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Abstract This paper describes the winning entry to the Omphalos context free grammar

learning competition. We describe a context-free grammatical inference algorithm operat-

ing on positive data only, which integrates an information theoretic constituent likelihood

measure together with more traditional heuristics based on substitutability and frequency.

The competition is discussed from the perspective of a competitor. We discuss a class of de-

terministic grammars, the Non-terminally Separated (NTS) grammars, that have a property

relied on by our algorithm, and consider the possibilities of extending the algorithm to larger

classes of languages.

Keywords Grammatical inference . Context Free Languages . NTS languages

1. Introduction

Context Free Languages are widely used in a number of different areas, including program-

ming languages, speech recognition, natural language processing and bioinformatics. One

of the attractions of these languages is that they arise convergently from several different

models: from context free grammars, considered as tree stuctures or as rewriting systems,

and from push-down automata. Some interesting closure properties and the existence of ef-

ficient algorithms for parsing and generating, have also contributed to their wide diffusion.

A subclass that has received special attention is that of deterministic context free languages,

which have the property that they can be recognised by a deterministic push down automaton.

The learning of context free grammars has for some time been considered as a challeng-

ing problem in Machine Learning. While it seems clear that under any plausible learning

criterion the entire class of context free grammars cannot be learned, there are hints that

some substantial subclasses of deterministic languages can still be learnt. In this paper we
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discuss an approach to this problem, that we used in our winning entry for the Omphalos

competition (Starkie, Coste & van Zaanen, 2004). This work grew out of previous research

that was concerned with the learning of context free grammars for natural language from nat-

urally occurring corpora (Clark, 2001), and research into formal learnability of deterministic

regular languages (Clark & Thollard, 2004a, b).

We experimented with a variety of different approaches to solving the competition prob-

lems. In describing them here, we have tried to strike a balance between presenting an accurate

description of the algorithms we actually used in winning the competition, and presenting a

coherent explanation of the underlying ideas. Competitions with fixed deadlines inevitably

only permit a limited amount of coding, debugging and testing. In particular we do not present

any further empirical work, other than that on the competition test sets. Thus many of the

particular claims we make about the algorithms and the reasons for their success will not be

strictly justified by the experimental results we present in this paper. Nevertheless, given the

public nature of the competition, and the intention to continue with further competitions, we

feel it is appropriate to give a timely exposition of our methods, with as full an explanation

and justification as possible.

This paper is structured as follows: we will first discuss the competition in general

(Section 2) and a few specific aspects of the problems that allow learnability (Section 2.1).

We will then discuss the basic ideas behind our approach (Section 3) followed by the imple-

mentation and discussion of results (Sections 4 and 5).

2. The Omphalos competition

The Omphalos competition is described fully in Starkie, Coste and van Zaanen (2004), and

here we shall merely offer a brief description, highlighting some of the key features of the

competition and explaining how they guided the design and implementation of the winning

algorithm.

We assume some familiarity with formal language theory (Harrison, 1978). We start by

defining some common notation. We will denote a finite alphabet by �, the free monoid on �

by �∗ and the identity (empty string) by ε. A context free grammar G is a tuple (�, N , P, R)

where N is a finite non-empty set of non-terminals. We will write V = N ∪ �. We will use

lower case Greek letters for elements of V ∗. P ⊆ N × V ∗ is a set of productions which we

will write in the form X → α, for X ∈ N , and α ∈ V ∗. R ⊆ N is a set of sentence symbols.

We say that αXβ ⇒ αγβ if X → γ is an element of P . We extend the single step derivation

⇒ to a multiple step derivation
∗⇒ recursively.

For X ∈ N , define the yield of X , y(X ) = {α ∈ �∗|X ∗⇒ α}. The language of G written

L(G) is defined as {w ∈ �∗|∃S ∈ R : S
∗⇒ w} = ⋃

S∈R y(S). We shall also use the term

sentential form to refer to an element α ∈ V ∗ such that ∃S ∈ R : S
∗⇒ α.

This slightly generalises the normal definition of a context free grammar which is defined

to have a single sentence symbol: |R| = 1. Of course, this does not change the power of the

formalism, but it is convenient for two reasons: first, we will use these grammars to represent

intermediate states of the computation, where we may not yet have a sentence symbol defined,

and secondly, when we consider a restricted class of grammars below, the NTS grammars,

this modification does increase the class of languages allowable.

The competition consisted of a set of problems of the form (�, X, Y ) where � is a

finite alphabet, X ⊂ �∗ × {0, 1} is a labelled set of labelled strings, and Y ⊂ �∗ is a set

of unlabelled test strings. The competitors were required to label the test strings and submit

them to an online oracle. The competition organisers first generated a set of target context free
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Fig. 1 Summary of problems

grammars by a combination of random and non-random means. They then generated a set of

positive strings from the target grammar, and then a second set of strings at random for some

of the data sets. These examples were then labelled as positive or negative as appropriate.

They then used a similar method to generate a set of test strings. The original test sets were

too small and made the problem too easy, so they subsequently produced a larger set of test

data which included data generated from regular approximations to the target context free

grammars. This produced a set of strings that appeared similar to strings in the language thus

making the labelling problem much more challenging. The criterion used for success was

the exact labelling of all of the test strings as either in or not in the target language, which

could be verified by submission to a web-based form. No feedback was provided about the

accuracy of the labelling other than determining whether the labelling was completely correct

or not, but multiple submissions were allowed: up to 10 per day. Only limited information

was provided about the methods used to generate the grammars and the samples. Figure 1

summarises the data sets we attempted. Some much more difficult problems were also added

later in the competition but we did not attempt to solve them.

A large number of different researchers downloaded the datasets but only a few submitted

solutions to the oracle. The competition was in general perceived to be too difficult by

the grammatical inference community. A variety of different techniques were employed as

described in Starkie, Coste and van Zaanen (2004). Some of the small data sets were solved

using a simple n-gram based classifier. Simple search algorithms were also employed but

were only capable of solving the smallest problem.

2.1. Formal analysis

First, before committing the time and effort required for a competition of this sort it is worth

deciding whether the underlying problem is inherently intractable. There are a number of

aspects of the competition problems that are important. First, as a result of our personal

research goals, the approaches we considered rely only on the set of positive strings. We

decided to approach the problem as a classical grammatical inference problem: that is to say,

we attempted to infer an explicit context free grammar, and label the test data according to

whether the string was in the language defined by the grammar.

When the strings are generated randomly based on the target grammar, the distribution

then gives some help to the learning algorithm. Thinking of this more formally, this means

we do not need to look for a distribution free learning algorithm which would not exist for a

sufficiently large class of languages (Kearns & Valiant, 1994). As was shown in Clark and

Thollard (2004b), this restriction on the set of distributions is sufficient to allow learnability

for the class of regular languages when the distributions also are μ-distinguishable (Ron,

Singer & Tishby, 1995). In the Omphalos competition, the positive samples were generated

largely from a distribution that depended on the grammars, i.e. from a Probabilistic Context
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Free Grammar or approximation thereof. There were, however, a number of deviations from

this strict procedure. Secondly, not only do we not have to learn with respect to every

distribution, but we also do not even have to learn all CFGs or DCFGs. The target grammars

were generated according to a largely random process. Thus to be successful we merely have

to be able to learn a set of grammars that has reasonably large probability with respect to

this prior probability. Even if there were only a 50% chance of a particular random grammar

falling within a putative class of learnable grammars, then given that there are six small

grammars in the Omphalos competition, we would still have a very good chance of success.

Note that this point is completely unrelated to the “probably” part of PAC-learning, which

concerns the the probability of samples, rather than the prior probability of concepts.

Thirdly, we are not restricted to a single guess. Since multiple submissions were allowed,

if we have an algorithm that can produce a reasonably sized set of hypotheses then this again

could be successful.

In spite of these overall positive facets to the competition, there is one overwhelming

negative point. The training data is strictly limited to a very small amount. Figure 1 shows

the size of the data sets compared to the problem complexities. We can see that the sample

size is roughly equal to the product of the number of non-terminals and alphabet size. We

were very surprised that our approach was as succesful as it was, given the extremely limited

amount of data. This problem was exacerbated by the requirement for exact identification of

the labelling of the large test set. In several cases there was simply not enough information

in the training set to distinguish between a number of different possible grammars. We will

give some examples below.

Traditional definitions of sample complexity need some modification to cope with one

of the peculiarities of grammatical inference, namely the variable length of the samples. In

particular since the shortest string generated by a context free grammar can be exponential in

the number of non-terminals of the grammar, even assuming an upper bound on the lengths

of the right hand sides of the productions, it is clear that a naive definition of polynomial

sample complexity will have counter intuitive implications on the computational complex-

ity. Moreover, since there are cases where there will be exponentially more substrings and

constituents than complete strings, algorithms that can operate on substrings have a potential

advantage over algorithms that rely on whole strings. We can thus informally distinguish

two forms of sample complexity: word complexity, a bound on the number of strings, and

letter complexity, a bound on the number of symbols. Given the limited amount of data, we

explored a class of algorithms that could exploit this richer source of information.

3. Ideas behind algorithm

We will first outline the intuitions behind the algorithm and then provide a more formal

description. The algorithm is based on the idea that we can identify particular substrings that

will in general be constituents: i.e. derived from a single non-terminal. This relies on the

grammar defining a stable relationship between strings and constituency. In general this is

not the case, and we can define grammars (representing parity functions, for example) where

essentially any string can be a constituent. On the other hand we will find other grammars

where the grammatical strings are sparsely distributed, and where a particular substring will

generally either be a constituent most of the time or not. An extreme case of this is the class

of NTS grammars, defined below, where every substring in the language has the property that

either every occurrence is a constituent or no occurrence is. Randomly generated grammars

that are deterministic will often have this property, as we argue below. The algorithms we
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use exploit this property, and are extended to learn languages where this property is violated

slightly. Strictly speaking, we are confusing three separate ideas here: a substring being

generated by a non-terminal in a particular derivation of a string; a substring being generated

by a non-terminal in every derivation of a particular string; and finally, every occurrence of

a substring in the language in any string, being generated by a particular non-terminal.

If a string from �∗ occurs frequently in the training data, then it may be a constituent—but

of course it may also be a substring of a constituent. For a string w ∈ a language L , and a

substring u such that w = lur , we will say that u is a constituent in (l, r ) if S
∗⇒ l Xr

∗⇒ w
for some X ∈ N , and S ∈ R. In general there may be more than one occurrence of the same

substring in a string; in this case some occurrences may be as constituents, and others may

not. We will say that u is a constituent if there are strings l, r ∈ �∗ such that u is a constituent

in the context (l, r ). For ambiguous context free grammars, this criterion merely requires that

for one derivation of a string, the substring is a constituent. of a string to be a constituent is

that it is in the yield of some non-terminal. This is not however a sufficient condition.

Example 1. Consider the even palindrome language P = {wwR |w ∈ {a, b}+}, where wR

is the reversal of w and the plus superscript is the Kleene star restricted to at least one

occurrence. The obvious grammar for this has one non-terminal S. If we consider the string

baabbaabbaab, and the substring baab, we can see that there are three occurrences of the

substring baab, but only one of these is as a constituent.

Some grammars will have the property that every occurrence of a string in the yield of

a non-terminal is a constituent of that type. This property can be neatly characterised in the

following way (Boasson & Senizergues, 1985).

Definition 1. A context free grammar G = (�, N , S, P) is non-terminally separated (NTS)

iff for all X, Y ∈ N and words α, β, γ in (� ∪ N )∗ such that X
∗⇒ αβγ and Y

∗⇒ β we have

X
∗⇒ αYγ .

The origin of the name is clear—if X 
= Y then y(X ) ∩ y(Y ) = ∅, i.e. the yields of the

non-terminals are disjoint.

To explain why these grammars are interesting requires a slight detour into the theory of

semi-Thue systems, or reduction systems. The set of rules in a context free grammar can be

used in two ways: either to derive sets of strings from a start symbol, or to reduce strings to

a single symbol. Consider a rule X → α. This can either be used to rewrite an occurrence

of X as the string α as in a normal context free derivation, or it can be used backwards to

rewrite the string α as X . In this latter case, the grammar can be considered as a sort of string

rewriting system or semi-Thue system. The NTS grammars are precisely those grammars

where the set of productions can be used in both ways without changing the set of sentential

forms that can be derived from the grammar. While in general many decision problems with

Thue systems are undecidable in this case, the NTS property guarantees that we have a

Church-Rosser system (Book, 1981), where the word problem (i.e. parsing) can be solved in

linear time (Book & Otto, 1993).

These reduction systems are very interesting in the context of grammatical inference

(Eyraud, de la Higuera, & Janodet, 2004), since in grammatical inference one is interested in

going from the sets of observed strings to the underlying structure; thus a Thue system seems

a natural way of modelling this. NTS languages are however rather limited (McNaughton,

Narendran & Otto, 1988); whether they are sufficiently powerful depends on the domain. If
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the grammar is NTS, then every occurrence of a substring in the yield of a constituent can be

rewritten as that constituent. Alternatively, every constituent produced during an exhaustive

bottom up parse will be included in the final derivation.

The particular application area that we are concerned with is that of natural language.

It is worth pointing out that natural languages do not appear to be strictly NTS. A Bibli-

cal quotation, “All we like sheep have gone astray.1” has given amusement to generations

of schoolchildren because the string “we like sheep” which can be a clause or sentential

constituent, is not when it occurs in this sentence.

Of course, not all deterministic grammars are NTS, but randomly generated grammars

with a large alphabet are likely to have this property. In practice we found that one of the

competition grammars that we were able to identify exactly did have this property and one

did not. Deterministic grammars in general will require a large word sample complexity,

rather than letter complexity, to allow learnability.

Example 2. Consider the two languages L1 = {anbncm |n, m > 0} and L2 = {anbmcm |n, m
> 0}. As is well known L1 and L2 are deterministic but L1 ∪ L2 is inherently ambiguous

and thus non-deterministic. Consider the language L3 = d L1 ∪ eL2. L3 is a deterministic

language, but neglecting the first symbol it is just L1 ∪ L2. Assume that ambiguous languages

are not learnable; this example suggests that any algorithm that can learn all deterministic

languages, will have to learn using a strict left-to-right state-merging algorithm rather than a

substring based algorithm. L3 is clearly not NTS.

3.1. Constituent identification

Our approach is therefore based on the idea of identifying substrings that are normally con-

stituents. In some of the grammars that we have here these criteria are not strictly satisfied.

We shall discuss the modifications that we made to our algorithm below. To identify whether

substrings are constituents, we use a combination of three criteria. First, we only consider

strings that occur frequently in the corpus. Secondly, we used an information theoretic crite-

rion based on mutual information (Clark, 2001). Thirdly, we used an idea of substitutability

(Harris, 1954), similar to the alignment based learning approach of van Zaanen (2000).

3.1.1. Frequency

The number of times that a substring occurs in a corpus has sometimes been considered

to be evidence for constituency. While it is true that substrings that are the yields of non-

terminals will be frequent, it is not the case conversely that all frequent strings are constituents,

particularly if the distribution of non-terminals is rather unbalanced. Thus while it is possible

to define some measure of the extent to which a substring occurs more frequently than chance,

this will provide only unreliable information about constituency.

3.1.2. MI criterion

The second of our criteria is an information theoretic criterion based on mutual information.

First we define �′ = � ∪ {#}, an extended alphabet which consists of the alphabet � with an

additional boundary symbol #. If we consider a random occurrence of a substring w, we can

identify the symbol that occurs before it (which we take to be # if it occurs at the beginning

1Most famously used in Handel’s “Messiah”.
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of the string), and similarly the symbol after it (which again we can take to be # if it is at

the end of the string). We define the mutual information of the substring w as the mutual

information between these two symbols, considered as random variables.

Given a probability distribution over a language L ⊂ �∗, for any string w ∈
�∗, define E[w] = ∑

u∈�∗
∑

v∈�∗ Pr (uwv). Define E[#w] = ∑
v∈�∗ Pr (wv), and

E[w#] = ∑
u∈�∗ Pr (uw), and E[#w#] = Pr (w). Note that since there may be more than

one occurrence of the substring w in a particular string, we must use the expectations rather

than the probabilities.

M I (w) =
∑
l∈�′

∑
r∈�′

E[lwr ]

E[w]
log

E[lwr ]E[w]

E[lw]E[wr ]
(1)

A simple, but biased, estimator for this quantity is the maximum likelihood estimator which

uses the empirical expectation in a finite sample for the expectations in the formula above.

We claim that in many cases constituents will tend to have a high value of this quantity,

whereas substrings that are not, will have a very low value. This generalises and improves

other information theoretic criterion for constituency which have been proposed in the litera-

ture; see for example Lamb (1961) and Stolz (1965) for very early examples of this approach.

It has been proposed, for example that constituent boundaries will be characterised by high

conditional entropy of adjacent symbols.

Using the notation we introduced above, we can define the right entropy as

Hr (w) =
∑
r∈�′

− E[wr ]

E[w]
log

E[wr ]

E[w]
(2)

and the left entropy, Hl similarly.

This is in itself insufficient to identify constituents, but note that since the mutual in-

formation between two random variables is bounded by the entropy of each of the two

random variables, high entropy of adjacent symbols is necessary for there to be high mutual

information between the two symbols.

MI(w) ≤ min(Hl (w), Hr (w))

We can see the limitations of the entropy based measure by considering the following

simple example.

Example 3. Consider a modified palindrome language generated by the grammar

S → e, S → aSa, S → bSC , C → ci for i = 1 . . . N . Assuming the data is generated from

a SCFG, with equal probabilities for the two recursive rules, the following table shows the

values of the entropy based measure and the MI based measure.

w Hl (w) Hr (w) MI(w)

ae log 2 0 0

be log 2 log N 0

aea log 2 1
2
(log 2 + log N ) log 2

When N is sufficiently large, strings of the form bS (which are not constituents) will have

high right entropy (log N ) compared to strings derived from S (which are constituents).
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Fig. 2 Context counts of common string qgmt from Problem 4. The rows correspond to the symbol occurring

before the string, and the columns correspond to the symbol after

Fig. 3 Five most frequent

selected substrings containing

k b b from Problem 4

Indeed, if we consider that the data are generated by a stochastic context free grammar

(SCFG), then it can be shown that the mutual information of a string that is derived from a

single non-terminal will be bounded by the entropy of the random variable that represents

the local context that the non-terminal occurs in. The proof is straightforward, but requires an

excessive amount of notation to express. Intuitively, the distribution over �′ × �′, where �′

is defined as before to be � ∪ {#}, is composed of a linear combination of distributions, which

correspond to an occurrence of the non-terminal in the right hand side of a production. Each

of these distributions will have zero mutual information, and thus the mutual information of

the mixture will be bounded by the entropy of the mixing distribution.

We will now take an example from the Omphalos competition. Figure 2 shows the counts

of the contexts for a string that occurs frequently in the training data of Problem 4. We can

see that there is a strong correlation between the symbol that occurs on the left and the one

that occurs on the right. This indicates that the string is a constituent A that occurs in the

right hand side of two rules. One rule will have a right hand side . . . n Ar . . . and the other

. . . k A . . .. If we examine the correct grammar for this problem we see that indeed there is

a rule H16 → qgmt and two rules H6 → nH16rq H13xe and H4 → k H16 H4owH3. Figure 3

shows the mutual information figures for frequent strings containing a common string kbb.

The final column shows whether it occurs as a constituent or sequence of constituents.

3.1.3. Substitutability

Given two strings u and v, if we have A
∗⇒ u and A

∗⇒ v then we can be sure that whenever

we have a string xuy ∈ L then xvy ∈ L . This intuitively reasonable assumption is in fact false

if the NTS property does not hold. For NTS grammars this is true and for every occurrence

of u that is in the yield of A we can substitute it for v and preserve grammaticality. We

can thus see that substitutability is an again unreliable piece of evidence for constituency–if

two strings are in the yield of the same non-terminal, then they will be substitutable, but the

converse is not necessarily true. This insight had also been used as the basis of other learning

algorithms (van Zaanen, 2000; Adriaans, Trautwein, & Vervoort, 2000).

In general the substitution relationship alone will not be sufficient to learn the grammar.

For any element α ∈ V + such that there are strings l, r ∈ �∗ such that S
∗⇒ lαr , we can see

that the set of strings that can be derived from α will all be substitutable with each other

in the context l, r . Thus the substitution relationship will also detect sets of strings that can
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Fig. 4 Part of the substitution graph. Arcs are labelled with the number of pairs of sample strings that are

congruent under the rewriting. Each connected component corresponds to a non-terminal in the grammar. In

this case these are all complete subgraphs (cliques)

correspond to the yields of strings of non-terminals and terminals, and not just individual

non-terminals.

We can use this property to construct what we call a substitution graph. This is an undirected

graph, where each node is a substring that may be a constituent. There is an arc between two

substrings u and v if there are strings l and r such that both lur and lvr are in the sample. We

can further label the arc with the number of such pairs in the sample. Figure 4 shows part of

such a graph for Problem 4. If the underlying grammar is NTS, and there is “enough” data,

we will normally find that each connected component of the graph is a clique (i.e. a complete

subgraph) and will correspond to a subset of the set of yields of a single non-terminal. In

practice, given the small data sets, we find that this benign conjunction of properties does

not always hold, but as can be seen from Fig. 4, sometimes it does.

One weakness with this approach is that for some grammars, in the worst case, it will

need an exponential amount of data to have a high probability of finding a pair of derivation

trees that differ by only a single (terminal) local tree.

Example 4. Consider the context free grammar with � = {a, b}, N = {S, T } and the pro-

ductions S → T . . . T︸ ︷︷ ︸
n

, and T → aa, T → bb. Assume that the data is generated by a PCFG

with probabilities of 1/2 for each T production. This defines a finite language of size 2n with

each string of equal probability 2−n . Using a birthday attack argument (Yuval, 1979) we can

see that we will require of the order of n−12n/2 samples to obtain two derivation trees that

differ in only a single production.

3.1.4. Integration

Having constructed the substitution graph, we then remove all nodes that have no arcs leading

to them. We also experimented with a further pruning step, which removes all nodes that

have a substring in the graph that is in a different component. This had the effect of removing

components of the graph that correspond to sequences of non-terminals of length greater

than 1. It is important to allow substrings to occur in the same component since there may
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be rules with center recursion such as A → u Av, A → w which would lead to a component

consisting of w, uwv, uuwvv . . . and so on.

We then integrate these three selection criteria as follows.

Frequency. We select all substrings from S that occur at least fmin times.

MI filter. Select those substrings whose mutual information is at least mmin. This set is C
the set of candidate hypotheses.

Substitution graph. Construct substitution graph. Remove nodes of degree 0.

Given the graph, there are a number of heuristics that can be used to select a set of nodes

that we hope will correspond to a non-terminal. First, if there is a node corresponding to a

single non-terminal in a component, then we can be confident that all nodes joined to that

node will be constituents. Alternatively, we can construct a figure of merit based on frequency

of strings, number of nodes in the clique, degree of connectivity, and so on. Currently we

do not have a principled way of deriving such a figure, nor do the experiments that we have

done provide a clear indication of an appropriate formula. Such a formula must depend on

the statistical properties of the sample.

3.2. Greedy algorithm

Given a selection of strings corresponding to part of a component of the substitution graph, we

must then use this to incrementally construct a grammar that represents the target language.

If the NTS property holds then the ability to identify those frequent substrings that are

constituents leads to a natural and efficient algorithm. Since we know that every occurrence

of a substring w in the yield of a non-terminal A will be derived from A, we can greedily

rewrite the sample strings, to produce a new sample set, a set of sentential forms. We can

then repeat the algorithm until we find a small set of very dissimilar sentential forms of

reasonable length. These will be the right hand sides of the rules expanding the sentence

symbol. Conversely, if we have a large set of very similar sentential forms, it is more likely

that these correspond to the application of more than one derivation step to a root symbol. This

stopping criterion inevitably uses a certain amount of implicit prior knowledge, derived from

the problem description. Algorithms 1 to 3 contain pseudocode that describe this process

more precisely.

More formally given a grammar G, and a string or sentential form β we define the greedy

generalisation of the string to be

αG(β) = argmin

α∈V ∗:α
∗⇒β

|α| (3)
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3.3. Conservative algorithm

If on the other hand, the NTS property does not hold, there are two possibilities that we

explored. One method is to proceed as though it does hold, and then to use some later

modifications to make the rules more efficient. A better method is to use a more conservative

algorithm. We continue to assume that the grammars are deterministic, and thus that there

is exactly one derivation for each string in the language. The conservative algorithm only

rewrites a string by a non-terminal in certain contexts. This does not mean that it is learning

a context-sensitive grammar, but rather that it is applying the context-free rules as reduction

rules, but in a constrained way.

Given a positive sample string w = xuy, where there is a non terminal A
∗⇒ u, we only

rewrite w as x Ay when there is another string w′ = xu′y such that A
∗⇒ u′, in which case we

rewrite both strings. Thus the algorithm only generalises when the generalisation is justified

by the set of observed strings.

More formally given a hypothesis grammar G = (�, N , P, R), where R will often be

empty, and two strings u, v drawn from the target language we define the set of generalisations

of the pair to be

βG(u, v) = {α ∈ V ∗|α ∗⇒ u ∧ α
∗⇒ v} (4)
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i.e. the set of all sentential forms that derive both strings. If this set is non-empty, we can

define the minimal generalisation γG(u, v) as the longest element of βG(u, v), i.e. the most

specific generalisation of the set; somewhat analogous to the lowest common multiple of two

numbers.

γG(u, v) = argmax
α∈βG (u,v)

|α| (5)

Given this we can say that a set of strings T is ungeneralisable, when for every distinct

pair of strings u, v ∈ T , we have βG(u, v) = ∅. In the conservative algorithm we minimally

generalise every pair of distinct strings until we have a set of sentential forms that is ungener-

alisable.

In addition to this modification to the reduction process we also used a different algorithm

for constructing the substitution graph. We used a “chart alignment algorithm”, to compensate

for the fact that the same strings might sometimes be reduced and sometimes not. This takes

two different strings u, v ∈ V ∗ and finds the shortest pair of strings x, y ∈ V ∗ such that there

are two strings w, z ∈ V ∗ such that wxz
∗⇒ u and wyz

∗⇒ v. This requires extensive use of

dynamic programming to find the optimal path through the charts of both u and v.

δG(u, v) = argmin

w,z:wxz
∗⇒u∧wyz

∗⇒v

|w| + |z| (6)

The substitution graph is then constructed from these pairs. Though this algorithm is

polynomial, for each pair of strings u, v the algorithm requires O(|u|2|v|2) time, and is

also quadratic in the number of strings in the corpus. It was prohibitively expensive to use

this for the larger data sets. We are exploring the possibility of various optimisations and

approximations.

3.4. Heuristic modifications

Given a grammar that correctly classifies or includes the training data, yet does not give a

correct answer on the test data, we can proceed to a series of heuristic modifications to the

hypothesised grammars. There are basically two sorts. First, we can generalise the grammar

by rewriting the right hand sides of non-terminals. Given two productions A → uwv and

B → w, we can generalise the first by replacing it with A → u Bv. Conversely, if we were

using a greedy strategy, if we have a production of the form A → u Bv such that for every

string in the corpus the occurrence of B in this rule is expanded by a particular rule B → w,

then we can make the grammar more specific by replacing the first rule with A → uwv.

Note that if the grammar is NTS, we do not have to make this choice–we always select the

more general grammar. We constrained this generalisation process by using negative test data

where available, but it was not in fact ever useful.

4. Implementation

We started with a set of exploratory data tools, in Perl, that we used to see if the MI heuristic

described above would be strong enough to detect non-terminals with this amount of data.

We implemented algorithms based on these ideas, prototyping in Prolog (c. 600 lines) and

reimplementing in Java (c. 4000 lines).
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We experimented with two variants of algorithms based on these ideas: first there is a

greedy algorithm that relies on the NTS property, and secondly we have a much slower con-

servative algorithm that does not. In most cases these algorithms terminated before generating

a complete grammar, primarily because of insufficient data. We then had to weaken some of

the constraints, until the algorithm would terminate with a grammar that would generate the

training data. Finally, we tested on the testing data, and ran generalisation heuristics, testing

at each step, until we were successful.

We used a bottom up chart parser of conventional design, and a suffix array with longest

common prefix tables (Gusfield, 1997) to efficiently compute all the frequent strings, and

to detect alignments. Beyond these, and other standard techniques, we did not use any opti-

misations. The running times in general were acceptable on a modern workstation, as long

as there was sufficient memory to keep all of the charts in memory, and were from a few

minutes to few hours depending on the size of the problem.

4.1. Ugly hacks

What we have presented here is a slight idealisation of the process. In the interests of full

disclosure we reveal some of the less intellectually respectable techniques we used, given

the context of a competition with limited time, data and other resources.

There are a number of free parameters that are used. We could not find a set of parameters

that would work for all the problems in the set. We accordingly tweaked the parameters for

each size of problem. Frequently the initial parameter settings were too cautious, which meant

that the algorithm terminated before producing a grammar that covered the training set. In

this case we adjusted the parameters so that the algorithm would continue. With sufficiently

large data sets this would not be necessary.

Additionally we manually switched the algorithm between conservative and greedy

modes. In general we found that the conservative algorithm was too cautious given the

amount of data available. Additionally, it is much slower.

Sometimes the learning algorithm will produce an incorrect rule, or a rule that is too

specific. Typically this occurs when we have two pairs of rules A → α1, A → α2 and

B → β1, B → β2, and we have a rule with right hand side C → AB. In this case we

may often find that α1β1 and α2β2 are learnt before the more specific rules for A and

B. Thus later, we might learn the rule C → AB at which point the rules C → α1β1

and α2β2 become redundant. Avoiding redundancy is important for efficiency; but de-

tecting redundancy in a grammar is undecidable, even for deterministic CFGs since

it depends on computing the inclusion relation between different non-terminals in the

grammar. We thus used a number of ad hoc methods for pruning grammars when this

happened.

5. Results

Of the six problems we attempted, we were able to solve all of the small test sets, but only

two of the large test sets during the competition. The amount of data was not quite enough

to be able to be precise.

Suppose we have a rule X → Y1Y2 . . . Yn . Let us further suppose that in every occurrence

of this rule in the training data we have that Y1 is rewritten by the same rule Y1 → α. Then

there are two possible rules we could use that would explain the data: the correct rule or the

rule X → αY2 . . . Yn . There is simply no information in the sample that can help us decide.
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If α is a very long and complex string, and we know that the grammars have been randomly

generated, then we can use a Bayesian argument to decide whether to generalise or not.

However in this case the grammars have been manipulated in a number of ways, and thus

we merely have to guess.

After the termination of the competition, the competition organisers verified that the two

correct grammars generated exactly the same languages as the target grammars. Moreover,

the grammars, while not identical to the target grammars, differed only in a few minor details,

some of which were caused by bugs in our code. Figure 5 shows the grammar produced by our

system for data set 4. We confirmed with the competition organisors that this was identical

to the target grammar.

Fig. 5 Final grammar for data

set 4. This was verified as being

identical to the target grammar
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6. Related work

In this section we relate the approach taken here with a variety of other approaches to

grammatical induction. First, our algorithm operates on positive data alone, and does not

use structural information. In this respect we can contrast it to the algorithm of Sakakibara

(1992) which uses derivation trees with labels removed as input. This additional source of

information reduces the problem to one much closer to the inference of regular languages

(Thatcher, 1967).

We are interested here primarily in classes of algorithms which have some prospect of

having provable convergence properties. We can contrast these to methods that perform some

non-convex optimisation of an objective function over a whole space of possible grammars.

Some approaches have chosen to use a hill climbing algorithm often based on the Expectation-

Maximisation algorithm either directly with a stochastic context free grammar (Lari & Young,

1990), which works poorly or using some more sophisticated objective function, for example

Klein and Manning (2001) and subsequent papers. Other approaches to non-convex optimi-

sation have also been used, notably evolutionary algorithms (Keller & Lutz, 2005).

Alignment-based learning (ABL) (van Zaanen, 2000) is one algorithm that is based in part

on the idea of substitutability. A major difference though is that the alignment algorithm used

in ABL can potentially produce more than one substitution per string. To see why this might

be a problem consider the language {abncdne|n > 0}. If we align the pair abcde and abbcdde
allowing more than one substitution, we would find hypothesized substitutions b ↔ bb and

d ↔ dd, which is incorrect. The correct substitution is c ↔ bcd, which will be found if we

restrict the alignment to finding a single edit. The closely related EMILE algorithm (Adriaans,

Trautwein, & Vervoort, 2000) also uses the same substitutability heuristic. A more recent

algorithm is ADIOS (Solan et al., 2003), which in some respects is similar to the conservative

algorithm we presented above, in that it only rewrites in a given context, though a subsequent

modification of the ADIOS algorithm uses a “context-sensitive” rewriting rule. ADIOS uses

a variety of heuristics to identify constituents: translated into the vocabulary used in this

paper, the most important is a conditional entropy constituent likelihood measure, together

with a substitutability relationship amongst substrings: i.e. considering u and v to be similar

if there are strings l and r of sufficient length, such that both lur and lvr occur as substrings in

the language, rather than being in the language itself as in our algorithm. The high degree of

sparsity in natural language data requires both ABL and ADIOS to use less strict criteria for

substitutability.

We can contrast our own earlier approach (Clark, 2001) which used a local notion of

context, only the adjoining symbols, together with a statistical measure of distributional

similarity as one of the criteria. This could be used to augment the algorithm presented here.

Another point of similarity is with state-merging algorithms for learning deterministic

regular languages (Carrasco & Oncina, 1999). In these algorithms the sets of strings that occur

as suffixes of a given string are compared. Thus if we assume that the suffix distributions of any

two states are disjoint, then the merging algorithm reduces to saying that if we have two strings

xuy and xvy, then the states corresponding to xu and xv will be identical. Alternatively, given

two sets of suffixes, we say that they are equivalent if their intersection is non-empty. It can be

seen that this is a very crude test compared to those normally used in grammatical inference.

We can also compare this to algorithms that only use frequency (Nevill-Manning & Witten,

1997). This algorithm merely generates a compressed representation of the input data. There

is no suggestion that the structures it produces will have any relation to the derivation trees

of a generating context free grammar.
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7. Discussion

There are a number of conclusions and interesting directions for future research that can be

identified from the Omphalos competition. First, rather counter-intuitively, larger alphabet

sizes in practice can make learning easier, whereas the commonly held view has always

been that the large alphabets are intractable; see for example Abe and Warmuth (1992).

This can be seen for two reasons. Consider a randomly generated grammar in Greibach

normal form. If we keep the number of productions, and the number of non-terminals fixed,

but let the size of the terminal alphabet, � increase, it is easy to see that for sufficiently

large |�|, the grammar is likely to be deterministic, since we are unlikely to have the same

letter appearing twice at the beginning of the right hand side of the same rule, and as �

increases the grammar is likely to be simple deterministic and finally a very simple language.

Conversely, take a very simple grammar with a large alphabet, and map the alphabet down

to a two letter alphabet randomly. The grammars and languages that result are likely to

become more non-deterministic and ambiguous. Thus the tradition in grammatical inference

of working with small alphabets, often with only two elements, might have in fact made

life more difficult rather than easier. Naturally, this depends on the process by which these

grammars are generated, and it is certainly possible to generate random grammars that have

particular properties using a specialised process.

The problems in the Omphalos competition are clearly “toy” problems, but it is interesting

to contrast the complexity of the tasks with those of some related real world problems. We

can compare it on a number of different axes of difficulty, such as the classes of languages,

the size of vocabulary, the length of strings, and the size of the grammars as measured in the

number of non-terminals and number of productions.

Exact comparisons depend on the application domain. In bioinformatics the range of

tasks that are used have vocabularies ranging from 4 (bases) to 20 (amino acids) to many

thousands. In natural language, which is our main research interest, we can compare the

problems here to unlexicalised grammars which typically use a vocabulary of about 36, with

grammars using about 25 non-terminals. However current state-of-the-art grammars used in

parsers have substantially larger grammars with thousands of productions. Sentence lengths

of naturally occurring language are on average much shorter than the Omphalos data. Thus

the Omphalos problems are at least one, and perhaps two orders of magnitude smaller than

the main problem classes we are interested in. However we feel that these algorithms should

scale smoothly, and we are investigating this empirically.

More importantly, there are a number of areas where the language classes used here are

clearly inadequate. First, context free grammars that correctly capture significant grammatical

facts, such as agreement phenomena, end up with exponentially large grammars, expressed in

a meta-grammar format (Gazdar et al., 1985). Thus formalisms are needed which can express

these phenomena in a succinct manner. Secondly, some natural languages are not weakly

context free—as is well known, some dialects of Swiss German and some other languages

show cross serial dependencies that are beyond the generative capacity of CFGS. These are

of the form of {anbmcndm |n, m > 0}.
With regards to the classes of grammars we have learned in this competition, they have been

deterministic.2 Though natural languages are notoriously ambiguous, it is not clear, ignoring

lexical ambiguity, that they are inherently ambiguous. Grammars that have been manually

written for natural languages, are always ambiguous, but this is because of a desideratum

2We have subsequently solved one of the non-deterministic problems.
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that semantic differences (differences in meaning) should be reflected in structurally dif-

ferent syntactic analyses. While this may be desirable from the point of view of semantic

interpretation, it is not clear that it is desirable from a learning or processing point of view.

8. Conclusion

We have described the approach we took to solving the Omphalos context free grammar learn-

ing competition. This is based on identifying substrings that will normally be constituents.

We have discussed a property of grammars, the NTS property that characterises this. We have

introduced a novel information theoretic criterion for detecting constituents, and discussed

how this can be integrated with other sources of information to produce an efficient and

effective learning algorithm for some context free grammars.
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