes a good default for c, while we can generally, in the
absence of any prior belief about the likely shape of p(σ), just set g,h to 10−4 or some other
uninformative value.

How to effectively learn the other parameter values and estimates is the topic of the next
section.

6I.e. to set the corresponding αi = ∞, peek ahead to Sect. 3.2 (27), (29) to see that the corresponding φi play
indeed no role.
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3 Implementation

3.1 Overview of implementation properties and strategy

The efficient calculation of MAP point estimates for the model parameters that we are about
to detail is based on the Tipping and Faul (2003) “fast RVM” scheme and rests mostly on
three facts:

1. Our sparsity prior structure ensures that for most real data sets the posterior will peak in
regions with mostly infinite αm and as discussed an infinite value for αm is equivalent to
the exclusion of ith component from the model, so only S  M of the coefficients wm

will be nonzero.
2. Although the introduction of this sparsity prior structure means that some expressions no

longer have convenient closed form solutions, the solutions are still easily and efficiently
found by simple numerical methods in all instances and all the important desirable prop-
erties of the fast RVM that are detailed in (Faul and Tipping 2002) remain unaffected by
the inclusion of the smoothness prior.

3. In particular it is still possible to determine the relevance of a basis function not currently
included in the model (so that components can be included one by one, starting with an
empty model) and to derive expressions for all quantities of interest that only depend
on S and not M . Consequently, the computational complexity scales cubically with the
number of included components S, rather than the number of basis functions M .

With the None prior and uniform p(α|σ) maximization of logp(α|σ, t) is equivalent to
maximizing the log marginal likelihood L(α) = logp(t|α, σ ), which can be efficiently ef-
fected by the elegant type II maximum likelihood scheme described in Faul and Tipping
(2002) and Tipping and Faul (2003). The key idea is to write

L(α) = L(α−i ) + �(αi) (18)

in order to separate out the contribution of the ith basis function φi into the term �(αi)

which depends solely on αi and a term L(α−i ) that is independent of αi . Maximization of
L(α) then proceeds by successive maximizations of �(αi) for a sequence of components.
With the None prior the maximizing α	

i = argmaxαi
�(αi) is found in closed form, so that

the maximization is particularly cheap.
In our case, the addition of the smoothness prior means that rather than the log likelihood,

we seek to maximize the log posterior:

L̂(α) ≡ logp(t|α, σ 2) + logp(α|σ 2) (19)

= L(α) + logp(α|σ 2). (20)

Due to the multiplicative prior structure, p(α|σ 2) = ∏
i p(αi |σ 2) the dependence of L̂(α)

on αi can still be isolated, and although the additional term requires that the optimal

α̂i = argmax
αi

�̂(αi) = argmax
αi

[�(αi) + logp(αi |σ)] (21)

is found numerically, rather than analytically as in (Tipping and Faul 2003), the extension is
straightforward and has the desired properties. In particular:

1. There still is at most one local maximum for �(αi).
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2. α̂i ≥ α	
i , in other words the sRVM or smoothness prior MAP solution is always at least

as sparse as the RVM or ML solution (see Appendix 6.3), but typically is much sparser
for flexible kernels.

3. It adds virtually no computational overhead, but allows enormous computational savings
in many cases—this is because the complexity of a single step in the model is essentially
O(S3) and the sparsity prior will always produce at least as small an S as the None prior,
but often only a fraction. The increased sparsity also makes it feasible to use wavelet
kernels for many tasks without fear of overfitting which further reduces the complexity
per step to O(N), because all matrix multiplications disappear7; we have empirically
verified that approximately linear in N per-step behavior obtains in our implementation
for 4096 ≤ N ≤ 524288.

We now give further details of the maximization scheme, although proofs are relegated to
the appendix.

3.2 Maximizing the marginal posterior

For clarity we first recapitulate the decomposition of the log marginal likelihood used by
Tipping and Faul’s original scheme before we describe the modifications needed to incor-
porate the smoothness prior. The following subscripts will be used: S denotes the value of
a variable with only the S selected components included whereas −i denotes the value of a
variable with the ith component removed.

The log marginal likelihood

L(α) = logp(t|α, σ 2) (22)

= log
∫

p(t|w, σ 2)p(w|α)dw (23)

= −1

2
[N log 2π + log |C| + tT C−1t] (24)

with

C = σ 2I + �diag(α−1)�T (25)

can be decomposed to isolate the terms involving a particular αi . Writing

C = σ 2I +
∑

m	=i

α−1
m φmφT

m + α−1
i φiφ

T
i (26)

≡ C−i + α−1
i φiφ

T
i (27)

the log likelihood may be reformulated, using standard matrix identities for inverse and
determinant of C, as (18) where:

L(α−i ) = −1

2
[N log 2π + log |C−i | + tT C−1

−i t] (28)

7The covariance matrix becomes the identity due to orthonormality, � becomes diagonal and other multipli-
cations by � is can be replaced by the equivalent, but much more efficient, discrete wavelet transform.
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and

�(αi) = 1

2

[
logαi − log(αi + si) + q2

i

αi + si

]
. (29)

The quantities

si ≡ φT
i C−1

−i φi (30)

and

qi ≡ φT
i C−1

−i t (31)

respectively measure the degree to which φi overlaps other basis functions in the solution (its
“sparsity”) and its “quality,” namely its correlation with the model error with φi excluded:
qi = σ−2φT

i (t − ŷ−i ).
Now it is easy to maximize L(α) with respect to αi . Faul and Tipping (2002) show that

�(αi) has a single unique maximum at

α	
i =

{
s2
i

q2
i
−si

if q2
i > si ,

∞ otherwise.
(32)

Kernels for which q2
i < si are effectively excluded from the model and the elegance of

the Tipping and Faul (2003) fast RVM scheme derives from the fact that si and qi can be
calculated from quantities involving only the S  M included components.

Maximization of the log marginal posterior with respect to a single αi can be achieved
by maximizing

�̂(αi) = �(αi) − c

1 + σ 2αi

. (33)

The derivative of �̂(αi) is

�̂′(αi) = 1

2

[
1

αi

− 1

αi + si

− q2
i

(αi + si)2

]
+ c

(1 + σ 2αi)2
(34)

= P (αi)

2αi(αi + si)2(αi + σ−2)2
(35)

where P (αi) is cubic in αi . Simple closed form solutions to the roots of P (αi) = 0 are not
available, however it is simple and computationally cheap to numerically find the roots of
P . Since limαi→∞ �̂(αi) = 0 the maximum of �̂(αi) may occur at infinite αi , corresponding
to the ith basis function being “switched off”. A basis function φi is active if the maximum
occurs for αi < ∞. With the smoothness prior the posterior may have more than one turning
point but, as shown in Appendix 6.3, there can be at most one maximum α̂i < ∞ and α	

i < α̂i

showing that the smoothness prior always has the effect of making the solution sparser.
Figure 4 shows the four possible cases that may arise. Most severely, (top-left) the prior can
null the maximum in the likelihood. Alternatively, (top-right) the posterior has a, possibly
local, maximum at finite α̂i > α	

i ; when there is a single turning point α̂i > limαi→∞ �̂(αi) =
0 and the basis function is active; if there are two turning points in �̂(α̂i ) the global maximum
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Fig. 4 Log posteriors �̂(αi ) (solid), log likelihoods �(αi ) (dashed), and log prior −c(1 + σ 2αi)
−1 (dotted)

plotted versus logαi for the four possible cases with a smoothness prior. Top-left: prior nulls maximum
in posterior; Top-right: single turning point with α̂i finite; Bottom-left: two turning points in posterior and
�̂(α̂i ) > limαi→∞ �̂(αi ) = 0; Bottom-right: two turning points in posterior, but �̂(α̂i ) < 0

may be at the turning point (bottom-left) or at infinite αi (bottom-right). It is straightforward
during learning to distinguish between these last two cases by evaluating �̂(α̂i).

In brief, maximization of L̂(α) therefore proceeds by successively choosing (at random)
a component i to include in the model, maximizing �̂(αi) with respect to αi and reestimating
the parameters �S , μS , s and q which depend upon αi (s and q are M vectors of the sparsity
and quality indices qi and si of the corresponding αi ). Since the posterior is increased by
maximization of each individual �̂(αi) such a sequence of maximizations terminates when
a, possibly local, maximum of the posterior is located at which the inclusion or deletion
of any single component can only decrease the L̂(α). Tipping and Faul (2003) use this
computationally efficient sequential maximization as the basis of the fast RVM. Although
in (Faul and Tipping 2002) an attempt is made to prove that “sequential optimization of
individual αi cannot lead to a stationary point from which a joint maximization over all
α may have escaped”, it appears that the proof is flawed and this desirable property may
indeed often not hold. However, by examining the Hessian of L̂(α) at the maximum it is
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straightforward to show that this property does hold for orthonormal basis functions (such
as wavelet kernels) regardless of the imposition of a smoothness prior (Appendix 6.4).

3.3 Noise reestimation

Again whereas the classical RVM can employ an analytical update rule (Tipping 2001,
Eq. (46)) for σ 2 from setting ∂L

∂σ−2 = 0, the introduction of the smoothness prior term means
we have to resort to a numerical scheme. As noted above, provided that σ 2H/c � 1 the
normalization term in the prior Z (17) is effectively constant, and we therefore numerically
solve:

∂L̂(α, σ 2)

∂σ−2
≈ 1

2

[
Nσ 2 − ‖t − �μ‖2 − σ 2

∑

m

(1 − αm�mm)

]

− c
∑

m

αm

(σ−2 + αm)2
+ (g − 1)σ 2 − h = 0. (36)

Good initial guesses for starting the numerical solution are either the c = 0 linear solution or
the previous value of σ 2, and we find that convergence is rapid. A graphical analysis of (36)
shows that the smoothness prior term serves always to increase the effective noise variance
as may be expected because a sparser solution requires more of the error to be explained
by noise. However, for even moderate amounts of data, we find that the estimate of σ 2 is
dominated by the marginal likelihood terms, being insensitive to the noise prior p(σ 2|g,h)

and hence the choices for g and h.

3.4 The algorithm

The outline of the algorithm, based on the fRVM algorithm, is as follows (c.f. pseudocode
in Algorithm 1).

We start out with a model that includes only a single component (a good default choice
is the component that has the largest projection onto the target t) (lines 1–7). Then, until
the model has converged (line 8), at each iteration a candidate component is picked at ran-
dom (line 9). If upon testing this component turns out to be neither currently included (i.e.
αi = ∞) nor relevant (i.e. inclusion would not increase �̂(αi) or equivalently the overall pos-
terior L̂(α)) nothing is done (line 18f). In all other cases the model is updated: αi and all
other relevant parameters are reestimated (line 21); only the noise estimation is not updated
on each step (lines 22f) to prevent spurious oscillation.

There are thus 4 possible cases that can occur after the relevance of some component i

given the current state of the model has been established:

• The component is currently not included but is still deemed irrelevant, so nothing happens.
• The component is currently not included, but since inclusion would increase �̂, it is in-

cluded (line 13).
• The component is currently included and αi is updated to reflect the current state of the

model which can either mean:
– deletion: αi is set to ∞ if doing so does not reduce �̂ (line 16);
– (mere) reestimation: the value of αi is set to some finite value, possibly the same that it

already had (line 21).
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Algorithm 1 The sRVM algorithm.

1: σ 2 ← 0.1 × var(t) initialization for σ 2

2: α ← [∞· · ·∞]T start with the empty model
3: i ← argmax (‖φT

mt‖/‖φm‖) pick an i that stands a good chance
of being relevant

4: S ← {i} include it in the set of included
components

5: update(αi,�S,μS, s,q) compute initial values for all model
parameters

6: R ← 10 reestimate noise every R steps
7: step ← 1 already made the first step
8: until converged()
9: i ← randint(M) pick a random component i

10: DID-NOTHING ← False
11: if ( q2

i
− si > 0 and . . .

has-real-positive-root(numerator(�̂′(αi)))
if component i is relevant

12: unless αi < ∞ unless it is already included
13: S ← S∪{i} add it
14: else
15: if αi < ∞ the component is irrelevant but

currently included
16: S ← S \{i} delete it
17: else component is and was irrelevant
18: DID-NOTHING ← True no need for action
19: unless DID-NOTHING otherwise update everything
20: step ← step + 1
21: update(αi,�S,μS, s,q) update the model parameters
22: if step mod R = 0
23: reestimate(σ 2)

It should be noted that whereas only a single αi of all the α is updated on each step, all
the other parameters, i.e. all the M qm and sm as well as the S elements of μS and S × S

elements of �S are completely recalculated.8

3.4.1 The convergence criterion

Due to the greedy nature and itemwise update of the algorithm finding, a good convergence
criterion requires a bit of tweaking to prevent premature convergence while at the same time
avoiding endless iterations close to the solution.

We follow Tipping and Faul (2003) in requiring that the differences between success-
ful values for any αi in logarithmic space must be less than 10−6 and that all components
currently deemed to be relevant are actually included in the model.

8The efficient formulae sm = αmSm
αm−Sm

where Sm = σ−2φT
mt − σ−4φT

m�S�S , and qm = αmQm
αm−Qm

where

Qm = σ−2φT
mt − σ−4φT

m�S�S�T
S

t are used for calculating q and s (Tipping and Faul 2003).
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Whilst this suffices in many cases, we have found it useful to add some additional require-
ments and as a consequence in practice the scheme is a bit more complex than that depicted
in Algorithm 1. Most importantly, before we declare convergence we ensure that all com-
ponents αm are re-evaluated and that the noise reestimation remains stable over several past
estimates. We also test that L̂ no longer increases noticeably. Full details may be found in
the implementation which is available from <http://www.dcs.ex.ac.uk/~reverson/sRVM>.

3.5 Future directions

Although empirically the greediness of the fRVM type II MAP scheme on which we base
this work does not seem to be much of an issue under most scenarios (including the spline
kernel examples that have dominated the RVM literature and our use of wavelet kernels),
under the stress-test of using overcomplete dictionaries local maxima can start to become a
problem.

Whilst we have found it useful to increase exploration by ad hoc measures9 in these cases,
the added flexibility of the sRVM for kernel choice appears to call for a principled way to
deal with local maxima. We are therefore currently investigating an alternative non-greedy
Markov chain Monte Carlo formulation that samples from the posterior.

4 Results

4.1 Simple data

As Fig. 3 shows, we find that use of the smoothness prior typically yields substantial im-
provements for tasks where overfitting is a problem due to the multi-scale resolution of
the kernel, while it generally has no appreciable negative impact when overfitting is not an
issue.

4.2 Multiscale data

In Fig. 5 we can clearly see the advantages of smoothness control via prior structure as
opposed to kernel choice: with the sRVM a multiscale signal can receive just the right level
of smoothing to fit the signal, but not the noise, at each scale (Fig. 5 bottom), whereas
the RVM’s dependence on kernel choice for sparsity control and thus smoothing means
choosing between the evils of oversmoothing the high-frequency structure (Fig. 5 top) or
overfitting the low-frequency structure (Fig. 5 middle).

The effect of the smoothness prior on sparsity is most clearly visualized by comparing
“shrinkage plots” for None and BIC (Fig. 6) for the Doppler data.

4.3 Heterogeneous data and overcomplete dictionaries

Another attractive ability of the sRVM is to automatically choose the right locally fitting
components from an overcomplete dictionary. This can be used to obtain very good results
for signals that are heterogeneous to the extent that particular regions can be well represented
sparsely by a particular (non-custom) kernel whilst another standard kernel (or combination

9E.g. by initially also including αi for which �̂(αi ) ≤ �̂(∞).
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Fig. 5 Multiscale resolution data like Doppler (N = 1024, SNR = 7.0) defeats the RVM (top, middle), but
not the sRVM (bottom), demonstrating the limitedness of sparsity control via kernel (parameter) choice (here
in top and middle panels via the width parameter r of a Gaussian kernel (r is respectively 0.5 and 0.05) as
well kernel choice between gauss (top and left middle vs. the parameterless symmlet right middle)). Such
smoothness control acts globally, whereas only part of the signal is respectively fine scale/large scale, so that
even though overfitting already starts to become apparent in the top panel, the fine scale information on the
left side is still severely oversmoothed. Decreasing kernel width (middle) to improve resolution sufficiently
to fit the fine scale details on the left is seen to be tied to drastic overfitting in the right part of the plot.
By contrast, a smoothness prior in combination with a multi-resolution kernel achieves an adaptive level of
smoothing (bottom). Without a smoothness prior, again drastic overfitting would occur (not pictured, but c.f.
Fig. 1 top left)
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Fig. 6 Shrinkage plots. Plotting the least squares estimate of the weights μLSQ against the posterior weight
estimates obtained with None (left) and BIC (right) priors clearly shows that the BIC smoothness prior is
much more effective at weeding out small, irrelevant components by setting them to 0. These plots correspond
to the middle right and bottom panel, respectively, of Fig. 5) and are clipped to |μm| ≤ 0.5 (the few larger
components are essentially unaffected by shrinkage and thus lie on the diagonal)

of kernels) would yield much better results for other regions. Figure 7 presents an illustra-
tive toy example in which an overcomplete dictionary of thin-plate spline (tpspline) kernels
and Haar wavelets kernels are shown to provide an effective sparse representation of the
concatenation of the smooth Sinc data and the step-like Blocks data (Donoho and Johnstone
1994). Likewise, data such as the HeaviSine dataset (ibid.), with small discontinuity regions
but mostly smooth and continuous overall can also profit from a similar overcomplete dic-
tionaries.

Overcomplete dictionaries constructed from morphologically diverse kernels have also
found applications to blind source separation problems, where the morphological differences
in individual signal components allow such components to be largely represented by mor-
phologically similar parts of the overcomplete dictionary which can be leveraged to effect
the separation (Bobin et al. 2005). Although the sRVM is clearly not designed with that task
in mind, in this specific, simple example we obtain near-perfect separation of the Blocks
and Sinc signal components by discarding the tpspline and Haar contribution respectively
(see Fig. 8 right). By contrast, the plain RVM cannot achieve this separation (see Fig. 8
left), apart from needing 419 instead of 88 components and achieving only a MSE of 0.024
instead of 0.009.

It has to be noted, however, that although with symmlet or spline kernels we generally
achieve bit-identical or near-identical results regardless of the way component inclusion
proceeds, overcomplete kernels appear to expose some limitations of the fRVM scheme
on which we build. Apart from numerical issues caused by the overcompleteness, getting
trapped in different local maxima starts to become a problem, so that we see more variability
in the results than we do under simpler scenarios.

4.4 Summary statistics

Table 1 shows for a number of standard datasets the sparsity, measured by the number of
included components S, and the MSE between the mean prediction ŷ and the true signal y.



Mach Learn (2007) 68: 107–135 125

Fig. 7 The sRVM (here with RIC prior) makes it possible to obtain very good results by using overcomplete
dictionaries. The example data (“BlocksSinc”) is constructed by concatenating two signals with very differ-
ent characteristics: Blocks and Sinc and adding Gaussian noise (SNR: 7.0). Whilst no standard kernel will
give ideal results for this combination, thin-plate splines (tpsplines) are well suited for smooth, continuous
curves such as Sinc (a), whilst the step-like nature of Haar wavelets makes them the ideal candidate for the
Blocks subset (b). However, thanks to the smoothness prior, the sRVM (c) can do a remarkably good job at
automatically picking the appropriate components for each part of the signal from an overcomplete dictionary
obtained by concatenating both these kernels together (also see Fig. 8)
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Fig. 8 Contributions of the tpspline and Haar subparts of the overcomplete dictionary for BlocksSinc signal
for sRVM and RVM. Evidently the sRVM is able to pick fitting components for each morphologically distinct
part of the overall signal—indeed by discarding all the tpspline or Haar contributions to ŷ one essentially
obtains a clean separation into Blocks and Sinc

Clearly the None prior is generally insufficiently severe to control the sparsity for multires-
olution kernels, while the smoothness priors provide sufficient smoothing and thus permit
σ 2 to be correctly estimated. On the other hand it is evident from the gauss 3.0 (see 6.1 for
definitions of all kernels used) examples that the smoothness priors do not result in miss-
estimation when smoothing is already enforced by the kernel. Further, the Doppler data in
the second half of the table demonstrates that even if the true value for σ 2 is given so that
incorrect noise estimation is not an issue, the None prior is still too weak to bring about the
desired level of sparsity.10

Lastly, although BIC rarely obtains the best answer, it is typically not too far off which
recommends it as the default choice.

5 Discussion

Whilst we have concentrated on the fRVM framework (Faul and Tipping 2002), since
our implementation is based on it, it is worth mentioning that the fRVM is by no means
the only attempt to provide a scheme that is computationally more efficient than the
original, “slow” RVM (Tipping 2000) and might be adapted to incorporate a smooth-
ness prior; we draw attention to the Subspace EM (SSEM) algorithm (Quiñonero-Candela
2004) and a version based on a Bayesian interpretation of backfitting (D’Souza et al.
2004).

Before examining more closely the issue of different choices for p(α), we mention other
work pertinent to RVM learning. Wipf and Rao (2004) provide a principled justification
for approximating the hyperparameter posterior p(α, σ 2|t) with the point estimates αMAP

and σMAP. Quiñonero-Candela (2004) offers an augmentation to the RVM at the prediction
stage to ameliorate the problem of artificially low predictive variances for test-points that

10With this exception all results in this paper, including those in Fig. 5, were obtained using noise estimation.
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Table 1 Empirical comparisons of different priors on standard datasets. Results are averaged over 10 runs
(with different noise ε on each run). Results with lowest MSE appear in bold

σ 2 is estimated

Bumps SNR = 2.0 (σ 2 = 0.119, N = 128)

Kernel Prior S MSE σ 2
MAP

symmlet None 127.0 ± 0.0 0.119 ± 0.001 0.000 ± 0.000

symmlet AIC 36.3 ± 7.8 0.088 ± 0.008 0.121 ± 0.037

symmlet BIC 11.9 ± 2.5 0.153 ± 0.034 0.262 ± 0.038

symmlet RIC 2.6 ± 1.4 0.320 ± 0.051 0.450 ± 0.068

Bumps SNR = 7.0 (σ 2 = 0.010, N = 128)

Kernel Prior S MSE σ 2
MAP

symmlet None 127.0 ± 0.0 0.010 ± 0.000 0.000 ± 0.000

symmlet AIC 61.9 ± 6.0 0.009 ± 0.001 0.010 ± 0.004

symmlet BIC 19.2 ± 4.9 0.081 ± 0.024 0.106 ± 0.029

symmlet RIC 6.4 ± 1.3 0.203 ± 0.024 0.238 ± 0.018

Sinc SNR = 2.0 (σ 2 = 0.031, N = 128)

Kernel Prior S MSE σ 2
MAP

gauss 3.0 None 5.7 ± 0.7 0.004 ± 0.001 0.032 ± 0.001

gauss 3.0 AIC 5.4 ± 1.1 0.004 ± 0.001 0.034 ± 0.001

gauss 3.0 BIC 5.2 ± 0.6 0.005 ± 0.001 0.035 ± 0.002

gauss 3.0 RIC 4.9 ± 1.0 0.005 ± 0.001 0.036 ± 0.002

symmlet None 127.0 ± 0.0 0.031 ± 0.000 0.000 ± 0.000

symmlet AIC 28.9 ± 5.9 0.012 ± 0.003 0.020 ± 0.004

symmlet BIC 9.1 ± 1.9 0.006 ± 0.002 0.032 ± 0.003

symmlet RIC 6.2 ± 0.6 0.006 ± 0.001 0.036 ± 0.002

σ 2 is given

Doppler SNR = 2.0 (σ 2 = 0.031, N = 1024)

Kernel Prior S MSE

symmlet None 367.3 ± 10.5 0.00067 ± 0.00002

symmlet AIC 130.5 ± 6.9 0.00041 ± 0.00002

symmlet BIC 56.6 ± 2.8 0.00026 ± 0.00002

symmlet RIC 42.2 ± 1.5 0.00036 ± 0.00002

are far off the “centres” of the “relevance vectors” (i.e. the final set of basis functions for
well-localized kernels such as gauss)—an issue that may be regarded as an undesirable side-
effect of sparsity. Figueiredo (2003) provides an illuminating perspective on sparse Bayesian
learning and presents an Expectation Maximization algorithm for learning the coefficients
w directly, treating the α as hidden data.
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Fig. 9 Log posteriors �̂(αi )

(solid), log likelihoods �(αi )

(dashed), and log gamma prior
(dotted) plotted versus logαi ,
showing that with qi = 1, si = 2,
a = 1 and b = 2 the MAP αi is
less sparse than the maximum
likelihood solution

5.1 Other prior choices for α

As we noted in Sect. 2, any super-Gaussian prior on each p(wm) will encourage sparse-
ness or shrinkage. A natural prior that has been used to promote sparsity in a variety of
contexts is the Laplacian prior, p(wm) ∝ e−|wm|, which leads to the LASSO (least absolute
shrinkage and selection operator) scheme (Tibshirani 1996), although in this context the
prior is introduced as the penalty in a penalized likelihood. As Figueiredo (2003) shows, the
Laplacian prior on p(wm) may be obtained via a hierarchical scheme, like ours, in which a
p(wm) arises as a scale mixture of Gaussians with an exponential prior on the precisions:
p(αm|γ ) ∝ e−γ αm/2, where γ is a hyperparameter. In fact, Figueiredo abandons the exponen-
tial/Laplacian scheme in favour of a Jeffreys’ prior on αm, namely p(αm) ∝ 1/αm, which in
turn results in a similar very heavy-tailed prior on the coefficients: p(wm) ∝ 1/|wm|. The at-
tractions of the Jeffreys’ prior result from the fact that it is a non-informative prior (Bernardo
and Smith 1994): first, it is scale invariant and, secondly, there are no (hyper)parameters to
adjust. Before examining the Jeffreys’ prior in more detail we first discuss the Gamma prior
which has the Jeffreys’ prior as a limiting case.

The Gamma prior

p(αm|a, b) = ba

Γ (a)
αa−1

m e−bαm (37)

has two hyperparameters, a > 0 and b > 0, which respectively control the shape and width
of the density. This prior, which leads to a Student-t p(wm), is considered by (Tipping 2001;
Wipf and Rao 2005). However it is not clear how the hyperparameters a and b are to be
chosen, except by cross-validation which is a data and time consuming procedure or via a
variational approach, which, in the formulation that corresponds closest to the classical RVM
(Bishop and Tipping 2000), is neither computationally efficient nor of clear practical value.11

11See (Tipping 2001, footnote 6) or <http:www.miketipping.com/index.php?page=rvm>: “Note that the
‘variational’ relevance vector machine is pretty much identical to the non-variational version, but is a lot
slower to train”.



Mach Learn (2007) 68: 107–135 129

Furthermore, as illustrated in Fig. 9, it is possible for the Gamma prior with particular values
of a and b to yield α̂i < α	

i , that is a MAP αi that is less sparse than the α	
i which maximizes

the likelihood alone. By contrast the smoothness prior always results in α̂i > α	
i and we point

out that the smoothness prior is strictly increasing and so always assigns increasing weight
to increasing precisions (c.f. Fig. 4).

The Jeffreys’ prior, a uniform density on the logarithmic scale, is obtained in the limit
a, b → 0, which (Tipping 2001) appears to advocate for the RVM although the fRVM (Tip-
ping and Faul 2003) clearly uses a uniform prior in “un-logged space”—called the None
prior here. In this limit the Student-t density for p(wi) becomes 1/|wi |. However, the anal-
ogous component-wise maximization scheme leads to models in which all components are
active when a < 1/2 because �̂(αi) is maximized at αi = 0 regardless of the values of si , qi

and b (see Appendix 6.5). Approaching the Jeffreys’ prior by p(αi) ∝ α
ζ

i as ζ → −1 leads
to the same conclusion: for ζ < −1/2 every component is active because �̂(αi) is maximized
at αi = 0 (Appendix 6.5).

Thus although the scale invariance and the absence of hyperparameters of Jeffrey’s prior
is appealing, the type II MAP solution sought here does not accommodate it. However, the
smoothness prior, which is noise dependent and therefore confers scale invariance with in-
variant SNR, has a single hyperparameter and is readily interpretable in terms of the solution
sparseness, the degrees of freedom in the smoothing matrix.

Before we proceed to discuss α-priors from a wavelet-shrinkage perspective, first a short
digression that readers already familiar with wavelet shrinkage may prefer to skip; in-depth
treatments of wavelets and wavelet shrinkage can be found in Mallat (1999) and Jansen
(2001).

Wavelet shrinkage We have already mentioned that the Discrete Wavelet Transform
(DWT), which provides an orthogonal decomposition of a signal into components localized
in both frequency and time, is extremely fast—O(N). Algebraically, however, the DWT of
a vector t is simply equivalent to WT t, where W is an orthogonal matrix.

Thus, since the discrete wavelet transform is an orthogonal linear operator, it is easily
verified that it maps stationary white noise on the targets to stationary white noise of the
same amplitude on the wavelet coefficients. On the other hand, for “reasonable” noise-free
curves (i.e. signals that can be well approximated by piecewise polynomials of a small de-
gree) and a suitable choice of wavelet, wavelet transforms are said to be decorrelating. In
other words whilst noise enters equally into all wavelet coefficients, the true signal carried
by the targets will be mostly concentrated in but a few.

This suggests the following template for wavelet-based denoising: transform to wavelet
space (wt = WT t), somehow cull or shrink those coefficients that contain largely noise leav-
ing the signal carrying ones mostly intact and transform back (ŷ = W shrink(wt)).

But taking � = W, W shrink(wt) is really just a regularized projection from (10)—with
regularization coefficients σ 2α controlling the amount of shrinkage and the added bonus
that the covariance matrix �T � becomes I and multiplications by � can be carried out in
linear time. So as long as our RVM-way of determining σ 2α gives values that also work
well for wavelets, wavelet shrinkage can be recognized a special case; as we have shown,
this is the case for the sRVM, but not the plain RVM which will hopelessly overfit.

A number of approaches to shrinking the wavelet coefficients have been devised. A
straightforward idea is to just set to zero those coefficients whose absolute values remains
below a certain threshold τ , i.e. set αi = ∞ for all |wi | < τ (hard thresholding). Additionally
reducing all the other coefficients towards zero by said threshold τ is another, often prefer-
able, alternative (soft thresholding; inter alia it gives a continuous shrinkage curve which is
analytically more convenient) (Donoho and Johnstone 1994).
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α priors for wavelets Apart from these “classical” wavelet shrinkage approaches (Jansen
2001, see, e.g.), a variety of Bayesian schemes have also been applied to yield gradu-
ated shrinkage. These, like our scheme, commonly impose a heavy-tailed prior, such as a
Student-t (Vidakovic 1998b) or mixture of two zero-mean Gaussians (Chipman et al. 1997),
on the wavelet coefficients. See (Vidakovic 1998a) and (Denison et al. 2002, Sect. 3.4) for
extensive reviews. The Holmes and Denison (1999) smoothness prior is also suitable for
non-wavelet kernels because, unlike most popular wavelet shrinkage priors, it is not depen-
dent on the wavelet length scale or level. Holmes and Denison reject such level dependence
as inconsistent with the knowledge that noise enters additively across all components, but
there is, in principle, no reason not to incorporate priors in the RVM that only work in
conjunction with certain kernel types.

Finally we note that a further alternative hierarchical prior to address the under-determin-
ation of the w is explored in (Fokoué et al. 2004), while Girolami and Rogers (2005) (and
references therein) pursue a completely different avenue: a Bayesian treatment of kernel
construction itself.

5.2 Summary and conclusion

We have presented a straightforward extension to the RVM that imposes a more stringent
prior on the variance of the weights in nonlinear regression, and we have described an effi-
cient algorithm for maximizing the marginal posterior probability of the model. The RVM
with a smoothness prior is also easily adapted to handle classification problems.

From a theoretical perspective we have seen that unlike other proposed prior types (such
as the implicit uniform prior in the original RVM implementation, or a Gamma prior)
the smoothness prior we presented is noise-dependent in a principled fashion (data/kernel
rescaling whilst keeping the SNR fixed does not change the result and, as one would expect,
setting σ̂ 2 to a multiple or fraction of the real σ 2 in experiments results respectively in a
sparser or less sparse regression).

Further, our results indicate that symmlets with a smoothness prior make an attractive
default choice for RVM regression tasks: the combination is flexible enough to be suitable
for a large variety of signals, requires no additional kernel parameters to be determined by
cross-validation (e.g. scale for Gaussian kernels). The hyperparameter c could be optimized
by cross-validation, but our experiments show that the BIC choice works well for a wide
range of problems. The sRVM has attractive computational characteristics resulting from
the properties of wavelets. In particular the matrix-multiplication by kernel columns can
be carried out by the mathematically equivalent but much more efficient discrete wavelet
transform (O(N)!); this implies that no N × M design matrix needs to be constructed and
held in memory and that the per-step time complexity drops from cubic in S to linear in N .
Furthermore numerical robustness also tends to be better than for many other kernels.

This might seem to beg the question “why not just use wavelet shrinkage to start with?”—
of course there are limitations of wavelets that other types of kernels do not share (the data
must be equally spaced) and although symmlets perform well across a wide range of signals
it is difficult in practice to beat the performance of less general kernels for tasks for which
they are particularly well suited (e.g. lsplines for Sinc-like data).

But the deeper point is that the RVM updated with a smoothness prior (sRVM) can be
profitably regarded as a generalization of wavelet shrinkage.

Figure 7 demonstrates that we can even obtain the best of both worlds in one and the same
experiment by using an overcomplete dictionary composed of different kernel types (such as
Haar wavelets and thin-plate splines) that each capture certain aspects of the overall signal



Mach Learn (2007) 68: 107–135 131

particularly well and then rely on the sRVM to automatically select a sparse representation
from this overcomplete dictionary.

In other words a chief attraction of the sRVM is that spans a bridge between the RVM
and related methods on the one hand and wavelet shrinkage on the other, yielding a powerful
synthesis.

Appendix

6.1 Kernel functions

For completeness, here we list the kernels generating the basis functions used in this paper.

Klspline(xm, xn) = 1 + r−2xmxn + r−3xmxn min(xm, xn)

− xm + xn

2
r−3 min(xm, xn)

2 + r−3 min(xm, xn)
3

3
, (38)

Kgauss(xm, xn) = exp(−(xm − xn)
2/r2), (39)

Ktpspline(xm, xn) = |xm − xn|2r−2 log(|xm − xn + δmn|/r). (40)

Here r sets the width of the kernel. The quoted values of r are relative to data defined so
that −10 ≤ x ≤ 10. We use the shorthand “gauss 3.0” etc. in the text, to denote the Gaussian
kernel defined below with a width parameter r = 3.0.

The symmlet family of wavelets is due to Daubechies, all our examples use the symmlet8
wavelet (the 8 here is not a width parameter) from that family as defined in (Daubechies
1992). For a general discussion of wavelet bases such as Haar and symmlets see e.g. (Mallat
1999).

6.2 Scale invariance for constant SNR

The sRVM scheme is invariant to scaling of the signal amplitude provided that the noise
variance is also scaled so that the SNR remains constant. Suppose that the targets are scaled
so that t → kt and the noise is scaled so that σ 2 → k2σ 2, then if the coefficient precisions
αi are scaled as αi → k−2αi then the log posterior L(α) + logp(α|σ 2) changes only by an
additive constant. To see this, note that the matrix C (25) becomes

C̃ = k2σ 2I +
∑

m

α−1
m k2φmφ (41)

= k2C. (42)

Consequently, from (22), L(α) becomes:

L̃(α) = −1

2
[N log 2π + 2M logk + log |C| + (ktT )(k−2C−1)(kt)] (43)

= L(α) + 2M logk. (44)

When the αi are rescaled along with σ 2, it is clear that DF in (13) remains unchanged. Thus
the prior is invariant to simultaneous rescaling of α and σ 2 and so the log posterior is

logp(α/k2, k2σ 2|kt) = logp(α, σ 2|t) + 2M logk. (45)



132 Mach Learn (2007) 68: 107–135

Maximum a posteriori solutions for α in the scaled case are thus just the MAP solutions in
the unscaled case divided by k2.

6.3 Uniqueness of local maximum

Here we show that �̂(αi) (33) can have at most a single maximum α̂i < ∞ and α	
i < α̂i . We

drop the explicit indication of which basis function is being dealt with and it is convenient
to work in terms of the noise precision β = σ−2.

The derivative of �̂(α) is given by (34) in which the cubic polynomial P (α) = B3α
3 +

B2α
2 + B1α + B0 has coefficients

B0 = s2β2, (46)

B1 = sβ2 + 2βs2 − β2q2 + 2s2cβ, (47)

B2 = 2sβ + s2 − 2βq2 + 4sβc, (48)

B3 = s − q2 + 2cβ. (49)

We note that the numerator of (34) is positive for all α > 0 so the turning points of �̂(α) can
be found by examining P (α). A crucial quantity turns out to be the sign of B3 and we treat
positive and negative cases separately. First note that

2�̂′(α) = 1

2α(α + s)2(α + β)2
{[s − q2 + 2cβ]α3 + H.O.T.} (50)

so that the gradient at infinite α is always zero. Also limα→∞ �̂(α) = 0 and so �̂(α) is asymp-
totic to zero from below if B3 > 0 or from above if B3 < 0. As α → 0 then �̂(α) → −∞.

6.3.1 Asymptote from below

Since B3 > 0 the graph of P (α) → ±∞ as α → ±∞, and P (0) = B0 > 0. Consequently,
P (α) has a least one root for α < 0. It must therefore either have zero or two positive roots.

If P has no positive roots the maximum of �̂(α) is achieved at infinity (e.g. top-left
Fig. 4).

If there are two positive roots, one corresponds to a maximum and the other to a mini-
mum. Ignoring the degenerate case of an inflexion point, the root for smaller α must be the
maximum and the root for larger α is a minimum. The maximum may be greater or less than
the asymptotic value, as illustrated by the bottom row of Fig. 4.

6.3.2 Asymptote from above

In this case since B3 < 0 there is at least a single positive root of P (α). Since as α → ∞,
�̂(α) is asymptotic to zero from above this root must correspond to a maximum. However,
we must ensure that there cannot be 3 positive roots.

The derivative of �̂(α) can be written as the sum of the derivatives of �(α) and
logp(α|σ 2) as follows:

�̂′ = [s2 + (s − q2)α](β + α)2 + 2cβα(s + α)2

2α(α + s)2(α + β)2
(51)

≡ P0(α) + 2cβα(s + α)2

2α(α + s)2(α + β)2
(52)
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where P0(α) is the cubic P (α) with c = 0. It has a root at α	, which corresponds to the
maximum in the likelihood, and there is an additional repeated root at α = −β .

The term 2cβα(s+α)2 arising from the prior is a cubic with a root at α = 0 and a repeated
root at α = −s < 0. It is clearly positive for all α > 0. There is therefore a root of P (α) at
some α̂ > α	 because P (α) ≥ P0(α) for all α > 0. Since P0(α) is monotonically decreasing
for α > α	, while cβα(s + α)2 is monotonically increasing they can only intersect once
(at α̂) so there can be no roots for α > α̂ and we conclude that there can only be a single
maximum of �̂(α) for α > 0 in this case, which is illustrated in the bottom right panel of
Fig. 4.

6.4 Saddle-points of L̂

In order to determine the nature of the maxima of L̂ the Hessian of L is required. As shown
in (Faul and Tipping 2002), the off-diagonal terms of the Hessian are:

∂2 ˆL(α)

∂αi∂αj

= φT
i C−1φj

2α2
i α

2
j

[φT
i C−1φj − 2(φT

i C−1t)(φT
j C−1t)], i 	= j. (53)

When the basis functions are orthogonal the matrices C and therefore C−1 are diagonal
(25). Consequently φT

i C−1φj and hence the off-diagonal terms of the Hessian are zero. At a
solution located through the maximization procedure the diagonal elements of the Hessian
corresponding to finite αi maxima are necessarily negative. The Hessian is therefore posi-
tive semi-definite, with the zeros corresponding to the infinite αm, switched-off components.
Unfortunately, the demonstration (Faul and Tipping 2002) that the Hessian of the log mar-
ginal likelihood is negative semi-definite with general basis functions appears to be flawed
and we are unable to provide any assurance that joint optimization of two or more αi might
not yield a better result than successive maximization with respect to each.

6.5 Approaching the Jeffreys’ prior

With p(αi) = Zα
ζ

i the contribution of the ith component to the posterior becomes:

�̂(αi) = 1

2

[
logαi − log(αi + s) + q2

αi + s

]
+ logZ + ζ logαi (54)

= 1

2

[
(1 + 2ζ ) logαi − log(αi + s) + q2

αi + s

]
+ logZ. (55)

Setting the derivative to 0 to find the MAP solution α̂i we get:

�̂′(αi) = 1

2

[
1 + 2ζ

αi

− 1

αi + s
− q2

(αi + s)2

]
= 0. (56)

From this it becomes apparent that �̂ has no turning points for finite, positive αi if ζ < − 1
2

because αi , q2 and s are always positive. Furthermore, in this case since �̂′(αi) < 0 the
maximum of �̂(αi) is achieved at αi = 0. As a Jeffreys’ prior corresponds to ζ = −1, one
would always obtain a model in which all the components are active.
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With a Gamma prior for αm (37) the derivative of the contribution to the log posterior
from the ith basis function is:

�̂′(αi) = 1

2

[
1

αi

− 1

αi + s
+ q2

αi + s

]
+ a − 1

αi

− b (57)

= 1

2

[
2a − 1

αi

− 1

αi + s
− q2

(αi + s)2
− 2b

]
. (58)

When b = 0 it is clear that �̂ has no turning points for finite, positive αi if a < 1/2, although
there will be no positive αi for larger a when b is larger. Consequently the Gamma prior
forces all components to be active when a < 1/2, which of course includes the Jeffreys’
prior in the limit a, b → 0.

6.6 Efficiently calculating the full likelihood and posterior

As C is a N × N matrix, its inversion and computation of the determinant are very costly
procedures – O(N3). Fortunately with the help of the Woodbury–Sherman–Morrison matrix
inversion and determinant identities (see e.g. Press et al. 1992 or Roweis 1999) and using
(8) and (21) the marginal log likelihood may instead be advantageously expressed as:

L = −1

2

[
N log(2π) + N logσ 2 −

∑

S

logαs + log |�| + (σ−2tT t − μT �−1μ)

]
. (59)

The efficient expression for L̂, the log posterior is then given by

L̂ = L+
∑

S

−c

1 + σ 2αs

+ S logZ + logIG(σ 2|g,h) (60)

and may be computed in O(S3) time, where S is the number of included components (as
the matrix � is S × S). Although the stated algorithm does not depend on it this expression
is useful for obtaining the posterior likelihood of the solution the sRVM algorithm finds and
may also be used for convergence testing.
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