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Abstract This paper presents a representation for melodic segment classes and applies it

to music data mining. Melody is modeled as a sequence of segments, each segment being a

sequence of notes. These segments are assigned to classes through a knowledge representation

scheme which allows the flexible construction of abstract views of the music surface. The

representation is applied to sequential pattern discovery and to the statistical modeling of

musical style.

Keywords Music analysis . Music data mining . Statistical models . Music

representation . Segmentation

1. Introduction

Music analysis is concerned with describing the structures in a piece of music and discovering

how they relate to one another and change through time. The process of music analysis can

be viewed at a high level as data mining; the classification of structures, and the discovery

of sequential predictive rules that relate context to continuation.

Music has many special properties that make it an interesting and challenging problem for

data mining research. It is temporal, highly structured, and polyphonic music has concurrent

streams of events which together form harmonic structures. Events in music exist at higher

levels than just notes, for example as phrases or chords. Events have time spans and are

not just points, as assumed by time series analysis and sequential pattern mining methods.

Like natural language, music has a deep structure with extensive dependencies between

events not adjacent at the musical surface. Music has repetition within individual pieces,

and musical styles have recurrent structures at more abstract levels between different pieces.

Similar musical material arises through transformation of the musical surface or by alternative

realization of abstract music structures.
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Data mining can also contribute much to music analysis. Data mining can be applied

to an individual piece, to a corpus of pieces, or to a combination of both. The attention

of music analysis has been mainly to the level of a particular piece rather than to general

style (Brown & Dempster, 1989). Comparative analysis, the growing field of music analysis

concerned with corpus analysis (Cook, 1987), can be productively explored with data mining

approaches (Huron, 1996). These studies have so far been concerned mainly with classical

descriptive statistics and there is clearly scope for the contribution of modern data mining

including classification and pattern discovery methods.

Essential to any data mining application is a primary decision on the features used to

describe objects. In music, a useful knowledge representation called viewpoints has been

used to represent abstract properties of musical notes for statistical modeling of melody

(Conklin and Witten, 1995). The representation provides syntactic constructors used to build

new features from more primitive ones. Recently Conklin and Anagnostopoulou (2006)

described how the viewpoints representation can be extended to describe pieces of music at

higher levels in terms of sequences of abstract classes assigned to musical segments.

The formation of groups from a musical stream is a fundamental part of the music percep-

tion process (Lerdahl & Jackendoff, 1983), and for music analysis the segmentation of the

musical surface is a prelude to revealing organizational principles of a piece. It is therefore

important to be able to describe abstract properties of segments and how the segments relate to

one another. This description is the concern of the general method of musical set theory (Forte,

1973), where different collections of notes, equivalent under transposition or inversion, are

related by having the same interval vector representation. Understanding relations between

segments is also the basis of semiotic analysis (Nattiez, 1975; Cook, 1987), where the tem-

poral flow of segment classes (paradigmatic types) is viewed in a sequential (syntagmatic)

dimension. Computer implementations of various aspects of semiotic analysis—mainly for

the unsupervised clustering of melodic segments—have been proposed (Anagnostopoulou

& Westermann, 1997; Cambouropoulos & Widmer, 2000; Pienimäki & Lemström, 2004).

The objective of this paper is to demonstrate how the viewpoints representation for segment

classes can be applied to interesting music data mining tasks. Melody is modeled as a sequence

of segments, each segment itself a sequence of notes. The segmentation of music comes

with a price for data mining; the sparse data problem becomes more serious if notes are

grouped. It is necessary to represent segments in a way both abstract enough to reveal

frequent patterns, but not so abstract as to reveal nothing of statistical significance in the

data. In this paper, some suitably abstract viewpoints for segment classes are defined and

applied.

Two data mining applications of segment classes are presented in this paper. It is shown how

interesting sequential association rules, relating contexts of segment classes to continuation,

can be discovered. Following this, after a detailed description of statistical modeling using

segment classes, it is shown how the representation can be used for music style discrimination

in a Bayesian classification framework.

2. Music representation

For computational music analysis, it is important to be able to structure and represent the

musical surface as voices, segments, and simultaneities. For this purpose, an algebraic data

type can be used to represent music in a hierarchical fashion (Hudak et al., 1996; Balaban,

1996; Marsden, 2000; Conklin, 2002). A music object is a note (type Note), or (recursively) a

sequence (type Seq) of music objects (other structures such as simultaneities are possible but
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Table 1 Glossary of notation
Note a note music object

Seq(X ) regular sequences containing events of type X
Seq(Note) sequences of notes: called segments
Seq(Seq(Note)) sequences of segments

[] the empty sequence

xn a sequence [x1, . . . , xn], with x0 = []

τ a viewpoint

τ (wn) the class of event wn in the context wn−1

τ̂ (wn) the viewpoint sequence for event sequence wn

⊥ the undefined event class

not needed in this paper). All music objects have a duration. When music objects are added

to a sequence, they acquire an onset time relative to the beginning of the sequence; they have

time spans and are called events. Sequences of events are ordered by increasing onset time.

Music objects may have other basic attributes besides duration; for example, notes have a

pitch usually represented by MIDI number, but might have further detail in terms of pitch

spelling (e.g., the spellings G�4 and A�4 both have MIDI number 68). The additional basic

attributes used will depend on the particular analysis task.

Music object representation allows a score to be structured in many useful ways, but this

work is concerned only with scores structured as regular sequences, where all events within

the sequence are of the same type. The parametric type Seq(X ) denotes regular sequences

containing events exclusively of the type given by parameter X . For example, a sequence of

notes has type Seq(Note), and a segmented melody has type Seq(Seq(Note)). A sequence

[x1, . . . , xn] of n items will be abbreviated as xn (see Table 1: Glossary of notation).

In this paper, melodies will be segmented either by the natural grouping of notes at

annotated phrase boundaries, or by taking into account musical metre. In the latter approach,

segments are created at every metrical grid line, with notes split and duplicated if their time

spans are intersected by a metrical grid line. The metrical grids used in this paper will be at

the quarter note beat level and at the bar level.

3. Knowledge representation of event classes

The technique of viewpoints was developed to address the need for multiple simultaneous

representations for music, at varying levels of abstraction. For data mining, they provide a

flexible technique for handling the sparse data problem, because events are mapped into more

abstract classes with the effect of yielding more reliable counts from a corpus (Conklin and

Witten, 1995).

In terms of representing classes of events and relations between events, the viewpoints

method is an example of a vivid knowledge representation scheme (Brachman & Levesque,

2004) in that event features and relations are computed directly from the underlying music

object data structure (Section 2) using functions that compute event abstractions. A viewpoint

τ is simply a function that computes, for a regular sequence wn of type Seq(X ), a value

representing the class of the last event wn of wn given its sequential context wn−1. The

domain of τ is therefore Seq(X ), and a melodic viewpoint is one with domain Seq(Note),

while a segmental viewpoint is one with domain Seq(Seq(Note)).

A viewpoint partitions the space of events with the same context into equivalence classes

represented by elements of its range set. Not all events in a sequence need to have a defined
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class for a particular viewpoint (for example, the first note in a melody has no preceding note

and therefore no melodic interval class); all such events are mapped to a special undefined

class which is denoted by the symbol ⊥.

Much of the utility of the representation depends on the transformation of sequences of

concrete events to sequences of abstract event classes; the transformed sequence is called a

viewpoint sequence. For a viewpoint τ and an event sequence wn the viewpoint sequence,

denoted τ̂ (wn), is the transformed sequence comprising the mapping of τ to each of the

prefixes of wn :

[τ (w1), . . . , τ (wn)]

with the constraint that no uninformative ⊥ classes are present in the result. The notations τ

and τ̂ correspond to the �τ and �τ notations used by Conklin and Witten (1995).

The representation would not be so useful if new functions had to be designed and imple-

mented for every new conception of properties and relations of events in music. Rather, a set

of constructors with a simple syntax is used to facilitate defining new features in a declarative

fashion (Conklin and Witten, 1995). Conklin and Anagnostopoulou (2006) further extended

the viewpoints representation by developing some new constructors for building segmental

viewpoints; two used in this paper are:

lift(τ ) computes the viewpoint sequence for a segment using viewpoint τ . In this way the

viewpoint sequence itself is treated as the class of a segment;

set(τ ) computes the set of classes in the range of τ occurring in a segment (in contrast to

lift(τ ), which computes the sequence of classes in the range of τ ).

The remainder of this section gives two illustrations of the viewpoints representation method

for music.

3.1. Example 1

Figure 1 shows an illustration of the viewpoints method for the first three phrases of a Bach

chorale melody in C major (BWV 255). At the top are two basic melodic viewpoints pitch
(MIDI number) and duration (24 ticks per quarter note). This is followed by some composite

melodic viewpoints, using constructors such as interval (the difference between classes for an

Fig. 1 Examples of viewpoints for the first three phrases of a Bach chorale melody (BWV 255). Viewpoint

constructors are underlined
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Table 2 Segment shape classes, relating the initial and final pitches a and

c of a segment to the mean b of its internal pitches, or relating a and c for

segments with only two notes

Relation Class Relation Class

a < b < c ascending a < c ascending

a > b > c descending a > c descending

a = b = c horizontal a = c horizontal

a < b = c ascending-horizontal a > b = c descending-horizontal

a < b > c convex a > b < c concave

a = b < c horizontal-ascending a = b > c horizontal-descending

event and its immediately preceding event); intref (the difference between the two indicated

classes, here the pitch and the key of the piece); mod12 (modulo 12 transformation); contour
(sign function on an integer). Following this is a primitive viewpoint beats measuring the

number of quarter note beats between the downbeat of the segment and the end of the last

bar of the segment, and a primitive viewpoint shape. For this, the nine phrase shape classes

originally defined by Huron (1996) are expanded here to include three additional rules for

segments with only two notes (see Table 2). Finally in Fig. 1 are three composite segmental

viewpoints, two using the set and lift constructors which construct segmental viewpoints from

melodic viewpoints. The second construction computes the set of intervals from a reference

pitch (in this case, the key of the piece) in a modulo 12 system. The last computes the melodic

contour viewpoint sequence of a segment, and is another abstract way to represent the overall

shape of a phrase.

In summary, viewpoints can be basic (selecting basic event attributes), primitive (computed

from basic attributes), or composite (built using viewpoint constructors). They can be melodic

(applying to notes) or segmental (applying to segments). Though some melodic viewpoints

in Fig. 1 represent familiar musical features—melodic interval, melodic contour, and pitch

classes—most are novel constructions made possible by the viewpoint constructor method.

3.2. Example 2

As a second illustration of music representation using viewpoints, Fig. 2 shows a segmen-

tal viewpoint sequence for the right-hand part of the Bach two-part invention in A minor

(BWV 784). The piece was segmented using a metrical grid at every quarter-note beat and

transformed to a lifted melodic contour viewpoint sequence (recall Fig. 1); three bars (12

segments) of the 25 bars in the piece are shown in Fig. 2. This viewpoint representation can be

compared to the paradigmatic analysis provided by Höthker, Hörnel and Anagnostopoulou

(2001). In that study, the 100 segments in the piece were classified by a human music analyst

using predominately melodic contour features. The lifted contour viewpoint sequence has a

close agreement (Höthker distance of 0.02 over the 100 segments) with the human analysis.

Fig. 2 The first three bars of Bach two-part invention BWV 784 (right-hand part) showing the lifted contour

sequence for a metrical grid segmentation at every quarter-note beat
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Table 3 Melodic datasets used, with counts of various structures within

the corpus. Beats refers to the number of quarter note beats in the corpus

Description Pieces Phrases Bars Beats Notes

Nova Scotia folk songs 152 885 2535 7911 8551

Bach Chorale melodies 185 1141 2745 10347 9227

This example illustrates that meaningful paradigmatic types for music segments can emerge

naturally from suitably abstract viewpoint representations.

4. Music data mining with segment classes

This section provides two examples of the use of viewpoints to model aspects of melodic

segments in music corpora. The first shows how segment classes can be used as a basis

for inter-opus sequential association rule discovery. The second example presents the topic

of statistical modeling of music and shows how event sequence models can be naturally

extended, using segmental viewpoints, to include the modeling of segments and not only

notes as events.

Two music corpora are used in this section (Table 3): the Nova Scotia folk songs (Creighton,

1966) and the 185 Bach chorale melodies. Data is available from Center for Computer

Assisted Research in the Humanities (www.ccarh.org). For all examples, pieces are first

converted to viewpoint sequences for a selected viewpoint and a suffix tree is built from these

transformed sequences. The suffix tree data structure allows for rapid recovery of repeated

and recurrent patterns in the data.

An annotated segmentation for phrases is available for both corpora. For the Nova Scotia

corpus, phrase boundaries were manually added by comparing the score data with the lyrics

(Creighton, 1966) and placing a phrase boundary at the end of every line of lyrics. In addition,

various other segmentations were explored, as will be discussed in this section. Four melodies

in the corpora have internal time signature changes that were correctly handled for metrical

grid segmentation at the bar level.

4.1. Sequential association rules

The discovery of recurrent or repeating patterns in music has been addressed by many re-

searchers (Conklin & Anagnostopoulou, 2001; Rolland & Ganascia, 2000; Hsu, Liu & Chen,

2001; Cambouropoulos, 1998; Cope, 1991; Lartillot, 2004; Meredith, Lemström & Wiggins,

2002). Conklin and Anagnostopoulou (2006) presented the idea of segmental pattern discov-

ery, where the fundamental structures of analysis are not notes but segments. This section

presents a new application of segmental pattern discovery, where segmental patterns are used

as a basis for expressing sequential association rules.

A pattern is a viewpoint sequence that recurs in a corpus. A pattern occurs in a piece if it is

a substring of the viewpoint sequence of the piece. In a corpus, the piece count of a pattern is

the number of pieces in which the pattern occurs at least once. The total count of a pattern is

its total number of occurrences in a corpus, including overlapping repetitions within a piece.

A sequential association rule derived from a pattern ck is an implication ck−1 ⇒ ck , meaning

that the class ck tends to follow pattern ck−1. The confidence of the rule is p(ck | ck−1); the
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Table 4 Sequential association rules discovered in the Nova Scotia folk songs

Rule Antecedent Consequent tc:pc Conf Lift

1.1 [ascending] descending 63:48 0.34 1.4

1.2 [descending, ascending] descending 18:14 0.43 1.7

1.3 [ascending, descending, ascending] descending 10:10 0.62 2.5

2.1 [concave] descending 43:31 0.34 1.4

2.2 [descending, concave] descending 16:13 0.52 2.1

2.3 [concave, descending, concave] descending 7:6 0.78 3.2

3 [ascending, convex, ascending] descending 5:5 0.45 1.8

4 [convex, convex, ascending] descending 8:8 0.4 1.6

5 [ascending-horizontal] convex 5:5 0.71 1.9

6 [convex, concave] convex 17:12 0.5 1.3

7 [ascending, ascending] ascending 9:6 0.31 1.5

8.1 [concave, descending] concave 9:8 0.21 1.5

8.2 [descending, concave, descending] concave 5:5 0.31 2.2

9 [ascending, concave] concave 6:6 0.27 1.9

10 [concave, convex] concave 8:5 0.23 1.6

Legend: tc, pc: total/piece count; conf: rule confidence.

total count of ck divided by the total count of ck−1. The lift of the rule is defined as

p(ck | ck−1)

p(ck)
.

The rule lift measures the degree of correlation between the antecedent and the conse-

quent of the rule. Association rules with positive correlation (lift greater than 1) can be

efficiently found by traversing a suffix tree representation of viewpoint sequences from a

corpus.

4.1.1. Results

To illustrate inter-opus association rule discovery, the Nova Scotia folk songs were segmented

on phrase boundaries, and pieces were transformed into shape viewpoint sequences (Table 2).

Association rules were derived from patterns with a piece count of at least 5, and those with

a lift at least 1.25 were retained. Table 4 illustrates the rules discovered in the Nova corpus,

with instances of rule specialization indicated.

Rules 1.1 and 2.1 correspond precisely to two significant rules discovered by Huron

(1996) by querying a large database of folk songs for pairs of phrases with the second having

a descending shape. The rules with a concave, ascending, or horizontal-ascending antecedent

are claimed to reveal a melodic arch which spans two phrases and peaks at the end of the first

phrase. The results presented here reveal the presence of two of these rules in the smaller Nova

Scotia corpus, and also point out more specific versions. For example, rule 2.3 represents a

periodic repetition of rule 2.1, extended to four successive phrases. A number of other rules

are found, including the frequent rule 6 which describes a convex shape following convex

and concave antecedent phrases, and rule 7 which describes a succession of three ascending

phrases. All rules are significant implications that can be used for the prediction of phrase

shape from context.
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4.2. Statistical models

Statistical models of event sequences have been used for both classification and generation

of music. For music classification, models can represent and be trained on styles, genres,

composers, or generally any set of related pieces. For music generation, they can be used for

either style imitation (Conklin, 2003) or in real-time music improvisation systems (Assayag

& Dubnov, 2004; Pachet, 2003).

Statistical models of music fall roughly into two categories based on their data represen-

tation; models of whole-piece features (Ponce de León & Iñesta, 2003) and models of event

sequences (Conklin and Witten, 1995; Conklin, 2003; Pearce, 2005). Whole-piece models

describe the piece using variables such as number of notes, note density, and pitch range.

Event models, on the other hand, compute the probability of a piece as a product of the con-

ditional probabilities of individual events in the piece. This section shows how event models

can be constructed for sequences of melodic segments using viewpoints. The fundamentals of

statistical models of word sequences (the rough analogy of “word” in language to “event” in

music should be held in mind) in natural language are now reviewed, then viewpoint models

will be presented.

Statistical models of word sequences assign a probability

p(wn) = p([w1, . . . , wn]) =
n∏

i=1

p(wi | wi−1)

to a sequence wn , with the equivalence following from the chain rule of probability.

Estimation of statistical models from sparse data requires that various conditional inde-

pendence assumptions are made. A common method is to condition only on short suf-

fixes of the context wi−1 for each event wi , leading to the family of n-gram models. A

further refinement is based on the idea of clustering of words into equivalence classes.

Rather than modeling the concrete sequence directly, words are mapped onto abstract

classes by a function (say, τ ) and the joint distribution with this abstract class sequence

is modeled; the assumption being that abstract word classes will be far less sparse than

concrete words in a corpus. Since words have only one class, the sequence probability

p(wn) can be expressed as the product of the two terms p(̂τ (wn)) and p(wn | τ̂ (wn)), with

further conditional independence assumptions leading to the class-based n-gram model
(Brown et al., 1992):

p(wn) =
n∏

i=1

p(τ (wi ) | τ̂ (wi−1)) × p(wi | τ (wi )). (1)

The class probability p(τ (wi ) | τ̂ (wi−1)) is handled with an n-gram model of class sequences,

and the class conditional probability p(wi | τ (wi )) estimated using maximum likelihood from

training data.

For music corpora, the sparse data problem of statistical modeling can be managed with

viewpoints (Section 3), using a technique similar to the class-based n-gram models described

above, though with a few important differences. First, in music the class of an event may be

determined not only by the identity of the event but also by its sequential context. Therefore

for some viewpoints it will be necessary to condition both terms of (1) on some contextual

events. For example, a melodic interval class will have a zero probability if it pushes the

pitch of the previous event beyond the range of the voice. Therefore, a melodic interval

class probability needs to be conditioned on the previous event, and to determine the class
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conditional probability of an event it is necessary to know the pitch of the previous event.

The amount of context needed to determine a class will vary for different viewpoints. Putting

this together yields the viewpoint model:

p(wn) =
n∏

i=1

p(τ (wi ) | τ̂ (wi−1), wi−1) × p(wi | τ (wi ), wi−1). (2)

The formulation in (2) is general and applies regardless of the viewpoint and the associated

type of regular sequence under consideration.

In viewpoint models for music, the class conditional distribution is not estimated from

training data due to the additional dependencies in the model and due to the limited size of

music corpora. Rather, uniform distributions are assumed, and the class conditional proba-

bility can be computed through the determination of the number of distinct events generated

by the class τ (wi ) given the context wi−1. This computation is straightforward for melodic

viewpoints and can be computed by simple enumeration, since the number of possible notes

will be small and finite. For segmental viewpoints, the set is not explicitly enumerated because

the number of events that can be generated by a particular segment class can be exponential in

the length of the segment (for example, consider the number of distinct phrases of a certain

length and shape, or having a certain pitch class set). The method used to determine the

number of events generated by a segment class will vary for different primitive segmental

viewpoints and constructors.

4.2.1. Results

The evaluation of statistical models of word sequences is usually according to entropy or

perplexity (Jurafsky & Martin, 2000). Here, the alternative idea of evaluating statistical event

models by music style discrimination is explored. The 185 Bach chorale melodies and Nova

Scotia folk songs were segmented in various ways, pieces were transformed into various

viewpoint sequences, and viewpoint models were created for each style. For selected view-

points, variable-length n-gram models with backoff probabilities and discounting (Jurafsky

& Martin, 2000) were constructed for class probabilities. Discounting was used to allocate

some probability space to both undefined (⊥) classes and to unseen classes (those not en-

countered in the corpus). If either condition is signalled, the event is directly generated using

a uniform distribution over basic attributes (by recursion down to the note level, if neces-

sary). Pieces were classified using a Bayesian framework with uniform priors; the predicted

style is from the model which generates the piece with highest probability according to (2).

A full leave-one-out cross validation was applied; all traces of the test piece, including its

contribution to the zero-order class vocabulary, were erased prior to predicting the style of

the test piece.

The performance of the method on the style discrimination task, under various different

melodic segmentations, is given in Table 5. At the bottom of the table, for comparison, is a

simple melodic interval viewpoint which applies to unsegmented melodies. Most segmental

viewpoints achieve accuracies significantly above the accuracy of 55% that could be attained

by simply guessing the most probable style in the training set. This indicates that signif-

icant statistical regularities exist in the sequences of segment classes for each corpus. As

expected, the shape viewpoint is not so effective when referring to the shape of a whole

piece, but achieves greater accuracy when applied to smaller structures such as phrases
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Table 5 Accuracy of viewpoint

models on style discrimination on

the Bach chorale melodies and

the Nova Scotia folk songs;

segmental viewpoints (top), and

the melodic interval viewpoint

(bottom)

Viewpoint Segmentation Accuracy

shape bar 65

phrase 64

piece 48

set(mod12(intref(pitch,key))) note 92

beats 98

bar 91

phrase 88

piece 77

lift(contour(pitch)) beats 73

bar 79

interval(pitch) n/a 94

and bars. It is interesting that a segmental viewpoint based on pitch class sets achieves a

slightly higher accuracy than a melodic viewpoint. Interestingly, it is at the level of a fine-

grained segmentation—at the quarter note beat level—where this is achieved. The lack of

improvement at coarser levels of segmentation, for example at the bar level, could be partly

due to sparse data effects. The results suggest that the lifted contour viewpoint is a better

discriminator of style than is the more abstract shape viewpoint.

5. Discussion and conclusion

Much work on data mining of melody has used sequences of notes as a representation.

This paper proposed how music structured as sequences of segments can be used for data

mining. A knowledge representation of segment classes was developed, and this was applied

to two music data mining tasks. The approach uses music structured as regular sequences,

where all events within the sequence are of the same type. Notes were grouped to form

segments, though the representation and methods will naturally support any depth of regular

segmentation hierarchy.

In natural language, statistical modeling has mainly been applied to modeling word se-

quences (Jurafsky & Martin, 2000). The idea of using class models for phrases rather than

words was presented by Ries, Buø and Waibel (1996), with the result called class phrase
models. There, words were grouped into short phrases, and the phrase class is the sequence

of word classes in the phrase. The analogy to the work described here is revealed by consid-

ering words as notes and phrases as segments. The phrase representation used by Ries, Buø

and Waibel (1996) can be viewed as an instance of the lift viewpoint constructor, where the

basic event attributes rather than abstract event classes are lifted. Therefore the viewpoint

representation may prove useful in natural language modeling.

In the statistical modeling results using segmental viewpoints, the lengths of component

segments did not contribute to the overall probability of a segmented melody. For the corpora

used here, this is reasonable since the lengths of various structures (phrases, bars, beats)

are similar between the two corpora. For other style classification tasks, segment length

may be more predictive of musical style. The use of phoneme segment length distributions

has been given careful attention in the context of the family of segment models for speech

recognition (Ostendorf, Digalakis & Kimball, 1996), where the class conditional distribution

for segments is also conditioned on their length.
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In the work of Bod (2002) on automated melody segmentation, a phrase class is created

for each distinct phrase (modulo transposition) in a corpus. Phrase classes are soft (a phrase

can be generated by more than one class), and a parsing algorithm is used to compute the

segmentation and phrase class sequence with maximal probability. The class conditional

probability of a phrase given a phrase class is also conditioned on the number of phrases in

the piece. In a viewpoint modeling scheme, as described in this paper, hard classes are used

and there are additional dependencies between adjacent phrase classes, as captured by the

n-gram segment class model.

In formal music analysis, segmentation is the initial step from which subsequent descrip-

tion of structures in the piece and their relationships are made. This paper did not consider the

general problem of automated segmentation, and assumed that the segmentation is provided

or unambiguously computed. The statistical modeling scheme, however, could be used within

a parsing algorithm for the segmentation process, taking segment lengths into account.

The representation of segments by the set of properties of component events has similarities

to work on statistical models of harmony and polyphonic musical structures (Pickens &

Crawford, 2002; Dubnov et al., 2003; Temperley, 2004). In these works, voicing or temporal

information in a simultaneity is often discarded in favor of more abstract representations in

terms of pitch class profiles. Constructors similar to the set constructor used in this paper

could perform similar abstractions for polyphonic music.

The viewpoint modeling method introduced a general approach for handling event classes

when the set of possible events generated by a segment class is too large to be enumerated.

Uniform distributions were used, but seeing segment classes as non-uniform generators

of sequences introduces the idea of viewpoints ranging over submodel classes, where the

classes represent identifiers of statistical models (Galescu & Allen, 2000). Such a hierarchi-

cal modeling scheme would provide an alternative way to grouping similar segments into

the same class. Future work will describe and develop this and the automated segmenta-

tion and polyphony ideas introduced above, in the context of real-time music improvisation

systems.
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