Skip to main content

Advertisement

Log in

Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Tardigrade communities are affected by micro and macro-environmental conditions but only micro-environmental variables, and altitudinal gradients have been studied. We review previous reports of altitudinal effects and evaluate the influence by interacting macro- (climate, soils, biome, and others) and micro-environmental (vegetation, moss and leaf litter) factors on tardigrade assemblages at the Sierra de Guadarrama mountain range (Iberian Central System Mountains, Spain). Terrestrial tardigrade assemblages were sampled using standard cores to collect leaf litter and mosses growing on rocks. General Linear Models were used to examine relationships between Tardigrada species richness and abundance, and macro- and micro-environmental variables (altitude, habitat characteristics, local habitat structure and dominant leaf litter type, and two bioclimatic classifications). Variation partitioning techniques were used to separate the effects of altitude and habitat variation, and to quantify the independent influences of climate and soil, vegetation structure and dominant type of leaf litter. Altitude shows a unimodal relationship with tardigrade species richness, although its effect independent of habitat variation is negligible. The best predictors for species richness were bioclimatic classifications. Separate and combined effects of macro-environmental gradients (soil and climate), vegetation structure and leaf litter type are important determinants of richness. A model including both macro- and micro-environmental variables explained nearly 60% of tardigrade species richness in micro-scale plots. Abundance was significantly related only to soil composition and leaf litter type. Tardigrade abundance was not explained by macro-environmental gradients analysed here, despite a significant correlation between abundance and richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allué Andrade JL (1990) Atlas Fitoclimático de España. Taxonomías. Ministerio de Agricultura, Pesca y Alimentación. Instituto Nacional de Investigaciones Agrarias, Madrid

    Google Scholar 

  • Austin MP, Pausas JG, Nicholls AO (1996) Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. Aust J Ecol 21:154–164. doi:10.1111/j.1442-9993.1996.tb00596.x

    Article  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. van Stockum and Zoon, The Hague

    Google Scholar 

  • Bartǒs E (1939) Die Tardigraden der Tschechoslowa kischen Republik. Zool Anz 125:138–142

    Google Scholar 

  • Beasley CW (1988) Altitudinal distribution of Tardigrada of New Mexico with the description of a new species. Am Midl Nat 120:436–440. doi:10.2307/2426016

    Article  Google Scholar 

  • Bertrand M (1975) Répartition des tardigrades “terrestres” dans le massif de L’Aigoual. Vie milieu C Biol Te XXV: 283–298

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Catterall CP, Piper SD, Bunn SE, Arthur JM (2001) Flora and fauna assemblages vary with local topography in a subtropical eucalypt forest. Austral Ecol 26:56–69. doi:10.1046/j.1442-9993.2001.01074.x

    Article  Google Scholar 

  • Chefaoui RM, Hortal J, Lobo JM (2005) Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol Conserv 122:327–338. doi:10.1016/j.biocon.2004.08.005

    Article  Google Scholar 

  • Clark Labs (2000) Global change data archive: 1 km global elevation model, vol 3. CD-Rom, Clark University

  • Clark Labs (2001) Idrisi 32 Release 2. GIS software package. Clark Labs, Worcester, MA

    Google Scholar 

  • Collins M, Bateman L (2001) The ecological distribution of tardigrades in Newfoundland. Zool Anz 240:291–297. doi:10.1078/0044-5231-00036

    Article  Google Scholar 

  • Crawley MJ (1993) GLIM for Ecologists. Blackwell Scientific Publications

  • Dastych H (1980) Macrobiotus kurasi sp. nov., a new specie of Tardigrada from Mountains of Uganda. B Acad Pol Sci Biol XXVII:653–657

  • Dastych H (1985) West Spitsbergen Tardigrada. Acta Zool Cracov 28:169–214

    Google Scholar 

  • Dastych H (1987) Altitudinal distribution of Tardigrada in Poland. Sel Sym Monogr UZI 1:159–176

    Google Scholar 

  • Dastych H (1988) The Tardigrada in Poland. Monogr Faun Pol 16:1–255

    Google Scholar 

  • Dewel RA, Nelson DR, Dewel WC (1993) Tardigrada. In: Harrison FW, Rice ME (eds) Microscopic anatomy of invertebrates. Vol. 12. Onychophora, Chilopoda and Lesser Protostomata. Wiley-Liss Inc., New York, pp 143–183

    Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64. doi:10.1046/j.1466-822X.2003.00322.x

    Article  Google Scholar 

  • EEA (2000) NATLAN. Nature/land cover information package. European Environment Agency, Luxembourg

    Google Scholar 

  • Ekschmitt K, Bakonyi G, Bongers M, Bongers T, Boström S, Dogan H, Harrison A, Nagy P, O’Donnell AG, Papatheodorou EM, Sohlenius B, Stamou GP, Wolters V (2001) Nematode community structure as indicator of soil functioning in European grassland soils. Eur J Soil Biol 37:263–268. doi:10.1016/S1164-5563(01)01095-0

    Article  Google Scholar 

  • FAO (1988) Soil map of the World. FAO/UNESCO, Rome

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784. doi:10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2

    Article  Google Scholar 

  • Fontaneto D, Ricci C (2006) Spatial gradients in species diversity of microscopic animals: the case of bdelloid rotifers at high altitude. J Biogeogr 33:1305–1313. doi:10.1111/j.1365-2699.2006.01502.x

    Article  Google Scholar 

  • Fontaneto D, Melone G, Ricci C (2005) Connectivity and nestedness of the meta-community structure of moss dwelling bdelloid rotifers along a stream. Hydrobiologia 542:131–136. doi:10.1007/s10750-004-5495-6

    Article  Google Scholar 

  • Fontaneto D, Ficetola GF, Ambrosini R, Ricci C (2006) Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals? Glob Ecol Biogeogr 15:153–162. doi:10.1111/j.1466-822X.2006.00193.x

    Article  Google Scholar 

  • Fontaneto D, Barraclough TG, Chen K, Ricci C, Herniou EA (2008) Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Mol Ecol 17:3136–3146. doi:10.1111/j.1365-294X.2008.03806.x

    Article  PubMed  CAS  Google Scholar 

  • Franco Múgica F, García Antón M, Sainz Ollero H (1998) Vegetation dynamics and human impact in the Sierra de Guadarrama, Central System, Spain. Holocene 8:69–82. doi:10.1191/095968398675691171

    Article  Google Scholar 

  • Gamma Design (2001) GS+ Geostatistics for the environmental sciences. Version 5.1.1. Gamma Design Software. Plainwell, Michigan, USA

    Google Scholar 

  • Goeze JAE (1773) Herrn Karl Bonnets Abhandlungen aus der Insektologie. Halle

  • Guidetti R, Bertolani R (2005) Tardigrade taxonomy: an update check list of the taxa and a list of characters for their identification. Zootaxa 845:1–46

    Google Scholar 

  • Guidetti R, Bertolani R, Nelson DR (1999) Ecological and faunistic studies on tardigrades in leaf litter of Beach Forest. Zool Anz 238:215–223

    Google Scholar 

  • Guil N (2004) Los tardígrados terrestres de la Sierra de Guadarrama: diversidad, taxonomía y filogenia. PhD, Universidad Complutense de Madrid, Madrid

  • Guil N (2008) New records and within-species variability of Iberian tardigrades (Tardigrada), with comments on the species from the Echiniscus blumi-canadensis series. Zootaxa 1757:1–30

    Google Scholar 

  • Guil N, Guidetti R, Machordon A (2007) Observations on the ‘‘tenuis group’’ Eutardigrada, Macrobiotidae) and description of a new Macrobiotus species. J Nat Hist 41:2741–2755. doi:10.1080/00222930701742637

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien E, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117. doi:10.1890/03-8006

    Article  Google Scholar 

  • Hortal J (2004) Selección y Diseño de Áreas Prioritarias de Conservación de la Biodiversidad mediante Sinecología. Inventario y modelización predictiva de la distribución de los escarabeidos coprófagos (Coleoptera, scarabaeoidea) de Madrid. PhD, Universidad Autónoma de Madrid: Madrid. 333 pp

  • Hortal J (2008) Uncertainty and the measurement of terrestrial biodiversity gradients. J Biogeogr 35:1355–1356

    Google Scholar 

  • Hortal J, Lobo JM (2005) An ED-based protocol for the optimal sampling of biodiversity. Biodivers Conserv 14:2913–2947. doi:10.1007/s10531-004-0224-z

    Article  Google Scholar 

  • Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008a) Historical bias in biodiversity inventories affects the observed realized niche of the species. Oikos 117:847–858. doi:10.1111/j.0030-1299.2008.16434.x

    Article  Google Scholar 

  • Hortal J, Rodríguez J, Nieto M, Lobo JM (2008b) Regional and environmental effects on the species richness of mammal assemblages. J Biogeogr 35:1202–1214. doi:10.1111/j.1365-2699.2007.01850.x

    Article  Google Scholar 

  • ITGE (1988) Atlas Geocientífico y del Medio Natural de la Comunidad de Madrid. Instituto Tecnológico GeoMinero de España, Madrid

    Google Scholar 

  • Ito M (1999) Ecological distribution, abundance, and habitat preference of terrestrial Tardigrades in various forest on the northern slope of Mt Fuji, central Japan. Zool Anz 238:225–234

    Google Scholar 

  • Kathman RD, Cross SF (1991) Ecological distribution of moss-dwelling tardigrades on Vancouver island, British Columbia, Canada. Can J Zool 69: 122–129

    Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  PubMed  Google Scholar 

  • Lawton JH, Macgarvin M, Heads PA (1987) Effects of altitude on the abundance and species richness of insect herbivores on Bracken. J Anim Ecol 56:147–160. doi:10.2307/4805

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Second English Edition. Elsevier, Amsterdam

    Google Scholar 

  • Lobo JM, Castro I, Moreno JC (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biol J Linn Soc Lond 73:233–253. doi:10.1111/j.1095-8312.2001.tb01360.x

    Article  Google Scholar 

  • Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671. doi:10.1023/A:1008985925162

    Article  Google Scholar 

  • MAPA (1986) Atlas Agroclimático Nacional de España. Ministerio de Agricultura Pesca y Alimentación, Dirección General de la Producción Agraria, Subdirección General de la Producción Vegetal, Madrid

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London

    Google Scholar 

  • Nelson DR (1975) Ecological distribution of tardigrades on Roan Mountain, Tennessee, North Carolina. Mem Ist Ital Idrobiol “. Dott Marco Marchi 32(Suppl.): 225–276

    Google Scholar 

  • Nelson DR (1982) Developmental biology of the Tardigrada. In: Harrison F, Cowden R (eds) Developmental biology of freshwater invertebrates. Alan R. Liss, New York

    Google Scholar 

  • Nelson DR (1995) The hundred-year hibernation of the waterbear. Nat Hist 84:62–65

    Google Scholar 

  • Nelson DR, Kincer CJ, Williams TC (1987) Effects of habitat disturbances on aquatic tardigrade populations. Sel Sym Monogr UZI 1:141–153

    Google Scholar 

  • Nicholls AO (1989) How to make biological surveys go further with Generalised Linear Models. Biol Conserv 50:51–75. doi:10.1016/0006-3207(89)90005-0

    Article  Google Scholar 

  • Nichols PB (1999) The ecological distribution of the Tardigrada on Dugger Mountain (NE Alabama) with respect to seasonal and altitudinal variation, Jacksonville State University, Jacksonville, AB. 140 pp

  • Nogués-Bravo D, Araújo MB, Romdal TS, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–220. doi:10.1038/nature06812

    Article  PubMed  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species richness patterns. Ecol Lett 8:224–239. doi:10.1111/j.1461-0248.2004.00701.x

    Article  Google Scholar 

  • Ramazzotti G, Maucci W (1983) II phylum Tardigrada. III edizione riveduta e aggiornata. Mem Ist Ital Idrobiol. Dott Marco Marchi 41:1–1012

    Google Scholar 

  • Richardson BA (1999) The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica 31:321–336. doi:10.1111/j.1744-7429.1999.tb00144.x

    Article  Google Scholar 

  • Richardson BA, Richardson MJ, Scatena FN, McDowell WH (2000) Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. J Trop Ecol 16:167–188. doi:10.1017/S0266467400001346

    Article  Google Scholar 

  • Richardson BA, Richardson MJ, Soto-Adames FN (2005) Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico. J Anim Ecol 74:926–936. doi:10.1111/j.1365-2656.2005.00990.x

    Article  Google Scholar 

  • Rivas-Martínez S (1987) Memoria del Mapa de Series de Vegetación de España. Ministerio de Agricultura, Pesca y Alimentación, Madrid

  • Rodríguez Roda J (1951) Algunos datos sobre la distribución de los tardígrados españoles. Bol Real Soc Esp Hist Nat Biol 49:75–83

    Google Scholar 

  • Rodríguez J, Hortal J, Nieto M (2006) An evaluation of the influence of environment and biogeography on community structure: the case of the Holarctic mammals. J Biogeogr 33:291–303. doi:10.1111/j.1365-2699.2005.01397.x

    Article  Google Scholar 

  • Sohlenius B, Boström S, Jönsson KI (2004) Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia (Jena) 48:395–408. doi:10.1016/j.pedobi.2004.06.001

    Article  Google Scholar 

  • StatSoft I (2001) STATISTICA (data analysis software system). StatSoft, Inc., Tulsa, OK

    Google Scholar 

  • Utsugi K, Hiraoka T, Nunomura N (1997) On the relations between tardigrade fauna and bryophyte flora in Toyama Prefecture. Bull Toyama Sci Mus 20:57–71

    Google Scholar 

  • Wilson EO (2002) The future of life. Alfred A. Knopf, New York

    Google Scholar 

  • Zelenev VV, Berkelmans R, van Bruggen AHC, Bongers T, Semenov AM (2004) Daily changes in bacterial-feeding nematode populations oscillate with similar periods as bacterial populations after a nutrient impulse in soil. Appl Soil Ecol 26:93–106. doi:10.1016/j.apsoil.2003.12.003

    Article  Google Scholar 

Download references

Acknowledgements

We thank Brad Hawkins, Diego Fontaneto, Dean Anderson, and several anonymous referees for their comments, suggestions and discussion which have improved greatly this paper. NG was supported during field and taxonomic work by the National Museum of Natural History (CSIC) and by the Madrid Government grant and project number: 07M/0125/2000; during writing and analysing processes she hold a Fulbright postdoctoral fellowship financed by the Ministry of Education and Science of the Spanish Government (BOE/21/05/2005) at Harvard University (Department of Organismics and Evolutionary Biology), and currently holds a postdoctoral Marie Curie fellowship in the Zoological Museum at University of Copenhagen. JH was supported by a Portuguese FCT postdoctoral grant (BPD/20809/2004), and obtained additional support from the UK Natural Environment Research Council. This work has been partially supported by the Madrid Government project number GR/AMB/0750/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí Guil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guil, N., Hortal, J., Sánchez-Moreno, S. et al. Effects of macro and micro-environmental factors on the species richness of terrestrial tardigrade assemblages in an Iberian mountain environment. Landscape Ecol 24, 375–390 (2009). https://doi.org/10.1007/s10980-008-9312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-008-9312-x

Keywords

Navigation