
Machine Learning, 60, 229–250, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Combining Statistical Language Models via the
Latent Maximum Entropy Principle
SHAOJUN WANG swang@cs.ualberta.ca

DALE SCHUURMANS dale@cs.ualberta.ca
Department of Computing Science, University of Alberta, Canada

FUCHUN PENG fuchun@cs.umass.edu
Department of Computer Science, University of Massachusetts at Amherst, USA

YUNXIN ZHAO zhaoy@missouri.edu
Department of Computer Engineering and Computer Science, University of Missouri at Columbia, USA

Editors: Dan Roth and Pascale Fung

Abstract. We present a unified probabilistic framework for statistical language modeling which can simul-
taneously incorporate various aspects of natural language, such as local word interaction, syntactic structure
and semantic document information. Our approach is based on a recent statistical inference principle we have
proposed—the latent maximum entropy principle—which allows relationships over hidden features to be effec-
tively captured in a unified model. Our work extends previous research on maximum entropy methods for language
modeling, which only allow observed features to be modeled. The ability to conveniently incorporate hidden vari-
ables allows us to extend the expressiveness of language models while alleviating the necessity of pre-processing
the data to obtain explicitly observed features. We describe efficient algorithms for marginalization, inference and
normalization in our extended models. We then use these techniques to combine two standard forms of language
models: local lexical models (Markov N-gram models) and global document-level semantic models (probabilistic
latent semantic analysis). Our experimental results on the Wall Street Journal corpus show that we obtain a 18.5%
reduction in perplexity compared to the baseline tri-gram model with Good-Turing smoothing.
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1. Introduction

In the past decade, a vast amount of information has become available on the World Wide
Web, much of it in the form of natural language text. As the amount and significance of
this data source grows, it will become increasingly important to find ways to effectively
exploit it to help us improve our understanding of the world. Thus problems of information
extraction and knowledge discovery from massive textual data sets are destined to remain
important. In our view, statistical language models that also model hidden features provide
a promising approach to robustly extracting information from natural language text.

Statistical language modeling is concerned with determining the probability of natu-
rally occurring word sequences in human natural language. Traditionally, the dominant
motivation for language modeling has come from the field of speech recognition (Jelinek,
1998), however statistical language models have recently become more widely used in
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many other application areas, such as information retrieval (Lafferty & Zhai, 2001), ma-
chine translation (Brown et al., 1992), optical character recognition, spelling correction,
document classification (Peng, Schuurmans,& Wang, 2004), and bio-informatics (Durbin
et al., 1998).

There are various kinds of language models that can be used to capture different aspects
of natural language regularity. The simplest and most successful language models are the
Markov chain (N-gram) source models, first explored by Shannon in his seminal paper
(Shannon, 1948). Such N-gram models effectively capture local lexical regularities in text.
Subsequently, a wide variety of smoothing methods have been developed to address the
problem of estimating rare events for these models (Chen & Goodman, 1999). The resulting
smoothed N-gram language models have become a key component of state of the art speech
recognizers, by helping to resolve acoustic ambiguities by placing higher probability on
more likely word strings.

While Markov chains are efficient at encoding local word interactions, natural language
clearly has a richer structure than can be conveniently captured by an N-gram model. For
example, attempting to increase the order of an N-gram to capture longer range dependen-
cies in natural language immediately runs into the curse of dimensionality (Bengio et al.,
2003; Jelinek, 1998; Rosenfeld, 2000).

Many recent approaches have been proposed to capture and exploit different aspects of
natural language regularity with the goal of outperforming the simple N-gram model. For
example, the structural language model (Chelba & Jelinek, 2000; Roark, 2001) effectively
exploits relevant syntactic regularities to improve the perplexity score of N-gram models,
and the semantic language model (Bellegarda, 2000; Bengio et al., 2003; Hofmann, 2001)
exploits document-level semantic regularities to acheive similar improvements. Although
each of these language models outperforms simple N-grams, they each only capture specific
linguistic phenomena. None of them can simultaneously take into account the lexical
information inherent in Markov chain models, the hierarchical syntactic tree structure
in stochastic branching processes, and the semantic content in bag-of-words categorical
mixture log-linear models— all in a unified probabilistic framework.

Several techniques for combining language models have thus also been investigated. The
most commonly used method is simple linear interpolation (Chelba & Jelinek, 2000; Jelinek
& Mercer, 1980; Roark, 2001; Rosenfeld, 1996), where each individual model is trained
separately and then combined by a weighted linear combination, where the weights are
trained using held out data. Even though this technique is simple and easy to implement it
does not generally yield effective combinations because the linear additive form is too blunt
to capture subtleties in each of the component models (Rosenfeld, 1996). Another approach
is based on Jaynes’ maximum entropy (ME) principle (Jaynes, 1983). This approach has
several advantages over other methods for statistical modeling, such as introducing less data
fragmentation (as in decision tree learning), requiring fewer independence assumptions
(as in naive Bayes models), and exploiting a principled technique for automatic feature
weighting. The major weakness with maximum entropy methods, however, are that they can
only model distributions over explicitly observed features, whereas in natural language we
encounter hidden semantic (Bellegarda, 2000; Hofmann, 2001) and syntactic information
(Chelba & Jelinek, 2000) which we do not observe directly.
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One way to encode constraints over hidden features in a maximum entropy model is to
first pre-process the training corpus to obtain explicit values for all of the hidden features—
such as recovering syntactic structure by running a parser, or recovering semantic content by
using a latent semantic indexer—and then incorporating statistics over explicitly measured
features as additional constraints in the model (Berger, Della Pietra, & Della Pietra, 1996;
Khudanpur & Wu, 2000; Rosenfeld, 1996). However, doing so explicitly is not always
possible, and even if attempted, sparse data problems almost always immediately arise
in such complex models. Consequently, the perplexity improvements or word error rate
reductions obtained are often minimal. In this paper we address the question: is it possible
to exploit the hidden hierarchical structure of natural language within a maximum entropy
method without resorting to explicit preliminary parsing or semantic analysis?

Recently we proposed a latent maximum entropy (LME) principle (Wang, Schuurmans,
& Zhao, 2003) which extends Jaynes’ maximum entropy principle to incorporate latent
variables. It is different from both Jaynes’ ME principle and maximum likelihood esti-
mation, but often yields better estimates in the presence of hidden variables. Preliminary
experiments in (Wang, Schuurmans, & Zhao, 2003) showed that estimation based on the
latent maximum entropy principle generally yielded improved results over the maximum
likelihood principle when estimating latent variable models on small observed data samples.

In this paper, we show how our new estimation principle can be used for statistical
language modeling by training mixtures of exponential families with rich expressive power.
Below, we first summarize the LME principle, its problem formulation, solution, and certain
convergence properties. Then we discuss how to use LME for language modeling. By
properly using factorization methods and exploiting the sparseness of tri-gram features, we
can demonstrate efficient algorithms for feature expectation, inference and normalization for
combining Markov N-gram models with probabilistic latent semantic analysis (Hofmann,
2001). We apply this model to Wall Street Journal data to obtain experimental results which
support the utility of our approach. Finally, we discuss the advantages and limitations of
our approach.

2. The latent maximum entropy (LME) principle

To express a joint probability model, let X ∈ X denote the complete data, Y ∈ Y be the
observed incomplete data and Z ∈ Z be the missing data. That is, X = (Y, Z ). For example,
Y might be observed natural language in the form of text, and X might be the text along with
its missing syntactic and semantic information Z. The goal of maximum entropy is to find
a probability model that matches certain constraints in the observed data while otherwise
maximizing entropy. When the data has both missing and observed components we extend
the maximum entropy principle to the latent maximum entropy principle as follows.

Latent maximum entropy principle

Given features f1, . . . , fN specifying the properties we would like to match in the data,
select a joint model p∗ from the set of possible probability distributions that maximizes the
entropy
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max
p

H (p) = −
∑

x

p(x) log p(x)

subject to

∑
x

p(x) fi (x) =
∑

y

p̃(y)
∑

z

p(z | y) fi (y, z); i = 1, . . . , N

Here p̃(y) is the empirical distribution of the set of observed components of the training
data, and p(z | y) encodes the hidden dependency structure into the statistical model.
Intuitively, the constraints specify that we require the expectations of fi (X ) in the joint
model to match their empirical expectations on the incomplete data Y, taking into account
the structure of the implied dependence of the unobserved component Z on Y. Note that the
conditional distribution p(z | y) implicitly encodes the latent structure and is a nonlinear
mapping of p(x). That is, p(z | y) = p(y, z)/

∑
z′∈Z p(y, z′) = p(x)/

∑
z∈Z p(x ′) where

x = (y, z) and x ′ = (y, z′) by definition. Unfortunately, p(z | y) is a nonlinear function of
p(x), which raises the main technical challenges we face below.

The LME principle is strictly more general than the ME principle, and only becomes
equivalent to ME in the special case when the features only depend on the observable data
Y. However, if the features depend on unobserved components of the data Z then ME only
models the observed part of the data Y, and LME differs from ME (Wang, Schuurmans, &
Zhao, 2003).

Below we will apply the LME principle to the problem of combining language models.
However, we first consider a small improvement that will prove useful. In many statistical
modeling situations, the constraints used in the maximum entropy principle are subject
to errors due to the empirical data, especially in a very sparse domain. One way to gain
robustness to these errors is to relax the constraints but add a penalty to the entropy of the
joint model (Chen & Rosenfeld, 2000; Csiszar, 1996).

Regularized LME (RLME) principle

max
p,a

H (p) − U (a) = −
∑

x

p(x) log p(x) − U (a) (1)

subject to

∑
x

p(x) fi (x) =
∑

y

p̃(y)
∑

z

p(z | y) fi (y, z) + ai ; i = 1, ..., N (2)

Here a = (a1, ..., aN ), ai is the error for each constraint, and U : �N → � is a convex
function (Chen & Rosenfeld, 2000; Csiszar, 1996) which has its minimum at 0. The function
U penalizes errors in satisfying the constraints, and can be used to penalize deviations in
the more reliably observed constraints to a greater degree than deviations in less reliably
observed constraints.
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3. A training algorithm

Assume for the time being that we have already selected the features f1, ..., fN that we
wish to capture in the training data (we return to this issue in Section 4 below). We are
now left with the problem of solving the constrained optimization problem posed in (1)
and (2). Note that due to the nonlinear mapping introduced by p(z | y) we have nonlinear
constraints (2) on p and the feasible set is no longer convex. So even though the objective
function (1) is concave, no unique optimal solution can be expected. In fact, minima and
saddle points may exist.

To make progress, we first restrict p(x) to be an exponential model, pλ(x) =
�−1

λ exp(
∑

i λi fi (x)), where �λ is a constant that ensures
∑

x∈X pλ(x) = 1. This as-
sumption makes it possible to formulate a practical iterative algorithm for finding feasible
solutions (below) to approximately satisfying the RLME principle. Our algorithmic strat-
egy then is to generate many feasible candidates (by restarting the iterative procedure at
different initial points), evaluate their regularized entropy and select the best model. The
hardest part of this process is generating feasible solutions.

The key observation to finding feasible solutions is to note that they are intimately related
to finding locally maximum a posteriori (MAP) solutions: Given a penalty function U over
errors a, an associated prior U ∗ on λ can be obtained by setting U ∗ to the convex (Fenchel)
conjugate (Borwein & Lewis, 2000) of U. Vice versa, given the convex conjugate cost
function U ∗, the corresponding penalty function U can be derived by using the property of
Fenchel biconjugation (Borwein & Lewis, 2000); that is, the conjugate of the conjugate of
a convex function is the original convex function, U = U ∗∗.

To illustrate, consider a quadratic penalty U (a) = ∑N
i=1

1
2σ 2

i a2
i . Here the convex conju-

gate U ∗(λ) = ∑N
i=1

λ2
i

2σ 2
i

can be determined by setting ai = λi

σ 2
i

; which specifies a Gaussian

prior on λ. A different example can be obtained by considering the Laplacian prior on λ,
U ∗(λ) = ‖λ‖1 = ∑N

i=1 | λi |, which leads to the penalty function

U (a) =
{

0 ‖a‖∞ = maxN
i=1 | ai |≤ 1

∞ otherwise

that forces hard inequality constraints.
Note that in each case, given a prior U ∗, the standard MAP estimate maximizes the

penalized log-likelihood R(λ) = ∑
y p̃(y) log pλ(y) − U ∗(λ). Our key result is that locally

maximizing R(λ) is equivalent to satisfying the feasibility constraints (2) of the RLME
principle.

Theorem 1. Under the log-linear assumption, locally maximizing the posterior proba-
bility of log-linear models on incomplete data is equivalent to satisfying the feasibility
constraints of the RLME principle. That is, the only distinction between MAP and RLME
in log-linear models is that, among local maxima (feasible solutions), RLME selects the
model with the maximum regularized entropy, whereas MAP selects the model with the
maximum posterior probability (Wang et al., 2004).
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That is, to find feasible solutions it suffices to find models that maximize the penalized log-
likelihood (posterior) on observed data using standard iterative approaches. It is important
to emphasize, however, that EM will only find alternative feasible solutions, while the
RLME and MAP principles will differ markedly in the feasible solutions they prefer. We
illustrate this distinction below.

To find feasible solutions, we use an iterative procedure, R-EM-IS, which employs an
EM algorithm (Dempster, Laird, & Rubin, 1977) as an outer loop, but uses a nested GIS/IIS
algorithm (Berger, Della Pietra, & Della Pietra, 1996; Della Pietra, Della Pietra, & Lafferty,
1997) to perform the internal M step. To derive this algorithm, first decompose the penalized
log-likelihood function R(λ) into

R(λ) =
∑
y∈Ỹ

p̃(y) log pλ(y) − U ∗(λ) = Q(λ, λ′) + H (λ, λ′)

where Q(λ, λ′) = ∑
y∈Ỹ p̃(y)

∑
z∈Z pλ′(z | y) log pλ(x) − U ∗(λ), H (λ, λ′) =

−∑
y∈Ỹ p̃(y)

∑
z∈Z pλ′(z | y) log pλ(z | y). This is a standard decomposition used for

deriving EM. For log-linear models, in particular, we have

Q
(
λ, λ( j)) = − log(�λ) +

N∑
i=1

λi

(∑
y∈Ỹ

p̃(y)
∑
z∈Z

fi (x) pλ( j) (z | y)

)
− U ∗(λ) (3)

Interestingly, it turns out that maximizing Q(λ, λ( j)) as a function of λ for fixed λ( j) (the
M step) is equivalent to solving another constrained optimization problem correspond-
ing to a maximum entropy principle; but a much simpler one than before (Wang et al.,
2004).

Lemma 1. Maximizing Q(λ, λ( j)) as a function of λ for fixed λ( j) is equivalent to solving

max
p,a

H (p) − U (a) = −
∑

x

p(x) log p(x) − U (a) (4)

subject to

∑
x

p(x) fi (x) =
∑

y

p̃(y)
∑

z

pλ( j) (z | y) fi (y, z) + ai ; i = 1, ..., N (5)

It is critical to realize that the new constrained optimization problem in Lemma 1 is much
easier than maximizing (1) subject to (2) for log-linear models, because the right hand side
of the constraints (5) no longer depends on λ but rather on the fixed constants from the
previous iteration λ( j). This means that maximizing (4) subject to (5) with respect to λ is now
a convex optimization problem with linear constraints. The generalized iterative scaling
algorithm (GIS) (Darroch and Ratchliff, 1972) or improved iterative scaling algorithm
(IIS) (Della Pietra, Della Pietra, and Lafferty, 1997) can be used to maximize Q(λ, λ( j))
easily.
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From these observations, we can recover feasible log-linear models by using an algorithm
that combines EM with nested iterative scaling to calculate the M step. Assuming the
Gaussian prior, the explicit iterative procedure we obtain will be as follows.

R-EM-IS algorithm

E step: Compute
∑

y p̃(y)
∑

z pλ( j) (z | y) fi (y, z) for i = 1, ..., N .
M step: Perform K parallel updates of the parameter values λi for i = 1, ..., N by iterative
scaling (GIS or IIS) as follows

λ
( j+s/K )
i = λ

( j+(s−1)/K )
i + γ

( j+s/K )
i ; s = 1, ..., K (6)

where γ
( j+s/K )
i satisfies

∑
x

pλ( j+(s−1)/K ) (x) fi (x)eγ
( j+s/K )
i f (x) + λ

( j+(s−1)/K )
i + γ

( j+s/K )
i

σ 2
i

=
∑

y

p̃(y)
∑

z

pλ( j) (z | y) fi (y, z) (7)

where f (x) = ∑N
i=1 fi (x). The value of γ

( j+s/K )
i can be obtained by bisection line search

or solving the nonlinear Eq. (7) by Newton-Raphson iteration.
A natural interpretation of this iterative procedure is that, if the right hand side of (2) is

constant, then the optimal solution pλ(x) is a log-linear model with parameters provided
by GIS/IIS. Once we obtain pλ we can calculate the value of the right hand side of (2).
If this value matches the value previously assigned, then by the optimality condition we
have reached a stationary point of the penalized log-likelihood and a feasible solution of
the RLME problem; otherwise, we iterate until the constraints are met.

Provided that the E and M steps can both be computed, R-EM-IS can be shown to
converge to a local maximum in penalized likelihood for log-linear models, and hence is
guaranteed to yield feasible solutions to the RLME principle.

Theorem 2. The R-EM-IS algorithm monotonically increases the penalized log-likelihood
function R(λ), and all limit points of any R-EM-IS sequence {λ( j+s/K ), j ≥ 0}, s = 1, ..., K ,
belong to the set

� =
{
λ ∈ �N :

∂ R(λ)

∂λ
= 0

}
(8)

Therefore, R-EM-IS asymptotically yields feasible solutions to the RLME principle for
log-linear models (Wang et al., 2004).

Thus, R-EM-IS provides an effective means to find feasible solutions to the RLME
principle. (We note that Lauritzen, 1995 has suggested a similar algorithm for the unregu-
larized case, but did not supply a convergence proof. More recently, Riezler (1999) has also
proposed an algorithm equivalent to setting K = 1 in EM-IS for the unregularized case.
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However, we have found K > 1 to be more effective in many situations, and regularization
also usually yields a substantial benefit.)

We can now exploit the R-EM-IS algorithm to develop a practical approximation to the
RLME principle.

R-ME-EM-IS algorithm:
Initialization: Randomly choose initial guesses for λ.
R-EM-IS: Run R-EM-IS to convergence, to obtain feasible λ∗.
Entropy calculation: Calculate the regularized entropy of pλ∗ .
Model selection: Repeat the above steps several times to produce a set of distinct feasible

candidates. Choose the feasible candidate that achieves the highest regularized entropy.

This leads to a new estimation technique that we will compare to standard MAP esti-
mation below. One apparent complication, first, is that we need to calculate the entropies
of the candidate models produced by R-EM-IS. However, it turns out that we do not need
to calculate entropies explicitly because one can recover the entropy of feasible log-linear
models simply as a byproduct of running R-EM-IS to convergence.

Corollary 1. If λ∗ is feasible, then Q(λ∗, λ∗) = −H (pλ∗ ) + U (a∗) and R(λ∗) =
−H (pλ∗ ) + U (a∗) + H (λ∗, λ∗).

Therefore, at a feasible solution λ∗, we have already calculated the regularized entropy,
−Q(λ∗, λ∗), in the M step of R-EM-IS.

When there is no hidden variable, H (λ∗, λ∗) = 0, we have a unique solution R(λ∗) =
−H (pλ∗ ) + U (a∗), the standard global optimal regularized maximum entropy model is
equivalent to the global optimal MAP solution. When there are hidden variables, we have
multiple solutions which make things different. To draw a clear distinction between RLME
and MAP, assume that the term H (λ∗, λ∗) is constant across different feasible solutions.
Then MAP, which maximizes R(λ∗), will choose the model that has lowest regularized
entropy, whereas RLME, which maximizes H (pλ∗) − U (a∗), will chose a model that has
least regularized likelihood. (Of course, H (λ∗, λ∗) will not be constant in practice and the
comparison between RLME and MAP is not so straightforward, but this example does
highlight their difference.) The fact that RLME and MAP are different raises the question
of which method is the most effective when inferring a model from sample data. To address
this question we turn to a comparison.

4. RLME for language modeling

The regularized latent maximum entropy principle can be used to model natural language
in a principled way by combining different exponential models to obtain rich expressive
power. In this section, we describe how to use the RLME principle to combine the tri-
gram Markov model with probabilistic latent semantic analysis (PLSA) to obtain a better
language model.

Currently almost all maximum entropy language models use the conditional form first
proposed by Brown et al. for statistical machine translation (Brown et al., 1992). The main
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Figure 1. A graphical representation of the semantic tri-gram model, where the curve that connects the three
word nodes together denotes the tri-gram feature. In this graphical representation, many arcs share the same
parameters.

reason for using the conditional model is to avoid enumerating all possible histories to
perform inference. Here we use the joint probability model, but point out that once the
set of features are selected, the problem of calculating the needed feature expectations
and normalization terms becomes tractable by using proper factorization methods and
exploiting the sparseness of tri-grams.

Combining N-gram and PLSA models

Define the complete data as x = (W2, W1, W0, D, T2, T1, T0), where W0, W1, W2 are the
current and two previous words, T2, T1, T0 are the hidden ‘topic’ values associated with
these words, and D is a document identifier. Thus, y = (W2, W1, W0, D) is the observed
data and z = (T2, T1, T0) is unobserved. Typically the number of documents, words in
the vocabulary, and latent class variables are on the order of 100,000, 10,000 and 100,
respectively. A graphical representation of a semantic node interacting with a tri-gram is
illustrated in Figure 1.

For the tri-gram portion of the model, all features are explicitly observed in the training
data, and the corresponding constraints can be modeled directly as follows.

∑
x

p(x)δ(W2 = wi , W1 = w j , W0 = wk) =
∑

d

p̃(d) p̃(wiw jwk | d)

∑
x

p(x)
1∑

�=0

δ(W�+1 = wi , W� = w j ) =
∑

d

p̃(d)
1∑

�=0

p̃(W�+1 = wi , W� = w j | d)

∑
x

p(x)
2∑

�=0

δ(W� = wi ) =
∑

d

p̃(d)
2∑

�=0

p̃(W� = wi | d) (9)

Here, for example, p̃(wiw jwk | d) denotes the empirical distribution of the tri-grams
actually seen in the training corpus, and δ(·) is an indicator that returns 1 if the event is
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active and 0 otherwise. Note the δ functions specify the features that the learned model p(x)
should respect, which above are the tri-gram, bi-gram and uni-gram constraints respectively.

For the semantic (PLSA) portion of the model, the constraints involve the hidden topic
variables T and can be encoded by the more complex constraints

∑
x

p(x)
2∑

�=0

δ(T� = t, D = d) = p̃(d)
2∑

�=0

∑
W�

p̃(W� | d)p(T� = t | W�, D = d)

∑
x

p(x)
2∑

�=0

δ(T� = t, W� = wi ) =
∑

d

p̃(d)
2∑

�=0

p̃(W� = wi | d)

× p(T� = t | W� = wi , D = d) (10)

Again, these δ functions specify the features the learned model should respect. The first
equality imposes the | D | × | T | constraints between the document node and the topic
nodes, and the second equality imposes the | W | × | T | constraints between the topic
nodes and words.

We can now learn a probability model that simultaneously takes all of these information
sources into account, by employing the RLME principle to find the log-linear model
pλ(x) that maximizes entropy subject to satisfying all of the constraints. This model will
encapsulate the N-gram and semantic models as special cases. Figure 1 gives a graphical
representation of the structure resulting from satisfying all of the imposed constraints. Note
that many of the components share the same parameters; namely, (T2, D), (T1, D), and
(T0, D) are identical; (T2, W2), (T1, W1), and (T0, W0) are identical; (W2, W1) and (W1, W0)
are identical; and (W2), (W1) and (W0) are identical.

Efficient feature expectation and inference

The computational bottleneck is calculating the feature expectations and normalization
constants needed to perform inference. Note that the full joint distribution is in the form
of a product over exponential functions of features. The key idea for efficient calculation
is to “push” the sums in as far as possible when summing (marginalizing) out irrelevant
terms. Since calculating feature expectations has the same computational cost as normal-
ization (Khudanpur & Wu, 2000), we only show how to do normalization efficiently here.
The normalization factor can be calculated efficiently by sum-product algorithm, that is,
summing over all the links at each time slice and passing through the trellis nodes with the
product of the weight to the ongoing nodes we obtain

� =
∑

w2,w1,w0,t2,t1,t0,d

(eλw2 eλw1 eλw0 eλw2w1 eλw1w0 eλw2w1w0 eλw2 t2 eλw1 t1 eλw0 t0 eλt2d eλt1d eλt0d )

=
∑
w0

eλw0

∑
t0

eλw0 t0

∑
w1

eλw1 eλw1wo

∑
t1

eλw1 t1

∑
w2

eλw2 eλw1w2 eλw2w1w0

∑
t2

eλw2 t2

( ∑
d

eλt2d eλt1d eλt0 d

)
(11)
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Simultaneously to obtaining the normalization constant, we can also calculate all of the
feature expectations. For example, the expectation of a given tri-gram feature wiw jwk can
be calculated as

∑
x

p(x)δ(W2 = wi , W1 = w j , W0 = wk)

= �−1eλwi eλw j eλwk eλwi w j eλw j wk eλwi w j wk

×
∑

t0

eλwk t0

∑
t1

eλw j t1

∑
t2

eλwi t2

×
(∑

d

eλt2d eλt1d eλt0 d

)
(12)

Semantic smoothing

To make use of semantic similarity and subtle variation between words, we can introduce
an additional node C between each topic node and word node. The first set of feature
constraints in (10) can be augmented to incorporate this new cluster variable C as follows:

∑
x

p(x)
2∑

�=0

δ(T� = t, C� == c, D = d)

=
∑

d

p̃(d)
2∑

�=0

∑
W�

p̃(W� | d)p(T� = t, C� == c | W�, D = d)

The effect of these cluster nodes critically depends on the range of their variation. For
example, if all the words are grouped into a single class, then the model will be maximally
smoothed. On the other hand, if there are as many classes as words in the vocabulary, there
will be no smoothing effect at all. There is a trade-off between smoothing to reduce the
effective number of parameters in the model, and non-smoothing to permit a more detailed
model.

As a further extension which takes account of the semantic similarity and sub-topic
variation within each document and among documents, we can introduce additional node S
between the topic nodes and the document node. Again, the second set of feature constraints
as in (10) can be written analogously as follows:

∑
x

p(x)
2∑

�=0

δ(T� = t, S� = s, W� = wi )

=
∑

d

p̃(d)
2∑

�=0

p̃(W� = wi | d)p(T� = t, S� = s | W� = wi , D = d)
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Figure 2. A graphical representation of the extended PLSA tri-gram model, which includes word cluster
variables, C2, C1, C0, and topic cluster variables, S2, S1, S0. The cliques of W −C −T and T − S − D correspond
to the features in Section 4.3. In this graphical representation, many arcs share the same parameters.

Again the effect of node S critically depends on the range of its variation. If all the
documents are grouped in a single cluster, then the model is the same as (10) and is over-
smoothed, and in the context of diverse discourse this could not capture the specific topics.
On the other hand, if there are as many clusters as documents in the corpus, there will be
no smoothing effect at all. Again, we encounter a trade-off between smoothing to reduce
parameters, versus non-smoothing to permit variation.

Note that the benefit of the maximum entropy combination method is that the cluster
nodes behave like latent variables in a mixture model for “soft clustering”, instead of the
“hard clusters” created by methods like K-means used in Bellegarda (2000).

Figure 2 shows an extended semantic smoothed version of the model that incorporates
additional word cluster variables within each topic, and additional topic cluster variables
with each document.

Computation in testing

To evaluate the perplexity of our semantic tri-gram model on the observable portion of the
test document d, note that

p(w1 . . . w|d|, d) =
|d|∏
�=1

pD�
(w�, d� | w1 . . . w�−1)

=
|d|∏
�=1

∑
T2,T1,T0

pD�
(w�, d�, T2, T1, T0 | w1...w�−1)

=
|d|∏
�=1

∑
T2,T1,T0

pD�
(w�, d�, T2, T1, T0 | w�−2, w�−1)

where | d | denotes the length of the test document d. Since the representation for a docu-
ment of the test data is not contained in the original training corpus, we use similar “fold-in”
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heuristic approach as used in Hofmann (2001): the Lagrange multipliers corresponding to
the document-topic arcs are re-estimated by the same formulation as (10) while holding
other parameters fixed, where the empirical distribution is given by the current updated
document history. To be more precise, let pD0 (x) to be the exponential distribution for
Figure 1 with the estimated RLME or MAP Lagrange multipliers as weights, except that
the multipliers corresponding to the document-topic arcs are fixed to be zero. Then the new
model pD�

will be the result of the following optimization

min
p,a

K L(p, pD�−1 ) + U (a)

subject to

∑
x

p(x)
2∑

�=0

δ(T� = t, D = d�) =
2∑

�=0

p̃(d�)
∑
W�

p̃(W� | d�)p(T� = t | W�, d�) + at,d

where K L(p, q) is the Kullback-Leiber divergence.
Since our model provides the probability of complete data pD�

(W2, W1, W0, D�,

T2, T1, T0), the conditional probability pD�
(W0, D�, T2, T1, T0 | W2, W1) can be easily

obtained by marginalization (and division).

5. Experimental evaluation

Experimental data sets and performance measure

The corpus used to train our model was taken from the WSJ portion of the NAB corpus and
was composed of about 150,000 documents spanning the years 1987 to 1989, comprising
approximately 42 millions words. The vocabulary was constructed by taking the 20,000
most frequent words of the training data. We split another separate set of data consisting of
325,000 words taken from the year 1989 into half, one half used as development data by
random selection, another half for testing.

The statistics of the datasets are shown in Table 1.
To evaluate a language model we use the standard definitions of perplexity and entropy

on held-out test data. That is, given a test corpus s = {d1, . . . , dL} and a language model

Table 1. Data sets statistics.

No. of articles No. of sentences No. of words

Train 150,981 1,611,571 41,780,924

Dev 378 6904 157,312

Test 379 6638 153,801
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defining p(s) we calculate test perplexity and test entropy as

Perplexity = |s|

√
1

p(s)
= |s|

√√√√ L∏
i=1

1

p(w1 . . . w|di |, di )

= |s|

√√√√ L∏
i=1

|di |∏
l=1

1

p(wl, di | wi . . . wl−1)

Entropy = log2 Perplexity

where | s |= ∑L
i=1 | di | is the length of test corpus. The goal is to obtain small values

of these measures. That is, the goal of language modeling is to predict the probability of
natural word sequences; or more simply, to put high probability on word sequences that
actually occur (and low probability on word sequences that never occur).

Experimental design

To serve as a baseline standard of performance, we use a conventional tri-gram model with
Good-Turing back-off smoothing. Implementing this approach with the CMU language
modeling toolkit (Clarkson & Rosenfeld, 1997), we obtained a test perplexity score of 103.

We then implemented and compared a few simple versions of our RLME approach using
the models described above. Note that in all of the experiments below, to implement the
inner R-EM-IS procedure we set the number of EM iterations to 5 and the number of
internal IIS loop iterations to 20. We also had to choose a variance for the Gaussian prior
to serve as a regularizer, but simply chose the default value of σi = 1 for every feature
i = 1, ..., N in each case, and therefore performed no optimization of the regularization
parameters.

To control for the effects of maximizing regularized entropy (RLME) verus maximizing a
posteriori probability (MAP), we first omitted the outer R-ME-EM-IS procedure and instead
just initialized the parameters to zero and executed a single run of R-EM-IS, then perturb
the parameters randomly and run a single R-EM-IS to find a single locally MAP model (or
equivalently a single feasible model for the RLME principle). Then, using these results as a
control, we re-ran the procedures with the outer R-ME-EM-IS procedure re-introduced, to
find higher regularized entropy (RLME) solutions and higher penalized likelihood (MAP)
solutions. Specifically, we used 20 random starting points for λ, ran R-EM-IS from each,
and then selected the highest regularized entropy solution as the RLME estimate, and the
highest penalized maximum likelihood solution as the MAP estimate. Among all feasible
solutions, the one which has the lowest perplexity score on the development corpus is
denoted as best feasible solution.

We first considered a simple model which only considered the features (and the con-
straints) from the simple tri-gram model. In this simple case, there are no hidden variables,
and our estimation principles (MAP, RLME, a single run of R-EM-IS) all reduce to the same
standard (regularized) ME principle for completely observed data. Here we observed a per-
plexity score of 112 on development data, which is slightly worse than the 109 perplexity
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Figure 3. Perplexity versus number of topics for the semantic tri-gram language model.

obtained by training a tri-gram model with Good-Turing smoothing. Nevertheless, this
result shows that the parameter smoothing effect achieved by our (untuned) regularization
principle is nearly as effective as using Good-Turing smoothing for N-gram models.1

Next, we introduced the PLSA features to our model, setting the number of possible
hidden topics to be | T |= 125. First, running R-EM-IS from a single starting point resulted
in a model that achieved perplexity score 95 on the development corpus; comprising a 12.8%
reduction in perplexity from the baseline tri-gram model. Then, using 20 runs from different
starting points to yield the RLME, MAP and best feasible solutions estimates, we obtained
models with perplexities 92, 95 and 91 respectively; comprising respective 15.6, 10.6 and
16.5% reductions in perplexity from the baseline tri-gram model. Figure 3 shows how the
perplexities of these estimated models change as the number of topics is increased and
decreased, with the best perplexities achieved in each case when the number equals 125.
Therefore, in the remaining experiments we fix the number of hidden topics to be 125.

Finally, we considered a few augmentations of the basic combined tri-gram, PLSA model
illustrated in figure 1, which is shown in figure 2.

First, when we add just the word cluster nodes to our model, we find that the result is
sensitive to the number of classes. For the single feasible model which is given by perturbing
the parameters of a single run of R-EM-IS from uniform initializing, then running a single
R-EM-IS, we find that when the class number is chosen to be 10, the perplexity achieved
is now 93, which equals to the best result achieved by any technique above. However, if
the class number is set to 50, then the perplexity increases to 95, probably due to the huge
increase in parameters. For the MAP and RLME estimators we find that we obtain similar
results. Figure 4 shows how the perplexity changes as the number of word clusters changes
for each of the best feasible solution, MAP and RLME estimates. The best perplexity
achieved is 87 (by RLME) for a number of word clusters set to 30.
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Figure 4. Perplexity versus number of word clusters for the extended PLSA tri-gram language model.

Next, when we add just the topic cluster nodes to the model, but omit the word cluster
nodes, we also find that the result depends on the number of topic clusters. For the single
feasible model which is given by perturbing the parameters of a single run of R-EM-IS
from uniform initializing, then running a single R-EM-IS, we find that when the cluster
number is chosen to be 10, the perplexity achieved is 92, which is the same as the previous
perplexity of 92 (with no cluster variables). However, if the cluster number is set to 30, the
perplexity increases to 93. For the MAP and RLME estimators, again, we obtain similar
results. Figure 5 shows how the perplexity changes as the number of topic clusters changes
for each of the best feasible solution, MAP and RLME estimates. The best perplexity
achieved is 90 (by RLME) when the number of topic clusters is set to 20.

Finally, when we add both the word cluster nodes and topic cluster nodes simultaneously
to our model, we find that the result is again sensitive to the number of classes, but notably
improved. When the number of word classes is 10 and the number of topic clusters is
10, the perplexity achieved by the single run feasible model is now 91, which is the best
performance it achieves, and comprises about an 16.5% improvement over the baseline tri-
gram model. Similarly, the MAP and RLME estimators show improved results. Figures 6
and 7 shows how the perplexity changes as the number of topic clusters changes for each
of the single feasible, MAP and RLME estimates. The best perplexity achieved is now 85
by RLME when the number of word and topic clusters is set to 10 and 20 respectively.
This result is a substantial improvement over the baseline tri-gram model, comprising a
22% reduction in perplexity. The best perplexity achieved is now 92 by MAP when both
numbers of word and topic clusters is set to 0. This result is also a substantial improvement
over the baseline tri-gram model, comprising a 15.6% reduction in perplexity. The best
perplexity achieved is now 84 by best feasible solution when the number of word and topic
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Table 2. Perplexity and reduction results on development corpus for the semantic tri-gram RLME, MAP and
best feasible solution models under various smoothing schemes.

Language model RLME MAP Best feasible

Baseline 108 (0.0%)

Semantic tri-gram 92 (14.8%) 98 (9.2%) 91 (15.7%)

Semantic tri-gram + Word
smoothing

87 (19.4%) 91 (15.7%) 86 (20.3%)

Semantic tri-gram + Topic
smoothing

90 (16.7%) 95 (12.0%) 89 (17.5%)

Semantic tri-gram + Word &
Topic smoothing

85 (21.3%) 94 (13.0%) 84 (22.2%)
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Figure 5. Perplexity versus number of topic clusters for the extended PLSA tri-gram language model.

clusters is set to 10 and 20 respectively. Table 2 summarizes the best results obtained in
each case by RLME, MAP and best feasible solution models.

Once we use the development corpus to tune the optimal numbers of topic, word clusters,
and topic clusters for the best feasible solution, MAP and RLME estimates, we calculate
the perplexity on test corpus. The perplexity score by the baseline tri-gram model is 103.
We obtain 84, 90 and 82 perplexity scores respectively by the tuned RLME, MAP and
best feasible solution. The corresponding perplexity reductions are 18.5, 12.6; and 20.4%.
Table 3 summarizes the results on test corpus by these models.
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Table 3. Perplexity results on test corpus by best RLME, MAP and best feasible solution models.

Language model Test perplexity Reduction (%)

Baseline 103

RLME 84 18.5

MAP 90 12.6

Best feasible 82 20.4
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Figure 6. Perplexity versus number of word clusters for the extended PLSA tri-gram model when fixing the
number of topic clusters to 10.

6. Discussion

The main observation to draw from this investigation is that extending language models to
incorporate extra hidden features is conceptually very easy in the LME framework. All one
has to do is identify the features they wish to model and add the respective constraints to
the feasibility problem solved by R-EM-IS. Provided the E and M steps remain feasible,
this presents no practical barrier to extending the model.

Clearly, however, standard concerns such as over-fitting avoidance remain inescapable
issues when estimating model parameters from training data. Nevertheless, the above
Figures 4– 7 seem to clearly indicate that RLME estimation consistently gives better results
than MAP estimation for this type of large scale parameter estimation from sparse data.
RLME appears to cope more robustly when simultaneously estimating a large number of
parameters in the presence of hidden variables and sparse training data.
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Figure 7. Perplexity versus number of word clusters for the extended PLSA tri-gram model when fixing the
number of topic clusters to 20.

7. Extensions

We should note that there remain several avenues to improving the quality of the language
models we are able to estimate from data. In language modeling research, there exists a
body of ad hoc tricks which are known to make significant improvements. For example,
(Bellegarda, 2000) proposes an ad hoc combination of tri-gram and latent semantic analysis
(LSA) models, by using the perplexity formula

p(w� | w1 . . . w�−1)

= p(w� | w�−2w�−1)pL S A(d� | w�)∑
wi

p(wi | w�−2w�−1)pL S A(d� | wi )
(13)

=
p(w� | w�−2w�−1) pL S A(w�|d�)

pL S A(w�)∑
wi

p(wi | w�−2w�−1) pL S A(wi |d�)
pL S A(wi )

(14)

Here d� = (w1 . . . w�−1) is the current document d’s history; pLSA(d� | w�) is the probability
of the current document history given the current word w�; pLSA(w� | d�) is the probability
of the current word w� history given the current document d�; and pLSA(w�) is the probability
of current word w�.2 Each of these components is obtained by the latent semantic analysis.
We calculated the perplexity of Bellagarda’s model using the same training data and
develop data considered above. The perplexity obtained by Bellegarda’s model in this
case is 99, which is an 9% reduction in perplexity compared to the baseline tri-gram
model.
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However, if one incorporates another ad hoc improvement from speech recognition
research, a substantial futher reduction can be obtained. The idea is to strengthen the
influence of the LSA portion of the model by raising its contribution to some power (here
7) and renormalizing

p(w� | w1 . . . w�−1)

= p(w� | w�−2w�−1)(pL S A(d� | w�))7∑
wi

p(wi | w�−2w�−1)(pL S A(d� | wi ))7
(15)

Doing so for Bellagarda’s model results in a suprising and dramatic perplexity value of
86; almost equal to the best of our results using RLME above. Although we have yet
to investigate such techniques in our RLME framework, given the potentially dramatic
improvements they potentially offer, it remains important future research to understand
how such improvements might be incorporated in a principled manner.

8. Conclusion

We have applied our proposed RLME principle for estimating sophisticated mixed chain-
table graphical models of natural language, where local word interactions and global
semantic document information can be modeled by mixtures of exponential families in a
unified framework. The parameters are estimated in the sense of maximum entropy over
a set of feasible solutions produced by an EM algorithm with nested iterative scaling.
When modeling specific linguistic phenomena, the general framework reproduces standard
models. However, our proposed approach allows one to model interactions among multiple
aspects of natural language simultaneously and automatically. This yields dramatic im-
provements over standard maximum a posteriori estimation in our experiments on natural
language modeling.

Although we have shown the potential benefits of RLME over standard MAP estimation
for large scale parameter estimation problems, the R-ME-EM-IS algorithm we use to find
solutions is not a very sophisticated optimization algorithm, and is probably needlessly
time consuming as a result. It would be worthwhile to investigate more direct optimization
methods which simultaneously seek to achieve feasibility while maximizing the objective.

The experimental results also show that performance is sensitive to the number of word
clusters and topic clusters. We are currently investigating techniques to automatically
determine optimal word and topic cluster numbers.

In principle, our RLME approach provides a general statistical framework for incorpo-
rating arbitrary aspects of natural language into a parametric model. Therefore, we could
hope to incorporate syntactic structure encoded by probabilistic context free grammars
into the RLME framework. However, in practice, this raises some difficult challenges. In
particular, these models appear to make the left hand side of the constraints (2) infeasible
to calculate. It also appears to be difficult to apply standard approximation techniques, such
as loopy belief propagation and variational approximation (Wainwright & Jordan, 2003)
to this problem. One possibility is to resort to computationally expensive Monte Carlo
methods, such as those employed by Abney (1997).
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Notes

1. It turns out that regularization has a significant effect in this case, because removing it leads to inferior results
(perplexity scores over 150 (Chen & Rosenfeld, 2000). Therefore, we stick to our standard regularization
parameters in all further experiments.

2. pL S A(w�) is not the standard unigram probability as obtained using the whole training corpus (as claimed in
Bellegarda (2000), one line below equation 27, page 1289). Intuitively, it is the weighted unigram averaged
over possible semantic information.
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