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Abstract
I apply the notions of alethic reference introduced in previous work in the con-
struction of several classical semantic truth theories. Furthermore, I provide proof-
theoretic versions of those notions and use them to formulate axiomatic disquota-
tional truth systems over classical logic. Some of these systems are shown to be
sound, proof-theoretically strong, and compare well to the most renowned systems
in the literature.

Keywords Semantic paradoxes · Disquotation · Reference · Self-reference ·
Well-foundedness · Formal truth theories

1 Introduction

Tarski [32, 33] has bequeathed to us a pessimistic but valuable lesson about truth.
Given a language L with a monadic predicate T and a name �ϕ� for each sentence ϕ of
the language, for T to adequately express the notion of truth of sentences of L, each
sentence ϕ should be materially equivalent to T �ϕ�. However, if the underlying logic
is classical and the language is ‘expressive enough’, the equivalence must fail in some
cases, on pain of triviality. For instance, if L allows for self-referential expressions
and, in particular, contains a liar sentence λ, that says of itself that it is not true, λ

and ¬T �λ� will turn out to be equivalent. Thus, the equivalence between λ and T �λ�
is untenable. As a consequence, an adequate truth predicate for the whole language
is not possible in L, if working within classical logic.

Tarski proposed to restrict the equivalence between each ϕ and T �ϕ� (expressed as
a biconditional) – the so-called T-schema – to the T -free sentences of the language.
In this way, λ is easily excluded. Tarskian typed truth theories have been pervasive
for many years and play a prominent role in diverse areas of logic and philosophy.
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Nonetheless, the shared view nowadays is that these theories are far too restrictive.
After all, many sentences containing the truth predicate – e.g. expressions of the form
T �T �ϕ�� where ϕ is T -free – seem to be entirely unproblematic.

Less drastic solutions have been subsequently explored. Theories which weaken
the logic but keep some form of equivalence between each sentence and its truth
ascription – originating in the work of Kripke [20] and Martin & Woodruff [23] –
are very popular. Others have investigated the possibility of remaining classical but
imposing less strict restrictions on the admissible instances of the T-schema. The goal
is to find a unified criterion that allows us to keep as many unproblematic instances
as possible, leaving the paradoxical ones out.

A promising strategy in this direction is to restrict the T-schema to sentences
that exhibit ‘safe’ reference patterns. The orthodox view, championed by Russell,
Poincaré, and Tarski, has it that the cause of semantic paradox is self-reference.
Despite the popularity of this view, the restriction of the T-schema to non-self-
referential sentences has not yet been explored. The main reason is that the notions
of self-reference and reference have proved to be quite elusive in the past, and are
now surrounded by an aura of scepticism.1 Additionally, the self-reference diagnosis
has been (relatively) recently challenged by a new paradox that is prima facie free of
self-reference: the Visser-Yablo paradox.2 However, the bearing of this new antinomy
is not yet entirely clear: the lack of a precise notion of self-reference has hindered
the evaluation of the Visser-Yablo paradox and thus the self-reference diagnosis of
paradoxicality.

In [27] I provide a systematic and rigorous account of reference in the context
of truth – or “alethic reference”, as I call it – and define self-reference and other
reference patterns in terms of this notion. I hope the intuitive appeal of the defini-
tions I put forward there helps dissipate the scepticism the corresponding notions are
immersed in, at least with regard to the semantic paradoxes. Furthermore, I show that
the expressions involved in the Yablo-Visser paradox are not self-referential accord-
ing to the new notions, refuting the self-reference diagnosis on the roots of paradox.
Although this ruins the prospects of restricting the T-schema to non-self-referential
expressions, the more general project of restricting it to sentences that exhibit safe
reference patterns need not be abandoned, as all paradoxical expressions might share
other reference patterns.

The purpose of this paper is to confirm this hypothesis. I provide both semantic
and axiomatic theories of truth in which the T-schema is restricted to well-founded
expressions, and prove they are encompassing and sound. Moreover, I show this
condition can be relaxed even further, i.e. that the reference patterns that underlie
paradoxical expressions can be given a more fine-grained characterization. In short,
I deploy the reference notions introduced in [27] to formulate different restricting
criteria for admissible instances of T-schema in terms of their underlying reference
patterns and show that this strategy is successful, as it results in classically consistent,
sound, and fairly attractive theories of truth.

1See Picollo [26] for an overview of the state of the matter.
2See Herzberger [15], Visser [34], and Yablo [35, 36].
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Section 2 provides a technical introduction to formal theories of truth, followed
by an overview of the state of the issue regarding different restrictive criteria for the
truth predicate that have been proposed in the literature. I also give a compact presen-
tation of the approach to reference in the context of truth introduced in [27]. Section 3
employs these notions to construct semantic truth theories. Section 4 provides sim-
pler, proof-theoretic versions of the notions of reference (and related concepts) from
Section 2 and formulates several axiomatic truth systems based on them, some of
which are shown to be sound and proof-theoretically strong. Finally, in Section 5 I
conclude by evaluating these systems in light of Leitgeb’s [22] criteria for formal
theories of truth.

2 Preliminaries

2.1 Formal Truth Theories

Let L be the language of first-order Peano arithmetic (PA) and let LT augment L
with a monadic predicate T, to express truth. L contains =, ¬,∧, ∨, →, ∀, and ∃ as
logical constants, an individual constant 0, a monadic function symbol S, two dyadic
function symbols + and ×, and a finite stock of extra function symbols for primitive
recursive (p.r.) functions to be specified. All other logical and non-logical symbols
occurring in formulae are to be understood as the usual abbreviations. Let N be the
standard model for L , with ω as its domain. Note that, for each n ∈ ω, L has a term
n denoting n (the numeral of n), that consists of n occurrences of S followed by 0.

We work with a fixed (effective and monotonic) coding of expressions of LT by
numbers in ω.3 If σ is a string of symbols of LT, we write �σ� for the numeral of
its code. We often identify expressions of LT with their codes if there’s no room
for confusion. Unless otherwise indicated, by “formula” and “sentence” we mean
formula of LT and sentence of LT, respectively.

Although L speaks primarily about natural numbers, our coding allows it to
express many syntactic properties, relations, and functions about the expressions of
LT. Thus, our truth theories can be formulated in LT, with background syntactic
principles formulated in L .

Formal truth theories can be either semantic or axiomatic. Semantic theories con-
sists of a model or family of models 〈N, �〉 expanding N to a model of LT, where �

is the extension of T in the model. In evaluating them, we look at the truth principles
that hold in every model of the family. Epistemic considerations are also relevant,
however: it is important that there is a way to know which truth principles belong
to the theory, to the extent possible. If the theory is too complex, this would hardly
be the case. This is not to say that complex semantic constructions are of no value.
On the contrary, they can serve as witnesses of the consistency of collections of truth
principles, or play a heuristic role in the formulation of more constructive theories,
that is, axiomatic ones.4

3See my companion paper for more details about the coding.
4See Field [5] and Halbach & Horsten [11].
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By contrast, axiomatic truth theories result from adding truth-theoretic axioms to
a syntax theory, which we assume to be PA.5 We assume PA contains the defining
recursion equations for each extra function symbol in L . As is well known, PA is
strong enough to represent every recursive relation between numbers and, therefore,
expressions of LT, and to weakly represent every recursively enumerable relation.
Let PAT consist of the axioms of PA formulated in LT with induction for the whole
language. Call an axiomatic truth theory in LT any recursive extension of PAT. Of
course, some theories will be highly incomplete and others simply unsound, but the
terminology is convenient. As before, the merits of a theory lie in the truth principles
the theory entails. To know what principles hold in an axiomatic theory it is enough
to find a proof.6

2.2 Tarski’s Theorem (and ways to circumvent it)

Ideally, any truth theory (whether semantic or axiomatic) would satisfy Tarski’s con-
dition of material adequacy, according to which all instances of the following schema
hold in the theory:

(T-schema) T�ϕ� ↔ ϕ

These are known as “T-biconditionals”. Alternatively, we could work with a more
general variant of the T-biconditionals, the uniform T-biconditionals:

(Uniform T-schema) ∀t1 . . . ∀tn(T�ϕ(t.1, . . . , t.n)� ↔ ϕ(t◦1 , . . . , t◦n))

Both the T-schema and its uniform version are known as “disquotational” principles.
Note that the set of closed terms of LT is p.r., as well as the value relation that holds
between each term of the language and the number it denotes (as L contains only
finitely many function symbols). Let CTerm(x) and x◦ = y represent in PA (“rep-
resent”, from now on) this set and relation, respectively.7 Moreover, the substitution
function that takes a formula ϕ, a term t , and a variable v and returns the formula
that results from replacing all free occurrences of v in ϕ with t , is also p.r. and,
thus represented by a term x(y/z) ∈ L . We write ∀t ϕ for ∀v (CTerm(v) → ϕ)

and ∃t ϕ for ∃v (CTerm(v) ∧ ϕ), for a suitable variable v. Finally, �ϕ(t.)� abbreviates
�ϕ�(t/�v�), for some suitable term variable t , provided that v is the only free vari-
able in ϕ. Thus, the instances of the Uniform T-schema quantify over closed terms,
entailing all substitution instances of the standard T-schema uniformly.

Unfortunately, neither of these principles can be implemented unrestrictedly, as
the language is ‘expressive enough’ to allow for paradoxical expressions such as liar
sentences.

Let v abbreviate the string of variables v1, . . . , vn different from x and y.

5Robinson Arithmetic, a weaker subsystem of PA, would also do. I choose PA instead to facilitate the
comparison between our truth theories and other systems that are found in the literature.
6However, to know whether a schematic principle holds, the schema of a proof is required.
7Since L contains enough function symbols for the proof of the Strong Diagonal Lemma (cf. Theorem 2)
to go through, it cannot have a function symbol for the value relation (which is also a function), on pain of
triviality. Nonetheless, I write x◦ = y instead of, e.g. Val(x, y), to preserve readability, as is customary.
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Theorem 1 (Diagonalization) For every formula ϕ(x, v) there is a formula ψ(v) s.t.
the (universal closure of the) following equivalence is a theorem of PAT:8

ψ(v) ↔ ϕ(�ψ�, v) (1)

In equivalences of the form (1), ψ(v) is said to be a fixed point of ϕ(x, v). Let ϕ

in Theorem 1 be ¬Tx. Then there is a sentence λ such that the following is a theorem
of PAT:

λ ↔ ¬T�λ� (2)

λ is normally understood as saying of itself that it is untrue, as a liar sentence. Given
(2), no consistent extension of PAT can contain an instance of the T-schema for λ and,
a fortiori, full disquotation is untenable. This is what Tarski’s undefinability result
consists in. Likewise, if we opt for a semantic account instead, no model 〈N, �〉 of
LT can validate unrestricted versions of disquotation, since all theorems of PAT are
true in 〈N, �〉, including (2). Thus, we say λ is paradoxical.

To avoid paradox, Tarski opted to restrict disquotation to sentences without T,
but more permissive restrictions are possible without stepping into triviality. Thus,
we wonder with Leitgeb [21, p. 156], “What kinds of sentences with truth predicate
may be inserted plausibly and consistently into the T-scheme?” An idea that suggests
itself is to restrict our disquotational principles to non-paradoxical expressions, that
is, to those that can be consistently inserted in the T-schema. Alas, McGee [24] has
shown that maximal consistent sets of T-biconditionals decide each and every sen-
tence of LT, which means they are far too complex for an axiomatization. Moreover,
McGee’s result shows there are uncountably many of those sets, so picking one of
them amounts to an arbitrary choice. Consider the following 2-liar cycle:

λ1 ↔ ¬T�λ2�
λ2 ↔ T�λ1� (3)

Theorem 1 guarantees that both biconditionals are provable in PAT if we diagonalize
the predicate ¬T�Tẋ�. Given a formula ϕ with exactly one free variable v, let �ϕ(v̇)�
be short for �ϕ�(v̇/�v�), where ẋ is a term of L for the p.r. function that maps each
natural number to the code of its numeral. Since v is free in �ϕ(v̇)�, we can quantify
over it. Clearly, the biconditionals in (3) are inconsistent with the T-biconditionals
for λ1 and λ2. However, if one of these T-biconditionals is dropped, consistency is
restored. Every maximal consistent set will contain one of them but not the other.

A more promising suggestion has been made by Leitgeb [21]. Roughly, his idea
is to restrict the T-schema to grounded sentences, that is, sentences whose truth
value ultimately depends on expressions not containing the truth predicate. Since the
truth value of the liar and of sentences in liar cycles seems to depend, directly or
indirectly, on these very same sentences, the latter are considered ungrounded and

8See Carnap [2] and Montague [25]. See Picollo [27] for a proof.

443



L. Picollo

excluded from our disquotational principles. The truth value of other expressions
such as 0 = 0, T�0 = 0�, and T�λ� ∨ ¬T�λ�, instead, is ultimately fixed by non-
semantic facts, so their corresponding T-biconditionals hold in the theory. Leitgeb’s
theory consists of a model 〈N, �lf〉 of LT where only grounded sentences belong to
�lf and all instances of disquotation for grounded sentences are true. The theory is
quite natural, elegant, and seemingly free from adhocness. However, it is also fairly
complex.9 This means that an N-categorical axiomatization is not possible, i.e. the
class of purely truth-theoretic principles the theory entails is not recursively axioma-
tizable.10 Schindler [30] provides a nice axiomatic system, but it is naturally far from
capturing the original semantic construction.

Others have put forward simpler, syntactic restrictions on disquotation. Halbach
[9] explores the restriction of uniform disquotation to formulae in which T occurs
only positively – i.e. in the scope of an even number of negations and condi-
tional antecedents. The resulting system is known as PUTB, for “Positive Uniform
Tarski Biconditionals”. Schindler [31], in turn, considers restricting the Uniform
T-schema to translations of formulae of the language of second-order arithmetic
without second-order parameters. Both criteria seem somewhat unnatural and ad hoc.

I would like to propose an alternative path, namely, to restrict disquotation to
expressions that exhibit ‘safe’ reference patterns. According to the self-reference
diagnosis, all paradoxical expressions share a common reference pattern, i.e. self-
reference. This seems to be certainly the case of λ and the liar cycle given by λ1 and
λ2. If this hypothesis were correct, a sensible plan would be to restrict disquotation
to non-self-referential expressions. The prior lack of adequate and precise notions
of reference and self-reference has prevented us so far from exploring this route.
Luckily, this situation has been remedied. In my companion paper [27] I give a sys-
tematic and formal account of reference in the context of truth, designed specifically
for the study of the reference patterns underlying paradoxical sentences. Moreover,
since according to my account reference has a syntactic aspect, restricting disquo-
tation to non-self-referential expressions could turn out to be simple enough for the
formulation of axiomatic truth systems.

Unfortunately, the notions I put forward in [27] reveal that the self-reference diag-
nosis is not correct. As it turns out, there are semantic paradoxes that are free of
self-reference. Such is the case of the Visser-Yablo paradox, consisting of an infinite
list of sentences, each of which says of the ones coming after that they are untrue. The
existence of this list can be proved in PAT by Theorem 1. Diagonalizing the formula
∀z (z > w → ¬Tx(ż/�w�)), we obtain a predicate Y(w) such that

∀w (Y(w) ↔ ∀z (z > w → ¬T�Y(ż)�)) (4)

9Leitgeb shows that �lf is 	1
1-complete, i.e. the simplest formula expressing this set begins with a string

of second-order universal quantifiers followed by a formula of L .
10The notion of N-categoricity has been introduced and put forward as a reasonable criterion for the
axiomatizability of semantic theories by Fischer et al. [6].

444



Reference and Truth

is provable in PAT. Instantiating w in each numeral results in the following bicondi-
tionals, i.e. the list:

Y(0) ↔ ∀z (z > 0 → ¬T�Y(ż)�)
Y(1) ↔ ∀z (z > 1 → ¬T�Y(ż)�)

. . .

Y(n) ↔ ∀z (z > n → ¬T�Y(ż)�)
. . . (5)

By reductio ad absurdum, the T-biconditionals for Y(n) entail ¬T�Y(n)� for each n ∈
ω, as well as ¬∀z ¬T�Y(ż)�. Nonetheless, ∀z ¬T�Y(ż)� does not follow in PAT plus
the T-biconditionals. This means that the theory is consistent, albeit ω-inconsistent.11

Note, however, that no model 〈N, �〉 of LT can make all T-biconditionals for each
Y(n) true at the same time: since each ¬T�Y(n)� would have to be true in the model,
so would ∀z ¬T�Y(ż)�. For these reasons, the Visser-Yablo paradox is not considered
to be a a paradox in the strict sense, but an ω-paradox. Despite not directly trivial-
izing our axiomatic theories, it is still problematic, as no semantic truth theory can
validate all T-biconditionals for the sentences in the list. Furthermore, although (4)
is consistent with the T-biconditionals, an outright inconsistency can be obtained by
combining (4) with an instance of uniform disquotation for Y(w).

According to my account of alethic reference, no sentence in the Visser-Yablo
list is self-referential but they are all unfounded, as will be seen in Section 2.3. This
shows that restricting disquotation to non-self-referential expressions is not a viable
project; banning self-reference is not enough. However, as will be shown in Section 3,
there are other reference patterns shared by unparadoxical expressions that prove
to be sensible restrictions on disquotation. Moreover, their relative simplicity will
allow us in Section 4 to formulate proof-theoretic approximations that we then deploy
in the formulation of sound and encompassing axiomatic theories of disquotational
truth. But before we get to that, I will briefly introduce my general account of alethic
reference and related notions.

2.3 Alethic reference

Before giving a formal definition of alethic reference, I will briefly discuss its
motivation and some of its general features.

Alethic reference (just “reference”, from now on) is introduced in order to study
the reference patterns underlying the semantic paradoxes. Accordingly, it is a relation

11See Hardy [14] and Ketland [18, 19]. A theory formulated in an extension of L is said to be ω-
inconsistent just in case there is a formula ϕ(x) such that, for each n ∈ ω, ϕ(n) is a theorem and, at
the same time, the theory entails ¬∀x ϕ(x). An ω-inconsistent theory may be nonetheless consistent, as
inferring ∀x ϕ(x) from the set of all its instances ϕ(n) would require an infinitary rule, not admissible in
finitary systems such as the ones we are working with.
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between sentences of LT. Sentences can refer to one another in two different ways:
by mention and by quantification. For a sentence ϕ to refer by mention – “m-refer”
– to a sentence ψ the former must contain a closed term denoting (the code of)
ψ ; and for it to refer to ψ by quantification – “q-refer” – (the code of) ψ must
fall under the range of the quantifiers in ϕ, which might be restricted by predicates
in a sense to be specified. Since we are only interested in reference in the context
of truth, to determine the m- and q-referents of a sentence, we will focus only on
terms occurring in the scope of T. As a consequence, only sentences containing T
can (alethically) refer. Finally, it is worth pointing out that since reference is strongly
tied to the presence of terms in sentences, the notion cannot be closed under logical
equivalence, on pain of triviality (cf. footnote 13). In other words, reference is not
extensional, but hyperintensional.

We turn now to the definitions.

Definition 1 (M-reference) Let ϕ and ψ be sentences. ϕ m-refers to ψ iff ϕ contains
a subsentence of the form Tt and N � t = �ψ�.

A sentence m-refers only to those sentences denoted by closed terms that occur
immediately after T. For instance, let ¬. be a function symbol of L representing
the p.r. function that maps each formula to its negation – and similarly for other
logical connectives – and let BewPA(x) weakly represent provability in PA in a natural
way.12 According to the definition of m-reference, while ¬T�0 = 0� m-refers to
0 = 0, T¬. �0 = 0� m-refers to the negation of 0 = 0 – but not to 0 = 0 itself –
and BewPA(�0 = 0�) doesn’t m-refer to any expression. Thus, proper subterms in the
scope of T and T-free sentences don’t play a role in m-reference.

Note also that while T�0 = 0� → T�0 = 0� m-refers to 0 = 0, 0 = 0 →
0 = 0 doesn’t, so m-reference is not closed under logical – let alone material –
equivalence.13 For this reason, one should not expect the equivalences delivered by
Theorem 1 to bring forth self-m-referential sentences. However, since L contains a
function symbol for substitution, there is a stronger version of this result that does so,
provided that Tx is a subformula of ϕ.

Theorem 2 (Strong Diagonalization) For every formula ϕ(x, v) there is a term t s.t.
t = �ϕ(t, v)� is a theorem of PA.14

We say that ϕ(t, v) is a strong fixed point of ϕ(x, v). Strongly diagonalizing, for
instance, the predicate ¬Tx, we obtain in PA the following identity:

l = �¬Tl�
that is, a sentence that m-refers to itself. ¬Tl is a ‘strong’ liar sentence.

12See Halbach & Visser [12, 13] for a discussion on natural representations.
13If it were, every sentence ϕ would refer to every other sentence ψ , as ϕ and, e.g. ϕ ∧ (T�ψ� → T�ψ�)
are logically equivalent, and the latter obviously m-refers to ψ .
14See Jeroslow [17] for a proof.
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Q-reference is considerably more complicated. The underlying idea is the follow-
ing. While, e.g. ∀x Tx q-refers unrestrictedly to every expression, sentences such as
PA’s global reflection principle,

(GRfnPA) ∀x (BewPA(x) → Tx)

q-refer only to the theorems of PA. In general, universal quantifiers followed by
conditionals are to be understood as restricted, i.e. ranging over just the sentences sat-
isfying the antecedent, with one proviso: that the antecedents are T-free. In this way,
we are able to determine what the sentence q-refers to.15 Otherwise, the quantifiers
are taken to be unrestricted.

Giving a formal definition of q-reference requires some additional setup. We first
need to introduce the procedure of normalizing formulae of LT; q-reference for sen-
tences is then defined in terms of their normalizations. Since distinct sentences can
have the same normalization, the procedure therefore induces an equivalence rela-
tion – having the same normalization – under which q-reference is closed. Triviality
is avoided, however, since this equivalence relation is more fine grained than logical
equivalence.

The normalization of an expression is the result of a series of logically valid trans-
formations that deliver a formula in alethic disjunctive normal form (ADNF). Call
“prime” any atomic or universal formulae or their negation. A formula is in ADNF
just in case it contains no conditionals and no existential or dummy quantifiers, and
every subformula of the form ∀v ϕ is s.t. (i) ϕ is a disjunction (of length ≥ 0) of
conjunctions (of length ≥ 0) of primes and, (ii) if ϕ is of the form ψ ∨ χ , ψ con-
tains all and only the T-free disjuncts of ϕ (if any) and χ all of the T-containing
disjuncts (if any). The point of normalization is that one can easily see whether
sentences in ADNF take the form of a restricted quantified claim. Consider a sen-
tence ∀v ϕ in ADNF containing T. If ϕ is a disjunction ψ ∨ χ with some T-free
disjuncts, ∀v ϕ can be seen to be equivalent to the restricted quantificational claim
∀v (¬ψ → χ), for the disjuncts of ψ must be T-free whereas the disjuncts of χ must
not. In this way, the reference-restricting conditional ¬ψ → χ is made explicit, and
¬ψ is guaranteed to encapsulate all truth-free restrictions imposed on ∀v. If, instead,
ϕ is not a disjunction or contains no T-free disjuncts, the quantifiers in ∀v ϕ are
unrestricted.

Since formulae in ADNF cannot contain conditionals or existential quantifiers,
the first step in normalizing an expression is to replace these connectives with
negations, conjunctions, disjunctions, and universal quantifiers, making use of the
standard definitions. Let τ : LT → LT carry out these replacements, that is,
τ(ϕ → ψ) := ¬τ(ϕ) ∨ τ(ψ) and τ(∃v ϕ) := ¬∀v ¬τ(ϕ). Then, the normalization
process is done in stages. It consists of successive transformations of each subfor-

15Recall there is no standard interpretation of T yet. Our goal is, instead, to define reference to formulate
restrictive criteria for disquotation in terms of this notion and then learn about truth and its extension.
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mula of the form ∀v ϕ into ADNF, starting from those of lesser depth. Let ϕ contain
no conditionals, existential, or dummy quantifiers.

dep(∀v ϕ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if ϕ is atomic
dep(∀v ψ) if ϕ := ¬ψ

max{dep(∀v ψ), dep(∀v χ)} if ϕ := (ψ ∧ χ)

max{dep(∀v ψ), dep(∀v χ)} if ϕ := (ψ ∨ χ)

dep(∀uψ) + 1 if ϕ := ∀uψ

For each i ∈ ω, the i-normalization of ϕ is the result of successively applying the
following transformations to each subformula ∀v ψ of depth i:

1. Replace every subformula of the form ¬(ψ1 ∨ψ2) and ¬(ψ1 ∧ψ2) with (¬ψ1 ∧
¬ψ2) and (¬ψ1 ∨ ¬ψ2) resp. until they don’t occur any longer, starting with the
innermost.

2. Erase all double negations.
3. Replace every subformula of the form ψ1 ∧ (ψ2 ∨ ψ3) and (ψ2 ∨ ψ3) ∧ ψ1 with

(ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3) and (ψ2 ∧ ψ1) ∨ (ψ3 ∧ ψ1) resp. until they don’t occur
any longer, starting with the innermost.

4. In every subformula of the form ∀v(ψ1 ∨ · · · ∨ ψm) (where each ψi , 1 ≤ i ≤ m,
is not itself a disjunction), rearrange the disjuncts into χ1 ∨χ2 such that the ones
not containing T (if any) occur in χ1, whilst the others (if any) occur in χ2.

Definition 2 (Normalization) The normalization ϕ∗ of a formula ϕ is the result
of erasing all dummy quantifiers in τ(ϕ) and then, if there are any quantifiers
left, performing successive i-normalizations starting with i = 1 and stopping after
i = max{dep(∀v ψ) : ∀v ψ is a subformula of ϕ}.

Since every step in the i-normalization of a formula involves only finitely many
transformations and formulae contain finitely many quantifiers, the normalization
process always terminates. Moreover, it delivers a logically equivalent expression.

We are finally in a position to provide an adequate and precise definition of q-
reference. Let n abbreviate n1, . . . , nm ∈ ω, and n abbreviate n1, . . . , nm.

Definition 3 (Q-reference) Let ϕ, ψ be sentences. ϕ q-refers to ψ iff ϕ∗ has a
subsentence of the form ∀vχ s.t. T occurs in χ , and one of the following holds:

1. χ := (χ1 ∨ χ2), T doesn’t occur in χ1, and χ2[n/v] q-refers or newly m-refers
to ψ ,16 for some n ∈ ω s.t. N � ¬χ1[n/v].

2. Either χ := (χ1 ∨ χ2) and T occurs in χ1 or χ is not a disjunction or a universal
statement, and χ [n/v] q-refers or newly m-refers to ψ , for some n ∈ ω.

In brief, the q-referents of universally quantified claims are the sentences their
(possibly restricted) instances m- or q-refer to. More precisely, a sentence whose

16To keep m- and q-reference apart, we require here that m-reference is achieved through ‘new’ closed
terms, that is, that the latter are not present in the sentence itself but are a product of the instantiation of
the quantifiers at issue.
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normalization contains a subsentence of the form ∀vϕ q-refers to what each instance
ϕ[n/v] newly m-refers or q-refers to, unless it ϕ a reference-restricting conditional,
in which case only the instances with true antecedents are to be considered.17 For
instance,

∀x∀y (T�0 = 0� ∧ Tx→. y) (6)

which is already in ADNF, q-refers to the m-referents of each instance T�0 =
0� ∧ Tm→. n, provided that the terms delivering m-reference are a product of the
instantiation of the quantifiers ∀x∀y, which must be eliminated together ‘at once’.
Thus, (6) q-refers just to every conditional sentence. On the other hand,

∀x (x = �0 = 0� → ∀y (y = ¬. x → Ty)) (7)

which normalizes into ∀x (x �= �0 = 0� ∨ ∀y (y �= ¬. x ∨ Ty)), q-refers to the q-
referents of each instance ∀y (y �= ¬. n ∨ Ty)) provided that N � n = �0 = 0�: i.e.
(7) q-refers to the negation of 0 = 0.

Just as the definition of m-reference accounts for the self-referentiality of cer-
tain sentences delivered by the Strong Diagonal Lemma, Definition 3 implies that
‘weakly’ diagonalizing certain predicates – e.g. in which Tx occurs as a subformula
– also delivers self-referential sentences.18 This implies that λ is self-q-referential.
The Visser-Yablo sentences, instead, only q-refer to sentences coming later in the
sequence; they are not self-q-referential.

Mention and quantification exhaust the ways in which a sentence can directly refer
to other expressions. Thus, we have the following definition of direct reference –
“d-reference”.

Definition 4 (D-reference) Let ϕ, ψ be sentences. ϕ directly refers to ψ iff it m- or
q-refers to ψ .

Observation 3 For all ϕ, ψ, χ ∈ LT:

1. If ϕ ∈ L , ϕ doesn’t d-refer to ψ .
2. If N � s = t , ϕ and ϕ[s/t] d-refer to the same sentences.
3. ϕ and ¬ϕ d-refer to the same sentences.
4. ϕ ∨ χ , ϕ ∧ χ , and ϕ → χ d-refer to ψ iff either ϕ or χ do.
5. If v is not free in ϕ, ϕ, ∀v ϕ, and ∃v ϕ d-refer to the same sentences.
6. ∀v ϕ and ∀uϕ[u/v] d-refer to the same sentences, if u is free for v in ϕ,
7. The following pairs of logical equivalents d-refer to the same sentences:

– ϕ and ¬¬ϕ,
– ϕ ∨ ψ and ψ ∨ ϕ,

17Several worked examples, together with additional motivation and discussion, can be found in Picollo
[27].
18See Picollo [27, Section 3.3].
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– ϕ ∧ ψ and ψ ∧ ϕ,
– (ϕ ∨ ψ) ∨ χ and ϕ ∨ (ψ ∨ χ),
– (ϕ ∧ ψ) ∧ χ and ϕ ∧ (ψ ∧ χ),
– ϕ → ψ and ¬ψ → ¬ϕ,
– ϕ ∨ (ψ ∧ χ) and (ϕ ∨ ψ) ∧ (ϕ ∨ χ),
– ϕ ∧ (ψ ∨ χ) and (ϕ ∧ ψ) ∨ (ϕ ∧ χ),
– ¬(ϕ ∨ ψ) and ¬ϕ ∧ ¬ψ ,
– ¬(ϕ ∧ ψ) and ¬ϕ ∨ ¬ψ ,
– ϕ → ψ and ¬ϕ ∨ ψ ,
– ∃vϕ and ¬∀v¬ϕ.

Definition 4 allows us to characterize many ‘mixed’ reference patterns. Consider,
for instance, sentences λ1 and λ2 in the 2-liar cycle in (3). While λ1 m-refers to λ2,
the latter only q-refers to the former. Thus, we can say they directly refer to each
other. However, in a very clear sense they also refer to themselves, albeit indirectly.
Otherwise, we would get a semantic paradox without self-reference on the cheap.
The following notions are intended to deal with this and other similar cases.

Definition 5 (Chain of reference) A (possibly infinite) sequence of sentences s.t.
each sentence in the sequence d-refers to the one coming after, if any.

Definition 6 (Reference) Let ϕ, ψ be sentences. ϕ refers to ψ iff there’s a chain of
reference starting with ϕ and ending with ψ .

We can employ the notions just introduced to define salient reference patterns,
such as the following.

Definition 7 (Self-reference) A sentence is self-referential iff it refers to itself.

Definition 8 (Well-foundedness) A sentence ϕ is well-founded iff all chains of
reference starting with ϕ are finite. Otherwise, we say that ϕ is unfounded.

Thus, sentences that don’t d-refer to any expressions – e.g. the theorems of PA
– are well-founded. And sentences that only refer to well-founded expressions are
well-founded too. On the other hand, every self-referential expression is obviously
unfounded. But there are also unfounded sentences that don’t refer to themselves,
such as the Visser-Yablo sentences in (5). Thus, not all paradoxical expressions are
self-referential. However, the notions introduced in this section can still be deployed
in the formulation of restrictions to our disquotational truth principles. As will be
seen in the next section, all paradoxical expressions are unfounded, for theories in
which disquotation is restricted to well-founded sentences will be shown to be (ω-)
consistent. What is more, we will show that this characterization can be refined even
further, prompting more encompassing truth systems.
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3 Semantic Theories of Truth

In this section we deploy the notions of alethic reference introduced in Section 2.3
to prove the existence of models of LT expanding N which verify large and well-
motivated sets of instances of disquotation. In other words, we put forward semantic
truth theories. In turn, these will serve as witnesses to the consistency and arithmetical
soundness of the axiomatic systems we introduce in Section 4.

3.1 Well-Founded Truth

Our first theory consists of a single model 〈N, �wf〉 of LT in which the extension
assigned to T, �wf, contains all and only true well-founded sentences. Thus, all
instances of the T-schema for well-founded sentences hold in the model. Moreover,
since 〈N, �wf〉 expands the standard model of arithmetic, the Uniform T-schema
restricted to formulae with only well-founded numerical instances also holds in
〈N, �wf〉.

The set �wf is obtained via a usual Kripke-style construction, by considering a
transfinite sequence of sets �α ⊆ ω, with α ∈ On (the class of all ordinals), of
which �wf is shown to be a fixed point. In order to construct this sequence, we first
consider another sequence of sets α whose fixed point, wf, is the set of well-
founded sentences. Thus, this sequence ‘stratifies’ this set. If ϕ is a sentence, let �ϕ

be the set of sentences ϕ d-refers to. For each α ∈ On, α is defined as follows:

α :=
⎧
⎨

⎩

∅ if α = 0
{ϕ : �ϕ ⊆ β} if α = β + 1⋃

β<α β if α is a limit

Lemma 1 For all α, β ∈ On, if α < β, then α ⊆ β .

Proof By transfinite induction on β. Let α < β and ϕ ∈ α . If β is 0 or a limit
ordinal, the result follows trivially. Let β = ξ + 1. By inductive hypothesis (i.h.),
ϕ ∈ ξ . Thus, ξ �= 0. If ξ = ζ +1, �ϕ ⊆ ζ . Again, by i.h., ζ ⊆ ξ , so �ϕ ⊆ ξ .
Therefore, ϕ ∈ β . The case in which ξ is a limit can be proved in a similar way.

Proposition 1 There is an α ∈ On s.t., for every β > α, α = β and α is the set
of well-founded sentences.

Proof The first conjunct follows immediately from Lemma 1 and cardinality consid-
erations. Therefore, the sequence reaches a fixed point, wf. We show that wf is the
set of well-founded sentences.

Let ϕ ∈ wf. Thus, ϕ ∈ α , for some α ∈ On. We show by transfinite induc-
tion on α that all sentences in α are well-founded. Assume that, for every β < α,
β contains only well-founded sentences. If α = 0, the result follows trivially. If
α = ξ +1, then ξ is a set of well-founded sentences, by i.h.. Then, all members of α

d-refer just to well-founded sentences and are also well-founded. If α is a limit
ordinal, the result follows trivially from the i.h. as well.
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Now let ϕ be a well-founded sentence. By Definition 8, either ϕ doesn’t refer or
every chain of reference starting with ϕ is finite. Thus, the following function from
the set of well-founded sentences to On is well defined:

f (ϕ) :=
{

0 if �ϕ = ∅

sup{f (ψ) + 1 : ϕ d-refers to ψ} otherwise

I show that ϕ ∈ f (ϕ)+1 by transfinite induction on f (ϕ). If f (ϕ) = 0, �ϕ = ∅,
so �ϕ ⊆ 0, so ϕ ∈ 1. Assume the result holds for every α < f (ϕ) and let
f (ϕ) = β + 1. The case in which f (ϕ) is a limit is similar. Then, β is the supremum
of all f (ψ) s.t. ϕ d-refers to ψ . By i.h. and Lemma 1, �ϕ ⊆ β+1, which means
ϕ ∈ f (ϕ)+1. By Lemma 1 and the first conjunct of this proposition, we can conclude
that ϕ ∈ wf.

We have now paved the way for the construction of the sequence of �α , with α ∈
On, that will give us the desired extension of the truth predicate. At each ordinal α,
�α contains only sentences that are well-founded at this stage, i.e. that belong to α .

�α :=
⎧
⎨

⎩

∅ ifα = 0
{ϕ : 〈N, �β〉 � ϕ} ∩ α ifα = β + 1⋃

β<α �β if α is a limit ordinal

To show that the sequence reaches a fixed point we first need to prove two lem-
mata. According to the first, the truth value of a statement in a model is not affected
by the mere addition or removal of sentences it doesn’t d-refer to from the extension
of the truth predicate. This establishes a link between direct reference and Leitgeb’s
[21] notion of dependence.19 More specifically, it follows that ϕ depends on �ϕ . The
converse doesn’t hold, that is, �ϕ is not a subset of every set ϕ depends on as, e.g.
T�λ� → T�λ� d-refers to λ but depends on ∅. Just like aboutness, dependence is not
as tied to the syntactic structure of sentences as reference is.

Lemma 2 Let � be a set of sentences. If �ϕ ⊆ �, then for every set of sentences �,

〈N, �〉 � ϕ iff 〈N, � ∩ �〉 � ϕ.

Proof Since every sentence is logically equivalent to its normalization (cf. Definition
2), we can prove the result for the normalization of ϕ, ϕ∗, by induction on its com-
plexity (number of logical operators). If ϕ∗ ∈ L , ϕ∗ is true in every expansion of N
or in none, so the result follows trivially. Thus, we assume ϕ∗ contains T.

If ϕ∗ is an atomic sentence, then it’s of the form Tt , where either t denotes a
sentence in N or it doesn’t. If it doesn’t, then ϕ∗ is false both in 〈N, �〉 and in 〈N, �∩
�〉. If t denotes a sentence ψ , then, by Definition 1, ψ ∈ �ϕ ⊆ �. Thus, ψ ∈ � iff
ψ ∈ � ∩ �, so we have the desired result.

19A sentence ϕ is said to depend on a set of sentences � iff, for every set of sentences �, 〈N,�〉 � ϕ iff
〈N, � ∩ �〉 � ϕ.

452



Reference and Truth

Assume the claim holds for every sentence of lower complexity than ϕ∗. Since d-
reference is closed under logical connectives (cf. Observation 3), if ϕ is a negation,
conjunction, or disjunction, the result follows trivially from the i.h.

Let ϕ∗ := ∀vψ , where ψ is not a universal statement. ϕ∗ contains no dummy
quantifiers. Let ψ := (ψ1 ∨ ψ2) s.t. T occurs in every disjunct of ψ2 but in none of
ψ1. Otherwise, the proof is similar but with less complications. Since ψ1 ∈ L , for
each n ∈ ω either N � ψ1[n/v] or N � ¬ψ1[n/v]. Note that if N � ψ1[n/v], then
〈N, �〉 � ψ[n/v] for every set of sentences �.

Assume then that N � ¬ψ1[n/v]. Thus, for every �, 〈N, �〉 � ψ[n/v] iff
〈N, �〉 � ψ2[n/v]. Since �∀vψ ⊆ � and, by Definition 3, �∀vψ is the union of all
�ψ2[n/v] s.t. N � ¬ψ1[n/v], we have that �ψ2[n/v] ⊆ �. By i.h., 〈N, �〉 � ψ2[n/v]
iff 〈N, � ∩ �〉 � ψ2[n/v]. By our last assumption, this entails that 〈N, �〉 �
(ψ1∨ψ2)[n/v] iff 〈N, �∩�〉 � (ψ1∨ψ2)[n/v] or, what is the same, 〈N, �〉 � ψ[n/v]
iff 〈N, � ∩ �〉 � ψ[n/v].

Thus, in any case we also have that 〈N, �〉 � ∀vψ iff 〈N, � ∩ �〉 � ∀vψ .

Lemma 3 For all α, β ∈ On, if α < β, then �α ⊆ �β .

Proof By transfinite induction on β. If β is not a successor ordinal, the result follows
trivially. Let β = ξ + 1, and assume that, for all ζ < ξ , �ζ ⊆ �ξ and α < β. Thus,
α ≤ ξ . If α = ξ , trivially �α ⊆ �ξ , and if α < ξ , �α ⊆ �ξ by i.h.. Thus, it remains
to be shown that �ξ ⊆ �β .

Let ϕ ∈ �ξ . Therefore, �ξ �= ∅, so ξ is either a successor or a limit ordinal. The
proof for both cases is similar. I only show it for ξ = ζ + 1. Since ϕ ∈ ξ , ϕ d-refers
only to sentences in ζ and 〈N, �ζ 〉 � ϕ. Moreover, note that �ζ = ζ ∩ �ξ : by
construction of �ζ , �ζ ⊆ ζ and, by i.h., �ζ ⊆ �ξ . For the other direction, assume
for contradiction that ψ ∈ ζ ∩ �ξ and ψ /∈ �ζ . Thus, ζ �= ∅. Let ζ = θ + 1; the
case in which ζ is a limit ordinal is analogous. Since ψ /∈ �ζ but ψ ∈ ζ , we have
that 〈N, �θ 〉 � ψ , that is, 〈N, �θ 〉 � ¬ψ . Since d-reference is closed under negation
(cf. Observation 3), we also have that ¬ψ ∈ ζ . Thus, ¬ψ ∈ �ζ . By i.h., ¬ψ ∈ �ξ .
As ψ ∈ �ξ too, both 〈N, �ζ 〉 � ψ and 〈N, �ζ 〉 � ¬ψ , which is impossible.

Therefore, 〈N, ζ ∩ �ξ 〉 � ϕ. By Lemma 2, 〈N, �ξ 〉 � ϕ. Also, since ϕ d-refers
only to sentences in ζ , ϕ ∈ ξ , and by Lemma 1, ϕ ∈ β . Thus, ϕ ∈ �β .

Proposition 2 There is an ordinal α ∈ On s.t. �α = �α+1.

Proof By Lemma 3 and cardinality considerations.

The sequence of sets �α stabilizes at some ordinal, it has a fixed point. Let �wf
be this fixed point. The following result establishes that all instances of the T-schema
for well-founded sentences hold in 〈N, �wf〉.

Proposition 3 For every well-founded sentence ϕ, 〈N, �wf〉 � T�ϕ� ↔ ϕ.
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Proof Let ϕ be a well-founded expression. By Proposition 1, there is an ordinal α

s.t. ϕ ∈ α . Thus, α �= ∅, so α is either a successor or a limit ordinal. I only prove
the result for the latter case, as the proof for the former is analogous. If α is a limit,
by Lemma 3 there is a successor ordinal β < α s.t. ϕ ∈ β . As d-reference is closed
under negation, we also have that ¬ϕ ∈ β . Let β = ξ + 1. Either 〈N, �ξ 〉 � ϕ or
〈N, �ξ 〉 � ¬ϕ, so either ϕ ∈ �β or ¬ϕ ∈ �β . Therefore, by Lemma 3, ϕ ∈ �wf or
¬ϕ ∈ �wf. Let ζ be the smallest ordinal s.t. �ζ = �wf, i.e. the fixed-point ordinal.

If ϕ ∈ �ζ , then 〈N, �ζ 〉 � T�ϕ�, but also ϕ ∈ �ζ+1, since �ζ = �ζ+1. Thus,
ϕ ∈ {ϕ : 〈N, �ζ 〉 � ϕ} ∩ ζ , which means that 〈N, �ζ 〉 � ϕ. So, we get 〈N, �ζ 〉 �
T�ϕ� ↔ ϕ.

If, instead, ¬ϕ ∈ �ζ , then ¬ϕ ∈ �ζ+1, so ¬ϕ ∈ {ϕ : 〈N, �ζ 〉 � ϕ} ∩ ζ .
This implies that 〈N, �ζ 〉 � ¬ϕ and, thus, 〈N, �ζ 〉 � ϕ. Therefore, ϕ �∈ �ζ+1,
which means that ϕ �∈ �ζ , i.e. 〈N, �ζ 〉 � T�ϕ�. Again, we have that 〈N, �ζ 〉 � T�ϕ�
↔ ϕ.

As a consequence, for every well-founded sentence, either it belongs to �wf or
its negation does. Note also that, by Lemma 1 and Proposition 1, �wf contains only
well-founded sentences.

3.2 More Permissive Criteria

Well-foundedness is not the only restriction we can impose on instances of the T-
schema in an expansion of N to LT using the notions of alethic reference: more
permissive criteria may also be adopted. For instance, note that in the case of the
Visser-Yablo paradox, every expression on the list is unfounded, but also there are
infinitely many of them and, additionally, each of them d-refers to infinitely many
others. It can be shown that, if only finitely many sentences on the list are considered,
no ω-inconsistency arises. More generally, let � by a finite set of non-self-referential
but unfounded sentences. One can easily find a model 〈N, �〉 in which all instances
of the T-schema for sentences in wf ∪ � hold.

Proposition 4 If � is a finite set of non-self-referential unfounded sentences, there’s
a � ⊆ wf ∪ � s.t. all instances of the T-schema for sentences in wf ∪ � are true
in 〈N, �〉.

Proof Let f : wf ∪ � → ω be s.t.

f (ϕ) :=
{

0 if � ∩ �ϕ = ∅

max{f (ψ) : ψ ∈ � ∩ �ϕ} + 1 otherwise

f is well defined, as � is finite and contains no self-referential sentences. Thus, every
complete chain of reference restricted to members of � ends in a sentence that is not
in �. For each n ∈ ω, let �n := {ϕ ∈ � : f (ϕ) = n}. Since � is finite, only finitely
many of these sets are non-empty. Let k ∈ ω be the greatest number s.t. �k �= ∅.
Thus, � = ⋃

i≤k �i .
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For each n ∈ ω, let

�n :=
{

�wf ∪ {ϕ ∈ �0 : 〈N, �wf〉 � ϕ} if n = 0
�m ∪ {ϕ ∈ �m : 〈N, �m〉 � ϕ} if n = m + 1

I show that all instances of the T-schema for sentences in wf ∪� are true in 〈N, �k〉.
By Lemma 2, all instances of the T-schema for well-founded sentences are still true
in 〈N, �k〉, for �wf ⊆ �k and no well-founded sentence may refer to members of �,
as they are unfounded. Now let ϕ ∈ �, which means there’s an n ≤ k s.t. ϕ ∈ �n. Let
�−1 := �wf. Therefore, we have that 〈N, �k〉 � ϕ iff 〈N, �n−1〉 � ϕ iff 〈N, �n〉 �
T�ϕ� iff, by Lemma 2, 〈N, �k〉 � T�ϕ�, as ϕ cannot d-refer to any member of �k that
isn’t in �n. Consequently, the T-schema also holds for all sentences in �.

More interestingly, it can be shown that for any infinite set � of non-self-
referential unfounded sentences, each of which d-refers only to a finite number of
expressions, there is a model 〈N, �〉 in which all instances of the T-schema for
sentences in wf ∪ � are true.

Proposition 5 If� is an infinite set of non-self-referential unfounded sentences, each
of which d-refers only to a finite number of expressions, there is a � ⊆ wf ∪ � s.t.,
for every ϕ ∈ wf ∪ �, 〈N, �〉 � T�ϕ� ↔ ϕ.20

Proof Let � := {ϕ0, ϕ1, . . . }, �n := {ϕ0, . . . , ϕn}, and

Gn := {� : �wf ⊆ � ⊆ �wf∪
⋃

i≤n

(�ϕi
∪ {ϕi}) & 〈N, �〉 � T�ϕ� ↔ ϕ, forϕ ∈ �n}

Each Gn is finite, for each
⋃

i≤n(�ϕi
∪ {ϕi}) is. I show that, for every n ∈ ω, we can

find sets �1 ⊆ · · · ⊆ �n s.t. �i ∈ Gi for each i ≤ n.
By Proposition 4, for each n ∈ ω there’s a model 〈N, �n〉 with �wf ⊆ �n ⊆

�wf ∪ ⋃
i≤n(�ϕi

∪ {ϕi}) in which all instances of the T-schema for sentences in
wf ∪ �n are true. For i ≤ n let

�i
n := �n ∩ (�wf ∪

⋃

j≤i

(�ϕj
∪ {ϕj }))

Thus, for each i ≤ n, �i
n ⊆ �i+1

n . By Lemma 2, we have that all instances of the
T-schema for sentences in �i hold in 〈N, �i

n〉, so �i
n ∈ Gi .

Let G be the smallest tree consisting of sequences of members of {∅} ∪ ⋃
n∈ω Gn

s.t.:

– 〈∅〉 ∈ G ,
– if 〈�0, . . . , �n〉 ∈ G and �n ⊆ �n+1 ∈ Gn+1, then 〈�0, . . . , �n, �n+1〉 ∈ G .

20This result has been proved in collaboration with Thomas Schindler.
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Notice that G is locally finite, that is, each node has finitely many children, for each
Gn is finite. Moreover, for every n ∈ ω, G contains a sequence of length n, e.g.
〈�0

n, . . . , �
n
n〉, so G is an infinite graph. Finally, all sequences start with ∅, so all

nodes are connected by ∅. By König’s Lemma,21 G contains an infinite sequence
〈�0, . . . , �n, . . .〉 s.t., for each i ∈ ω, �i ∈ Gi .

Let � := ⋃
n∈ω �n. By Lemma 2, all instances of the T-schema for well-founded

sentences are still true in 〈N, �〉 as, for each n ∈ ω, �n ∩ wf = �wf. Let ϕi ∈ �

and let m > i be the least natural number s.t., for every k ≥ m, �k doesn’t contain
elements of �ϕi

that are not already in �m – i.e. �k ∩ �ϕi
= �m. Such an m

must exist, for �ϕi
is finite and sequences in G are monotonic. Since i < m and

�m ∈ Gm, 〈N, �m〉 � T�ϕi� ↔ ϕi . Given the choice of m, Lemma 2 entails that
〈N, �〉 � T�ϕi� ↔ ϕi .

Propositions 4 and 5 equip us with a more precise criterion for paradox. Whilst
the former shows that infinitely many sentences are required for non-self-referential
(ω-)paradox, by Proposition 5 we also know that at least some of the infinitely many
paradoxical sentences must directly refer to infinitely many expressions.

Based on the notions of alethic reference and the results provided in this section,
different reference patters may be employed to obtain a plethora of semantic truth
theories, some more permissive, philosophically motivated, or elegant than others.
Our restriction to well-founded sentences seems to fare quite well in these respects,
although we have seen more permissive ones may also be adopted.

Unfortunately, though, reference and, a fortiori, well-foundedness and other refer-
ence patterns are far too complex to guide the development of axiomatic truth theories
in a straightforward manner. For they are not definable in L , as they make essential
use of the notion of satisfaction in the standard model (cf. Definition 3). In the next
section I provide mirroring notions of reference tailored specifically for that purpose;
these are simplified counterparts of those introduced in the previous section.

4 Axiomatic Truth

The first part of this section is concerned with proof-theoretic versions of the notions
presented in Section 2.3, that is, reference concepts that are relative to a particular
proof-system. Section 4.2 explores a naı̈ve truth theory formulated purely in terms
of these proof-theoretic notions, shows it is unsound, and thus motivates the restric-
tion of disquotation to reference stable expressions to avoid paradox. Finally, in
Section 4.3 I formulate several axiomatic theories of disquotational truth deploying
the concepts introduced in Sections 4.1 and 4.2. The resulting systems are shown to
be sound and proof-theoretically strong in comparison with other systems that exists
in the literature.

21König’s Lemma establishes that every connected, locally finite, infinite graph contains an infinite path.
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4.1 Proof-Theoretic Reference

Note that the set of sentences of LT is p.r., as is as the occurrence relation that holds
between a string of symbols of the language and each of its substrings. Let Sent(x)

and Occ(x, y) ∈ L express this set and relation, respectively, in a natural way.22

Thus, m-reference is also a p.r. relation (cf. Definition 1), as it can be expressed in
L by the �0

0 formula

MRef(x, y) := Sent(x∧. y) ∧ ∃t (Occ(T. t, x) ∧ t◦ = y)

where T. is a function symbol of L for the p.r. function that maps each term t to the
formula Tt – and likewise for other predicates that will come up later.

Q-reference, instead, is much more complex, as it’s not even arithmetical (cf. Def-
inition 3), i.e. expressible in L . As is well known, truth-in-N can be expressed by a
�1

1 formula, and this is best possible. Note that q-reference and truth-in-N are inter-
definable over a small class of arithmetical notions. On the one hand, truth-in-N
is the only notion occurring in the recursive definition of q-reference that involves
second-order quantification, as the value and the occurrence relations, the normal-
ization function, and syntactic properties of expressions such as being a disjunction
or a universal statement are all p.r. and, thus, arithmetical. Therefore, q-reference is
expressible by a �1

1 formula. On the other hand, truth-in-N can be defined for each
sentence ϕ ∈ L in terms of q-reference as follows: N � ϕ iff ∀x (x = �ϕ�∧ϕ → Tx)

q-refers to ϕ. Thus, q-reference is �1
1, namely, hyperarithmetical.

By the usual complexity considerations, this result extends to d-reference, refer-
ence, chains of reference, self-reference, and also well-foundedness (cf. Definitions
4 and 5–8), which means there is no formula in L that could be employed to restrict
the instances of the T-schema or the Uniform T-schema in a first-order axiomatic
system of disquotational truth. In other words, there is no straightforward way of
axiomatizing the semantic theories introduced in Section 3.

Although there might be interesting, rather indirect, ways of axiomatizing this
model, I opt instead to consider simpler, proof-theoretic versions of the concepts
introduced in Section 2.3; in particular of well-foundedness. The strategy consists in
replacing in Definition 3 the notion of truth-in-N with that of provability-in-PA, our
base theory. Thus, all �1

1 notions occurring in Definition 3 are replaced with �0
1 ones.

All further reference notions defined in terms of q-reference are modified accord-
ingly. The new concepts can be seen as approximations to the original ones. They
turn out to be expressible in L by formulae of fairly low quantificational complex-
ity. This allows for the formulation of generous and well-motivated restrictions on
disquotation, which result in powerful axiomatic truth theories, as will be seen soon.

Note that replacing in the definition of m-reference truth-in-N with provability-
in-PA would not alter the extension of the relation, for all identity statements that

22That is, by means of �0
0 formulae. Recall that every p.r. property (or relation) can be expressed in L by

a �0
0 expression and every recursively enumerable property by a �0

1 expression. As PA decides all �0
0 and

proves all true �0
1 sentences – i.e. PA is �0

1 -complete – those expressions represent and weakly represent,
respectively, the properties they express.
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are true in N are provable in PA and vice versa. As mentioned before, m-reference
is already a p.r. notion. On the other hand, substituting provability-in-PA for truth-
in-N in the definition of q-reference makes a significant difference: it results in a
much simpler, recursively enumerable notion. As is well known, provability-in-PA
is itself recursively enumerable. Thus, if we replace truth-in-N by provability-in-PA
in the recursive definition of q-reference, it can be shown by induction on the depth
of χ (cf. Section 2.3) that the altered notion is recursively enumerable as well, since
both the definiendum and provability-in-PA occur only positively in the definiens,
provability-in-PA is only preceded by a string of existential quantifiers, and all other
notions occurring in the definition are p.r., as it has already been argued. Therefore,
the resulting proof-theoretic notion of q-reference relative to PA can be expressed in
L by a �0

1 formula, QRefPA(x, y).
We can find arithmetical formulae expressing proof-theoretic versions of direct

reference, reference simpliciter, self-reference, and well-foundedness relative to PA
in terms of MRef(x, y) and QRefPA(x, y). For d-reference (cf. Definition 4), let
DRefPA(x, y) := MRef(x, y) ∨ QRefPA(x, y), which is trivially �0

1 .
For reference simpliciter, we first need to take a detour to define chain of refer-

ence. This requires some subtlety, for infinite sequences cannot be coded by natural
numbers. However, finite sequences can. Moreover, note that, according to Defini-
tion 6, for ϕ to refer to ψ there must be a chain of reference starting with the former
and ending with the latter, i.e. a finite chain. Thus, we can define reference in L
exclusively in terms of finite chains. Let Seq(x) ∈ �0

0 express in L the p.r. property
of being a (finite) sequence, and let len(x) and (x)i ∈ �0

0 express the p.r. function
that maps each sequence to its length and the one that maps each sequence x and
number i to the i-th entry of x, if i is smaller than the length of x, respectively. The
�0

1 formula

CRefPA(x) := Seq(x) ∧ ∀y < len(x) ∀z < y DRefPA((x)z, (x)Sz)

expresses in L the property of being a finite chain of reference relative to PA (cf.
Definition 5). Thus, reference relative to PA can be expressed in L by the �0

1 formula

RefPA(x, y) := ∃z (CRefPA(z) ∧ (z)0 = x ∧ (z)len(z)−1 = y)

Accordingly, self-reference relative to PA (cf. Definition 7) is expressed in L by
SRefPA(x) := RefPA(x, x) ∈ �0

1 . Well-foundedness, on the other hand, requires a bit
more work, as it’s defined in terms of possibly infinite chains of reference (cf. Defini-
tion 8). However, this is not a hindrance, for there is an equivalent formulation of the
definition in terms of finite chains only. We say a finite chain of reference ϕ1, . . . , ϕn

can be extended just in case there is a sentence ϕn+1 such that ϕ1, . . . , ϕn, ϕn+1 is
also a chain of reference. Clearly, a sentence ϕ is well-founded just in case every
finite chain of reference starting with ϕ can be extended only a finite number of
times. Thus, well-foundedness relative to PA is expressed by the 	0

3 formula

WfPA(x) := ∀y (CRefPA(y) ∧ (y)0 = x →
∃z∀w (CRefPA(w)∧len(y)< len(w)∧∀k< len(y) (y)k = (w)k → len(w) < z))
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This cumbersome formula states that for each finite chain of reference y starting with
x there is a limit z to the length of every chain that extends y.

4.2 Unstable Reference

One would think our job is almost done now. It just remains to relativize disquotation
to WfPA(x) and then extend PAT with the resulting instances (see Section 2.1), that is,

WfPA(�ϕ�) → (T�ϕ� ↔ ϕ) (8)

for each sentence ϕ ∈ LT, to obtain the desired truth system. Unfortunately, such a
theory would be too weak and, what is worse, unsound.

Although many sentences turn out to be well-founded relative to PA, only very few
are provably so in PA itself. Consider, for instance, the following:

∀x (x = �0 = 0� → Tx) (9)

Despite being obviously harmless, as it only refers to 0 = 0, PA cannot prove that (9)
isn’t self-referential, for that would mean that PA proves

¬BewPA(��∀x (x = �0 = 0� → Tx)� = �0 = 0��)
In other words, PA would prove its own consistency, which is not possible by Gödel’s
second incompleteness theorem. In general, PA is not able to prove that a given
sentence doesn’t q-refer to an arbitrary expression, for it cannot prove that a given
number or sequence of numbers provably fails to satisfy a given formula. There-
fore, PA can only establish positive cases of q-reference plus those negative ones in
which q-reference is nowhere restricted by a conditional – e.g. in ∀x T¬. x – or no
(non-dummy) quantifiers occur in the formula.

An idea that suggests itself is to inform PA that it doesn’t prove false statements,
i.e. that it is sound. This can be done by extending PA with all instances of PA’s
uniform reflection principle, that is,

(URfnPA) ∀t1 . . . tn (BewPA(�ϕ(t.1, . . . , t.n)�) → ϕ(t◦1 , . . . , t◦n))

where ϕ ∈ L . Let URfn(PA) be the resulting theory. URfn(PA) is trivially sound, as
all instances of URfnPA are true in N. Nonetheless, if we extend URfn(PA) with all
instances of (8), we obtain a trivial system.

Observation 4 URfn(PA) ∪ {WfPA(�ϕ�) → (T�ϕ� ↔ ϕ) : ϕ ∈ LT} is inconsistent.

Proof ‘Weakly’ diagonalizing (cf. Theorem 1) the predicate ¬BewPA(x) we obtain
a sentence γ that is provably equivalent in PA to ¬BewPA(�γ�) – i.e. PA’s Gödel
sentence. In turn, Strong Diagonalization (cf. Theorem 2) applied to ∀x (x = y∧γ →
¬Tx) delivers a term l∗ s.t.

PA � l∗ = �∀x (x = l∗ ∧ γ → ¬Tx)�
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Note that ∀x (x = l∗ ∧ γ → ¬Tx) doesn’t refer to anything in PA, for PA doesn’t
prove BewPA(�γ�). Moreover, URfn(PA) knows this, as it famously implies γ and,
therefore, that PA doesn’t prove γ . As a consequence, ∀x ¬BewPA(�ẋ = l∗ ∧ γ�) is a
theorem of URfn(PA), and so is WfPA(l∗). By an argument similar to that employed
in the liar paradox, one can show that the corresponding instance of the T-schema for
∀x (x = l∗ ∧ γ → ¬Tx) entails a contradiction in URfn(PA).

An immediate consequence of Observation 4 is that the theory that extends PAT
with all instances of (8) is unsound. The reason behind this perplexing result is that
being well-founded relative to PA does not mean that a sentence is actually well-
founded, but rather that PA has no ‘evidence’ for its unfoundedness, i.e. it doesn’t
know that l∗ = l∗ ∧ γ . The proof of Observation 4 shows that, if more evidence
is available, such as γ , a sentence might turn out to be unfounded relative to the
extended system, URfn(PA). This is a consequence of the incompleteness of PA.

Relativizing q-reference and all the other reference concepts that depend on it to
URfn(PA) or a stronger system instead of PA will obviously not solve the problem,
as any recursively axiomatizable theory will also be incomplete. The issue would
emerge all the same, only at a higher level. A better way of bypassing the obstacle
is to focus on sentences for which new evidence does not make a difference in the
expressions they refer to. I call these sentences “reference-stable” or “r-stable”, for
short.23 R-unstable expressions bear a certain analogy with blind truth ascriptions
and contingent liars: in both cases we don’t know what they express and, a fortiori,
if they are paradoxical or not. Only for r-stable sentences we can be sure that their
reference patterns are safe.

To properly define this class of sentences, we first need to introduce the idea
of a directly-reference-stable sentence, or “dr-stable” for short. These are sentences
that only contain reference-restricting conditionals with ‘simple’ antecedents, that is,
antecedents that, if satisfied by a sequence of numbers, PA knows so. Thus, these
antecedents must be provably equivalent in PA to �0

1 formulae.

Definition 9 (Dr-stability) Let ϕ be a sentence. ϕ is dr-stable iff in ϕ∗ all subformu-
lae of the form ∀v (χ1 ∨χ2) where T occurs in χ2 but not in χ1 are s.t. χ1 is provably
equivalent in PA to a 	0

1 formula.

For instance, whereas ∀x (x = l∗ → ¬Tx) and GRfnPA – i.e. ∀x (BewPA(x) →
Tx) – are both dr-stable, ∀x (¬BewPA(x) → Tx) and ∀x (x = l∗∧γ → ¬Tx) aren’t.
Since truth-in-N and provability-in-PA coincide for sentences provably equivalent in

23A complementary strategy would be to replace PA as our base theory with an extension of it by means
of a hierarchy of iterated reflection principles structurally identical to URfnPA into the transfinite. This
would increase the number of expressions that are rightly declared well-founded and, consequently, the
number of instances of disquotation that hold in the ultimate truth system. However, this would introduce
unnecessary complications, as we will see that URfn(PA) can already serve as base theory of considerably
powerful truth systems.
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PA to a �0
1 statement, q-reference in PA and q-reference simpliciter coincide in the

case of dr-stable sentences. Thus, so do d-reference in PA and d-reference simpliciter,
so we can drop the qualifier in these cases. The same cannot be said of reference
itself. For a dr-stable sentence ϕ might refer to an expression ψ that is not itself dr-
stable, so that the latter d-refers to a sentence χ but doesn’t d-refer to it in PA. Our
original sentence ϕ, then, also refers to χ but not in PA. Thus, we need the following
definition.

Definition 10 (R-stability) Let ϕ be a sentence. ϕ is r-stable iff it’s dr-stable and only
refers to dr-stable sentences.

Since GRfnPA only refers to T-free sentences, it must be r-stable. On the other
hand, ∀x (x = l∗ → ¬Tx) refers to ∀x (x = l∗ ∧ γ → ¬Tx) and, therefore, isn’t
r-stable. Since r-stable sentences are dr-stable and only refer to dr-stable sentences, it
follows from our previous considerations that Definition 10 can be equivalently re-
stated by replacing “refers” with “refers in PA”. Thus, reference in PA and reference
simpliciter concur in the case of r-stable sentences. Moreover, note that dr-stability is
expressible in L by a �0

1 formula, DRSt(x), as it’s defined in terms of p.r. syntactic
properties plus the property of being provably equivalent in PA to a 	0

1 formula.
Therefore, by the usual complexity considerations, r-stability is expressible in L by
the following 	2 formula:

RSt(x) := DRSt(x) ∧ ∀y (RefPA(x, y) → DRSt(y))

4.3 Restricting Disquotation

We now have all the resources needed to formulate sound axiomatic theories of dis-
quotational truth. Let URfn(PAT) be PAT+ (URfnPA) and let WFUTB be the theory
extending URfn(PAT) with the following restricted version of the Uniform T-schema,
where t abbreviates t1, . . . , tn:

∀t (RSt(�ϕ(t.)�) ∧ WfPA(�ϕ(t.)�) → (T�ϕ(t.)� ↔ ϕ(t◦)))
WFUTB – for “Well-founded Uniform Tarski Biconditionals” – uniformly entails all
instances of the T-schema for sentences that are provably r-stable and well-founded
in PA.

Proposition 6 WFUTB is ω-consistent.

Proof Since every r-stable sentence that is well-founded in PA is also well-founded
simpliciter, by Proposition 3 the axioms of WFUTB are all true in 〈N, �wf〉.

Despite being a disquotational theory, WFUTB is proof-theoretically strong, as it
can relatively interpret the theory of ramified truth up to �0, RT<�0 . This consists of
iterations of the theory of typed compositional truth over PAT up to the ordinal �0, the
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Feferman-Schütte ordinal.24 Each of these iterations requires its own truth predicate,
bringing about a hierarchy of corresponding languages.

As is well known, natural numbers can effectively codify ordinals up to �0.25

Assuming a fixed (effective) coding, if α < �0, we write α for the numeral of the
code of α. For clarity, I often identify ordinals with their codes if there is no room
for confusion. Based on this coding, PA can talk about ordinals and represent some
of their properties. For instance, the set of ordinals below �0 can be represented by a
formula of L , Ord(x), as well as their ordering, say, by the formula x ≺ y. Let ∀α ϕ

and ∃α ϕ be short for ∀v (Ord(v) → ϕ) and ∃v (Ord(v) ∧ ϕ), respectively, where v

is a suitable variable. As is also well known, PA can prove all instances of transfinite
induction up to ε0 (< �0), i.e.

(TIξ ) ∀α (∀β ≺ α ϕ(β) → ϕ(α)) → ∀α ≺ ξ ϕ(α)

for ϕ ∈ L and ξ < ε0.26 This means PA can prove that all ordinals below ε0 are well
ordered.

Let L<0 be L and, for every α such that 0 < α ≤ �0, let L<α be the result of
extending L with monadic predicates Tβ , for each β < α. PAT<α consists of the
axioms of PA formulated in L<α , with the induction schema extended to the whole
language. For each α < �0, let Sent(x, α) ∈ L – or Sentα(x), for short – represent
the set of sentences of L<α . We define a cumulative hierarchy of compositional truth
theories formulated in these languages, as follows.

Let RT<0 be PA and, for every α such that 0 < α ≤ �0, let RT<α be the
theory formulated in L<α that extends PAT<α with every instance of following
axiom-schemata, for each ξ < β < α:

(RTβ1) ∀s∀t (Tβ(s=. t) ↔ s◦ = t◦)
(RTβ2) ∀x (Sentβ(x) → (Tβ¬. x ↔ ¬Tβx))

(RTβ3) ∀x∀y (Sentβ(x∧. y) → (Tβ(x∧. y) ↔ (Tβx ∧ Tβy)))

(RTβ4) ∀x∀y (Sentβ(x∨. y) → (Tβ(x∨. y) ↔ (Tβx ∨ Tβy)))

(RTβ5) ∀x∀y (Sentβ(x→. y) → (Tβ(x→. y) ↔ (Tβx → Tβy)))

(RTβ6) ∀x∀y (Sentβ(∀. y x) → (Tβ(∀. y x) ↔ ∀t Tβx(t/y)))

(RTβ7) ∀x∀y (Sentβ(∃.y x) → (Tβ(∃.y x) ↔ ∃t Tβx(t/y)))

(RTβ8) ∀t (Sentξ (t
◦) → (Tβ(T. ξ t) ↔ Tξ t

◦))
(RTβ9) ∀t∀ζ ≺ β (Sentζ (t

◦) → (Tβ(T. ζ t) ↔ Tβt◦))
where ∀. and ∃. are function symbols for the p.r. functions mapping a variable v and
a formula ϕ to ∀v ϕ and ∃v ϕ, respectively. Note that the axioms never quantify over
the subindex β of Tβ , on pain of triviality. But they do quantify over the predicates
themselves up to a given ordinal β in RTβ9. This set is p.r. for each β < ε0 and

24See Halbach [10, chap. 8].
25More comprehensive ordinal notation systems are also possible, but this is enough for our purposes.
26See Pohlers [28, chap. 3].
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representable also for β ≥ ε0 insofar as all arithmetical instances of TIβ hold in the
theory.
RT<1 is just the theory of typed compositional truth CT where all occurrences of

T have been replaced with T0 (also within corner quotes), for RT08 and RT09 are
vacuously true. Similarly, for 1 < α < �0, axioms RTβ1, with β < α, establish all
instances of disquotation for identity statements for Tβ , and RTβ2-RTβ7 lay down the
compositional character of these truth predicates. RTβ8, in turn, provides instances
of disquotation for each truth ascription that belongs to lower levels of the hierarchy,
supplementing RTβ1. Finally, RTβ9 establishes that the hierarchy is cumulative.

Proposition 7 The theory of ramified truth up to �0, RT<�0 , is relatively inter-
pretable inWFUTB.

Proof I first show that LT contains a formula ϑβ(x) that behaves in WFUTB like
Tβ(x) in RT<ε0 , for each β < ε0, following Halbach’s [10] demonstration of his
Lemma 15.24. I then extend this result to every β < �0.

If ϕ(x) is a formula of LT containing T, let Lϕ ⊆ LT be the language that extends
L with ϕ(x) as if it were just a predicate symbol, that is, T occurs in formulae of
Lϕ only within ϕ(t), where t is a term.27 The relation that holds between a sentence
ψ and a formula ϕ just in case ψ is a sentence of Lϕ is p.r. Therefore, it can be
represented by a �0

0 expression, Sent�(x, y). Strongly diagonalizing the formula

∃s∃t (x = (s=. t) ∧ s◦ = t◦) ∨
∃z ((Sent0(z) ∨ ∃ζ ≺ y Sent�(z, k(ζ̇ /�y�))) ∧ x = ¬. z ∧ ¬Tk(ẏ/�y�)(ż/�x�)) ∨
∃z∃w ((Sent0(z∧. w) ∨ ∃ζ ≺ y Sent�(z∧. w, k(ζ̇ /�y�))) ∧ x = (z∧. w) ∧

(Tk(ẏ/�y�)(ż/�x�) ∧ Tk(ẏ/�y�)(ẇ/�x�))) ∨
∃z∃w ((Sent0(z∧. w) ∨ ∃ζ ≺ y Sent�(z∧. w, k(ζ̇ /�y�))) ∧ x = (z∨. w) ∧

(Tk(ẏ/�y�)(ż/�x�) ∨ Tk(ẏ/�y�)(ẇ/�x�))) ∨
∃z∃w ((Sent0(z→. w) ∨ ∃ζ ≺ y Sent�(z→. w, k(ζ̇ /�y�))) ∧ x = (z→. w) ∧

(Tk(ẏ/�y�)(ż/�x�) → Tk(ẏ/�y�)(ẇ/�x�))) ∨
∃z∃w ((Sent0(∀. z w) ∨ ∃ζ ≺ y Sent�(∀. z w, k(ζ̇ /�y�))) ∧ x = ∀. z w ∧

∀t Tk(ẏ/�y�)(�ẇ(ṫ/ż)�/�x�)) ∨
∃z∃w ((Sent0(∃. z w) ∨ ∃ζ ≺ y Sent�(∃. z w, k(ζ̇ /�y�))) ∧ x = ∃.z w ∧

∃t Tk(ẏ/�y�)(�ẇ(ṫ/ż)�/�x�)) ∨
∃t∃ζ ≺ y ((Sent0(t

◦) ∨ ∃ξ ≺ ζ Sent�(t◦, k(ξ̇/�y�))) ∧ x = k(ζ̇ /�y�)(t/�x�) ∧
Tk(ζ̇ /�y�)(t/�x�))

27More precisely, we add the following recursion clause to the definition of well-formed formula: if t is a
term, then ϕ(t) is a well-formed formula.
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over the free variable k, we obtain a predicate ϑ(x, y) – ϑy(x) – s.t.28

PAT � ϑy(x) ↔ ∃s∃t (x = (s=. t) ∧ s◦ = t◦) ∨ (10)

∃z (Sent<y(z) ∧ x = ¬. z ∧ ¬T�ϑẏ(ż)�) ∨
∃z∃w (Sent<y(z∧. w) ∧ x = (z∧. w) ∧ (T�ϑẏ(ż)� ∧ T�ϑẏ(ẇ)�)) ∨
∃z∃w (Sent<y(z∧. w) ∧ x = (z∨. w) ∧ (T�ϑẏ(ż)� ∨ T�ϑẏ(ẇ)�)) ∨
∃z∃w (Sent<y(z→. w)∧x =(z→. w) ∧ (T�ϑẏ(ż)�→T�ϑẏ(ẇ)�)) ∨
∃z∃w (Sent<y(∀. z w) ∧ x = ∀. z w ∧ ∀t T�ϑẏ(ẇ(ṫ/ż))�) ∨
∃z∃w (Sent<y(∃. z w) ∧ x = ∃.z w ∧ ∃t T�ϑẏ(ẇ(ṫ/ż))�) ∨
∃t∃ζ ≺ y (Sent<ζ (t

◦) ∧ x = �ϑζ̇ (t.)� ∧ T�ϑζ̇ (t.)�)

where Sent<s(t) := Sent0(t) ∨ ∃ζ ≺ s Sent�(t, �ϑζ̇ (x)�) ∈ �0
0, s and t are terms and

ζ is a suitable ordinal variable.29 Let L<ϑα be the language that results from merging
together every Lϑβ , with β < α. Thus, for every α < ε0, Sent<α(x) represents the
set of sentences of L<ϑα .

Given that (10) was obtained by Strong Diagonalization, we can identify the pred-
icate ϑy(x) with the right-hand side of the biconditional, except all occurrences of
�ϑy(x)� are actually occurrences of a more complex term that denotes ϑy(x). Since
alethic reference is closed under Leibniz’s Law, this difference won’t actually make
a difference.

To show that, for each β < ε0, ϑβ(x) behaves like Tβ(x), we first need to remove
the occurrences of T in (10), that is, we need to show that WFUTB contains an
instance of the Uniform T-schema for each ϑβ(x), with β < ε0. In other words, I
give a uniform proof that every instance of each of these formulae is r-stable and
well-founded in PA.

Note first that the normalization of ϑy(x) is a disjunction of negated universally
quantified statements followed by just one reference-restricting conditional, except
for the first disjunct that doesn’t contain T. Moreover, the antecedents of these
conditionals are all �0

0. This means, on the one hand, that each ϑβ(t) is dr-stable, so

PA � ∀β∀tDRSt(�ϑ .
β
(t.)�) (11)

that is, if ϑβ(t) q-refers to a sentence in PA, then PA knows about it. But also, the fact

that all the antecedents are �0
0 implies that URfn(PA) knows about all negative cases

of q-reference for each ϑβ(t) as well. For instance, if Sent<β(z∧. w)∧ t = (z∧. w) isn’t
true of m, n ∈ ω, then PA proves the negation of Sent<β(m∧. n) ∧ t = (m∧. n), which
means that URfn(PA) proves that PA doesn’t prove Sent<β(m∧. n) ∧ t = (m∧. n).

28Note that the fourth disjunct on the right-hand side of the following biconditional requires that the
conjunction of z and w is a sentence of L<y , instead of their disjunction. This guarantees that z and w are
sentences of the language themselves, and not two disjuncts conforming an expression of the form ϑk(t),
with k < y, which is always a disjunction. This way, only one disjunct in ϑy(x) can be satisfied at a time.
29Although strictly speaking this formula is not �0

0, as it quantifies over the possibly infinitely many
ordinals smaller than ζ , it’s easy to see that only finitely many cases need to be checked for each t and
each s, for every sentence of LT is of finite length. Thus, Sent<s(t) is provably equivalent in PA to a �0

0
expression.
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Furthermore, since each of the antecedents holds exactly of one natural number or
ordered pair of natural numbers, URfn(PA) can also prove general facts about the
sentences each ϑβ(t) q-refers to. For example, it follows in URfn(PA) that, if t denotes
an identity statement or doesn’t denote a sentence of L<ϑβ , then ϑβ(t) doesn’t refer
to any expression.

By (10) it also follows easily in URfn(PA) that each ϑβ(t) d-refers just to sentences
of the form ϑζ (s), where ζ < β or s denotes either a sentence in L<ϑβ of lower
complexity than t’s or a sentence in L<ϑζ , for some ζ < β. Thus, if α < ε0, we can
prove that

URfn(PA) � ∀β ≺ α∀t (RSt(�ϑ .
β
(t.)�) ∧ WfPA(�ϑ .

β
(t.)�)) (12)

by internal transfinite induction up to α on β. We reason informally in URfn(PA).
Assume ∀ζ ≺ β∀t (RSt(�ϑζ̇ (t.)�) ∧ WfPA(�ϑζ̇ (t.)�)). We derive ∀t (RSt(�ϑβ̇(t.)�) ∧
WfPA(�ϑβ̇(t.)�)) by an internal complete induction on the complexity of the sentence
denoted by t◦.

If t◦ doesn’t denote a sentence of L<ϑβ or denotes an identity statement, the result
follows trivially, given (11). Assume RSt(�ϑβ̇(s.)�) ∧ WfPA(�ϑβ̇(s.)�) for every s s.t.
s◦ denotes a sentence of lower complexity than t◦’s. If t◦ denotes a negation ¬ϕ ∈
L<ϑβ , by (10) ϑβ(t◦) d-refers to ϑβ(�ϕ�) that, by i.h., is both r-stable and well-
founded in PA. By (11), so is ϑβ(t◦). The cases for the other connectives and the
quantifiers are similar.30 Let t◦ denote ϑζ (s), for some ζ < β. By the last line of (10),
ϑβ(t◦) d-refers to ϑζ (s) which, by our main i.h. and (11), is r-stable and well-founded
in PA. This completes the proof of (12).

As a consequence, for every α < ε0 the following principle of disquotation holds
in WFUTB:

∀β ≺ ᾱ∀t (T�ϑβ̇(t.)� ↔ ϑβ(t◦)) (13)
We are now in a position to show that RT<ε0 is relatively interpretable in WFUTB.

Consider the following translation function η : L<�0 → LT:

η(ϕ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ if ϕ := s = t

¬η(ψ) if ϕ := ¬ψ

η(ψ) ∧ η(χ) if ϕ := (ψ ∧ χ)

η(ψ) ∨ η(χ) if ϕ := (ψ ∨ χ)

η(ψ) → η(χ) if ϕ := (ψ → χ)

∀v η(ψ) if ϕ := ∀v ψ

∃v η(ψ) if ϕ := ∃v ψ

ϑα(η. (t)) if ϕ := Tαt

where η. is a term of L representing η. We know such a function exists and is p.r.
by Kleene’s Recursion Theorem. This way, η not only translates truth predicates
occurring in a formula but also those that occur inside corner quotes, as well as
those inside corner quotes inside corner quotes, etc. For instance, the translation of
Tω(�T0(�0 = 0�)�) is not ϑω(�T0(�0 = 0�)�) but ϑω(�ϑ0(�0 = 0�)�).

30A word of caution about the disjunction case is in order, however. Note that, if t◦ denotes a disjunction,
not only the restricting antecedent on the fourth line of (10) might be true, but also the one on the last line,
since each formula of the form ϑζ (s) is itself a disjunction.
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In what follows, I show that WFUTB proves the translation of every axiom of
RT<ε0 . Actually, I prove general, quantified versions of the translations to facilitate
the derivation of RTβ9. I only deal with RTβ1, RTβ6, RTβ8, and RTβ9. The other
cases can be proved in a similar fashion. Let α < ε0. We reason informally inWFUTB
under the assumption that β ≺ α. By (10) we have that

∀β ≺ α (ϑβ(s=. t) ↔ s◦ = t◦)

which entails the translation of RTβ1. For the other axioms, note that

PA � ∀β ≺ α ∀x (Sentβ(x) ↔ Sent<β(η. (x))) (14)

by TIα . Thus, we have that

Sentβ(∀. y x) → Sent<β(η. (∀. y x)) (14)

→ Sent<β(∀. y η. (x))Def. η

→ (ϑβ(∀. y η. (x)) ↔ ∀t T�ϑβ̇(η. (ẋ)(ṫ/ẏ))�) (10)

→ (ϑβ(∀. y η. (x)) ↔ ∀t ϑβ(η. (x)(t/y))) (13)

which implies the translation of RTβ6. For RTβ8’s, assume ξ ≺ β:

Sentξ (t
◦) → Sent<ξ (η. (t

◦)) (14)

→ (ϑβ(�ϑξ̇ (η. (t.))�) ↔ T�ϑξ̇ (η. (t.))�) (10)

→ (ϑβ(�ϑξ̇ (η. (t.))�) ↔ ϑξ (η. (t
◦))) (13)

Finally, we prove the translation of RTβ9, that is,31

∀t∀ζ ≺ β (Sentζ (t
◦) → (ϑβ(�ϑζ̇ (η. (t.))�) ↔ ϑβ(η. (t

◦))))

Assume ζ ≺ β and Sentζ (t◦). By (14), we have that Sent<ζ (η. (t
◦)). By our proof of

the translation of RTβ8, in which ξ is a variable, we know that ϑβ(�ϑζ̇ (η. (t.))�) ↔
ϑζ (η. (t

◦)). Thus, we just need to show that ϑζ (η. (t
◦)) ↔ ϑβ(η. (t

◦)), for every term t .
I prove it by an internal complete induction on the complexity of t◦.

If t◦ = (t1=. t2), we have that

ϑζ (η. (t
◦)) ↔ ϑζ (t1=. t2) Def. η

↔ t◦1 = t◦2 Proof of RTβ1

↔ ϑβ(t1=. t2) Proof of RTβ1

↔ ϑβ(η. (t
◦)) Def. η

31Note that RTβ9 does not have a ‘corresponding’ disjunct in (10), as it would clash with that for RTβ8 in
the sense that there would be two simultaneously satisfiable disjuncts, blocking the proof of RTβ8.
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which completes the base case. Assume the result holds for every term denoting a
sentence of lower complexity than t◦’s. If t◦ = ¬. s, we have the following:

ϑζ (η. (t
◦)) ↔ ϑζ (¬. η. (s)) Def. η

↔ ¬ϑζ (η. (s)) Proof of RTβ2

↔ ¬ϑβ(η. (s)) Ind. hyp.

↔ ϑβ(¬. η. (s)) Proof of RTβ2

↔ ϑβ(η. (t
◦)) Def. η

The cases for the other logical operators follow from the i.h. in a similar way. For the
last case, assume t◦ = �Tξ (s)�, for some ξ ≺ ζ . We then have that

ϑζ (η. (t
◦)) ↔ ϑζ (�ϑξ̇ (η. (s.))�) Def. η

↔ ϑξ (η. (s)) Proof of RTβ8

↔ ϑβ(�ϑξ̇ (η. (s.))�) Proof of RTβ8

↔ ϑβ(η. (t
◦)) Def. η

This completes the proof of the relative interpretability of RT<ε0 in WFUTB.
Therefore, WFUTB entails every arithmetical theorem of RT<ε0 . This includes all
instances of transfinite induction for formulae of L up to α, for some α > ε0,
i.e. WFUTB can prove that larger segments of the ordinal notation system are well-
ordered. This implies that our proofs can be extended to show that RT<α is relatively
interpreted in WFUTB, as only arithmetical transfinite induction has been employed
so far. In turn, RT<α allows us to prove further instances of arithmetical transfinite
induction, which means WFUTB can actually relatively interpret more iterations of
compositionality, and so on. The progression reaches a fixed point at �0, completing
the proof.32

Whilst Proposition 6 establishes the soundness of WFUTB, Proposition 7 shows
that the theory is well positioned with respect to some of the better-known truth sys-
tems in terms of proof-theoretic strength. For instance, the Kripke-Feferman theory
KF, that classically axiomatizes the family of Kripke’s fixed-point models over the
Strong Kleene evaluation scheme, is relatively interpretable already in RT<ε0 . So is
Halbach’s PUTB. In turn, FS, for “Friedman-Sheard”, is even weaker than the latter.33

Proposition 7 shows that WFUTB is stronger than these four renowned systems.34

32See Feferman [4], Halbach [10, sec. 22.2].
33See Feferman [4] for KF, Halbach [9] for PUTB, and Friedman & Sheard [7] and Halbach [8] for FS.
34These results make WFUTB and other (classical disquotational) systems that will be introduced next
attractive candidates for minimalist theories of truth. As it’s often quoted, according to Horwich [16, p.
42] “the principles governing our selection of excluded instances are, in order of priority: (a) that the
minimal theory not engender ‘liar-type’ contradictions; (b) that the set of excluded instances be as small
as possible; and – perhaps just as important as (b) – (c) that there be a constructive specification of the
excluded instances that is as simple as possible.”
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Yet, WFUTB can be soundly strengthened in several ways. For instance, we can
close WFUTB’s truth predicate under provable equivalence in URfn(PAT), that is, we
can replace WFUTB’s truth-theoretic axiom schema with the following:

∀t∀x (RSt(x(t.))∧ WfPA(x(t.))∧ BewURfn(PAT)(�ϕ(t.)� ↔. x(t.)) →(T�ϕ(t.)� ↔ ϕ(t◦)))
where ϕ is a formula with exactly n free variables v1, . . . , vn, x(t.) is short for
x(t1/�v1�) . . . (tn/�vn�), and BewURfn(PAT)(x) weakly represents provability in
URfn(PAT). Call the strengthened system WFUTB+. In WFUTB+, not only r-stable
well-founded sentences have corresponding instances of disquotation, but also those
that are provably equivalent in URfn(PAT) to r-stable well-founded sentences. This
includes, among other expressions, unfounded logical truths and falsities such as
∀x (Tx → Tx) and ∃x (0 �= 0 ∧ Tx), which are obviously harmless but are excluded
from WFUTB’s truth principles.

The ω-consistency of WFUTB+ follows from Lemma 2, which establishes that
every sentence ϕ depends on �ϕ , the set of sentences ϕ d-refers to. This implies
that well-founded sentences can be shown to be grounded in the sense of Leitgeb.35

Since dependence is closed under equivalence in every expansion of N to LT and, a
fortiori, in URfn(PAT), so is Leitgeb’s truth predicate, which means that his semantic
theory 〈N, �lf〉 is a model of WFUTB+.36

Alternatively, we could extend WFUTB along the lines suggested by the results
established in Section 3.2. By Proposition 4, any theory extending WFUTB with
finitely many instances of the T-schema for r-stable non-self-referential non-well-
founded sentences is ω-consistent. For example, we could add instances of disquota-
tion for finite subsets of the Visser-Yablo sentences in (5) toWFUTBwithout stepping
into ω-inconsistencies.

In turn, Proposition 5 allows us to ω-consistently extendWFUTBwith all instances
of the Uniform T-schema for arbitrary r-stable non-self-referential non-well-founded
sentences, provided that they d-refer to finitely many expressions. Call the resulting
theory FUUTB, for “Fintely Unfounded Uniform Tarski Biconditionals”. This theory
leaves the Visser-Yablo sentences out but allows for instances of disquotation for, e.g.
sentences in ω-chains such as the ‘truth-teller’ sequence, given by an infinite list of
sentences, each of which says only of the one coming after that is true.37

Unlike WFUTB’s, the truth predicate of the extensions considered in the previous
paragraph cannot always be closed under equivalence, on pain of unsoundness. To
see it, notice that ∀x (x = l → ¬Tx) is logically equivalent to the strong liar ¬Tl
(= l) but also r-stable, non-self-referential – it only refers to ¬Tl, which just refers to
itself – and it d-refers to finitely many expressions.

Allow me to consider one last disquotational theory, NSRTB, for “Non-self-
referential Tarski Biconditionals”. NSRTB extends URfn(PAT) with all instances of
the following schema:

RSt(�ϕ�) ∧ ¬SRefPA(�ϕ�) → (T�ϕ� ↔ ϕ) (15)

35See Leitgeb [21, Lemma 11].
36See Leitgeb [21, Lemma 5].
37See Picollo [26, Prop. 3.3].
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where ϕ is a sentence. Every r-stable non-self-referential sentence has a correspond-
ing instance of disquotation in NSRTB, including all sentences on the Visser-Yablo
list. As a consequence, the theory is ω-inconsistent (cf. Section 2.2) and, there-
fore, unsound. However, it can be easily seen that NSRTB is not inconsistent, by
Proposition 4 and an application of compactness. Thus, we may extract the general
conclusion that sets of non-self-referential sentences of LT cannot be paradoxical
simpliciter but only ω-paradoxical.

But note also that, if we adopt the uniform version of (15) instead, that is,

∀t (RSt(�ϕ(t.)�) ∧ ¬SRefPA(�ϕ(t.)�) → (T�ϕ(t.)� ↔ ϕ(t◦)))
the resulting system is downright inconsistent, for we can show in URfn(PA) that
all instances of the Visser-Yablo predicate Y(v) satisfy the antecedent of this prin-
ciple.38 Since no new instances of disquotation for sentences are allowed by the
uniform version, one might wonder what has gone wrong. According to Priest [29],
Beall [1], Cook [3], and others, the inconsistency is a consequence of admitting
instances of (uniform) disquotation, not for self-referential sentences, but for self-
referential or circular predicates, e.g. Y(v). Although the Visser-Yablo sentences are
not self-referential, the argument goes, they are formulated in terms of a circular pred-
icate and, therefore, are circular themselves. To evaluate this claim, adequate notions
of reference, self-reference, etc. that apply to formulae, and not just sentences, are
required. I leave the task of extending the notions introduced in Section 2.3 to for-
mulae for another time. Let me just say that, provided a natural extension is possible,
the claim seems quite plausible.

5 Conclusions

In this paper I have explored a number of semantic and axiomatic truth theories moti-
vated by the notions of reference I introduced in [27]. I have shown the latter to be
proof-theoretically strong compared to most well-known systems in the literature,
despite being purely disquotational. However, proof-theoretic strength is not neces-
sarily a sign (or the only sign) of theoretical value. To assess the worth of the systems
in themselves and compared to others, in this concluding section I test them against
the criteria discussed in Leitgeb [22].

The criteria are the following:

(a) Truth should be expressed by a predicate, and a theory of syntax should be
available.

(b) If a theory of truth is added to mathematical or empirical theories, it should be
possible to prove the latter true.

(c) The truth predicate should not be subject to any type restrictions.
(d) T-biconditionals should be derivable unrestrictedly.
(e) Truth should be compositional.
(f) The theory should allow for standard interpretations.

38See Ketland [18, 19] and (4).
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(g) The outer logic and the inner logic should coincide.
(h) The outer logic should be classical.

As Leitgeb shows, it is not possible to meet all these criteria at once. Every formal
account of truth will necessarily have to give up some of these requirements. It will
be instructive to see how the systems we have considered here fare.

Clearly, all of our systems – WFUTB, WFUTB+, FUUTB, and NSRTB – meet the
first criterion, for T is a predicate and arithmetic plays the role of the syntax theory in
the background. The same holds of other popular theories considered in the previous
section, i.e. PUTB, KF, FS, and systems of ramified truth.

(b), on the other hand, is met only partially. For every theorem ϕ of our base theory
– URfn(PA) – each of our systems can be shown to entail T�ϕ�. This is because ϕ is
T-free and, therefore, well-founded. However, none of the systems can prove what
Leitgeb demands, i.e. a general statement asserting that every theorem of URfn(PA)

is true. This would amount to showing that the systems entail URfn(PA)’s global
reflection principle:

(GRfnURfn(PA)) ∀x (BewURfn(PA)(x) → Tx)

KF, FS, and all systems of ramified truth are known to entail similar principles for
their respective base theories. PUTB, on the other hand, doesn’t, as shown by Halbach
[9, §6]. We can adapt his proof to show that GRfnURfn(PA) is not provable in any of
our systems either. Using Kleene’s Recursion Theorem let us define a p.r. function s,
represented in PA by the function symbol s., as follows:

s(ϕ, n) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ if ϕ := s = t

Ts.(t, n) ∧ lh(t) ≤ n if ϕ := Tt

¬s(ψ, n) if ϕ := ¬ψ

s(ψ, n) ∧ s(χ, n) if ϕ := (ψ ∧ χ)

s(ψ, n) ∨ s(χ, n) if ϕ := (ψ ∨ χ)

s(ψ, n) → s(χ, n) if ϕ := (ψ → χ)

∀v s(ψ, n) if ϕ := ∀v ψ

∃v s(ψ, n) if ϕ := ∃v ψ

The function symbol lh(x) represents the function that maps every formula to the
number of logical operators occurring in it. Then, we can show the following:

Lemma 4 If WFUTB � ϕ, then there is an n ∈ ω s.t. WFUTB � s(ϕ, n), and
similarly forWFUTB+, FUUTB, and NSRTB.

I omit the proof, as it’s roughly the same as the proof of Halbach’s Lemma 6.1.
An important lesson to draw from this lemma is that none of the systems entails
URfn(PA)’s global reflection principle. If they did, then they would also entail

∀x (BewURfn(PA)(x) → Ts.(x, n) ∧ lh(x) ≤ n)

for some natural number n, which would fix an upper bound to the number of logical
operators occurring in every theorem of URfn(PA).

Moving on to (c), it can be easily seen that all the systems meet this requirement,
for in all of them T applies to sentences containing T itself – e.g. T�T�0 = 0�� is
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provable in the four systems. So do KF, FS, and PUTB. Systems of ramified truth
obviously fail this criterion.

By contrast, (d) obviously doesn’t hold of any of the systems we are considering,
as the liar sentence λ, for example, doesn’t have a corresponding instance of disquo-
tation, on pain of triviality. Nonetheless, some of our systems fare better than others.
While WFUTB contains ‘the least number’ of T-biconditionals, NSRTB is the most
encompassing one, and the other two systems lie somewhere in between.

Criterion (e) is not met by our systems either. Suppose one of the systems entailed
the following compositional principle:

(T∧) ∀x∀y (SentL (x∧. y) → (T(x∧. y) ↔ (Tx ∧ Ty)))

where SentL (x) is a formula of L representing the property of being a sentence
of this language. By Lemma 4, there should be an n ∈ ω s.t. the following is also
derivable:

∀x∀y (SentL (x∧. y) →
(Ts.(x∧. y, n)∧lh(x∧. y)≤n↔Ts.(x, n)∧lh(x) ≤ n ∧ Ts.(y, n)∧lh(y) ≤ n)))

Since ∀x (SentL (x) → x = s.(x, n)) is provable in PA for every n ∈ ω, we also have
that

∀x∀y (SentL (x∧. y) →(T(x∧. y)∧lh(x∧. y)≤ n ↔ Tx∧lh(x)≤ n∧Ty∧lh(y) ≤ n)))

By T∧, this formula entails the following:

∀x∀y (SentL (x∧. y) ∧ T(x∧. y) → (lh(x) ≤ n ∧ lh(y) ≤ n → lh(x∧. y) ≤ n))

Since there are theorems of PA with more than n logical operators that take the
form of a conjunction, each of whose conjuncts has at most n logical operators, and
all our truth systems prove that each single theorem of arithmetic is true, we get a
contradiction. Similar arguments can be given for other compositional principles.

Thus, none of the systems puts forward a compositional notion of truth, not even
regarding sentences of L . For the same reasons, PUTB’s truth predicate is also
non-compositional. By contrast, KF, FS, and ramified truth theories are axiomatized
by compositional principles. Note, however, that our systems can be consistently
extended with compositional principles for L : since every sentence of this language
is well-founded, our systems prove all instances of each compositional principle
already, which means that these principles are all true in the models we used as wit-
nesses to the consistency of the systems. This also shows that GRfnURfn(PA) can be
consistently added to our systems, for it’s entailed by the compositional principles
for L .39 Moreover, ω-consistency is preserved in every case.

By contrast, not all of our systems can be consistently extended with composi-
tional principles for expressions containing T. Although unrestricted compositional-
ity might be an unreasonable requirement, one would expect that each truth system is
compatible at least with compositional principles for the class of sentences that have
a corresponding instance of disquotation in the system. This is certainly the case of

39See, for instance, Halbach [10, Theorem 8.32].

471



L. Picollo

WFUTB and WFUTB+. This result follows from the fact that the instances of each
principle of compositionality for grounded sentences in the sense of Leitgeb are all
true in Leitgeb’s semantic theory of grounded truth, 〈N, �lf〉, as dependence is closed
under logical connectives and equivalence in every expansion of N to LT.40 Thus,
the compositional principles for truth relativized to the predicate WFUTB+ deployes
in the restriction of disquotation are also true in 〈N, �lf〉 (cf. Lemma 2). Since the
latter is a model of WFUTB+, extending this theory with compositionality relativized
to this predicate preserves ω-consistency. A fortiori, the same can be said of WFUTB
and its respective restricting predicate.

On the other hand, neither FUUTB nor NSRTB can be extended with appropriately
relativized compositional axioms. If we strongly diagonalize the predicate T¬. x we
obtain a term l′ s.t. the identity statement l′ = �T¬. l′� is provable in PA. Note that
T¬. l′ d-refers just to the negation of the sentence denoted by l′, i.e. to ¬T¬. l′. T¬. l′ is
therefore non-self-referential and d-referes to finitely many expressions. Moreover,
it is r-stable. Thus, both FUUTB and NSRTB contain an instance of disquotation for
this sentence, namely, T�T¬. l′� ↔ T¬. l′. By Leibniz’s Law, this entails Tl′ ↔ T¬. l′,
which is incompatible with the compositional principle that says that truth commutes
with negation.

Regarding Leitgeb’s criterion (f), all our systems except NSRTB fare well. While
the latter is ω-inconsistent, as we saw in the last section, the other three systems all
have models extending N, which is what Leitgeb had in mind when he demanded that
a formal truth theory based on arithmetic allowed for standard interpretations. While
KF, PUTB, and ramified truth theories also meet (f), FS famously doesn’t.

Finally, we consider criteria (g) and (h) together. According to Leitgeb, the outer
logic of a truth theory is given by the logical laws the theory can prove, whereas its
inner logic consists of the logical laws the theory proves to be true. Since the systems
we are considering are classical, (h) is met by all of them. (g), instead, is only satisfied
by WFUTB+. To see this, note that all logical truths are provably equivalent to each
other in first-order logic and, thus, also in URfn(PAT). Since, say, 0 = 0 is well-
founded and r-stable, it has an instance of disquotation in WFUTB+. This implies
that all logical truths have instances of disquotation as well in the system. Given that
they are all provable, we can conclude that they are also provably true. In contrast,
none of the other systems has an instance of disquotation for, e.g. ∀x (Tx → Tx).
This is a logical truth, yet it q-refers to every sentence. Thus, it is self-referential,
so it’s not declared true by WFUTB, FUUTB, or NSRTB. While FS is known for its
matching inner and outer logics, KF, PUTB, and systems of ramified truth don’t meet
this criterion.

It’s time to take stock. As we have seen, all the axiomatic systems we have con-
sidered in this paper fare equally well regarding criteria (a), (d), and (h). Due to their
pure disquotational character, like PUTB the new systems fail requirements (b) and
(e). However, unlike it, both WFUTB and WFUTB+ can be soundly extended with
compositional principles for the language with the truth predicate. Moreover, unlike
the systems of ramified truth, ours are untyped; unlike FS, WFUTB, WFUTB+, and

40See Leitgeb [21, Lemma 5].
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FUUTB, ours allow for standard interpetations; and, unlike KF and PUTB, the inner
and the outer logics of WFUTB+ do coincide.

This shows that the axiomatic systems introduced in the previous section, espe-
ciallyWFUTB+, compare favourably to the best known axiomatic truth theories in the
literature against Leitgeb’s criteria. Additionally, their proof-theoretic power places
them above many popular systems.
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