Skip to main content
Log in

Kinetic triplet evaluation of a complicated dehydration of Co3(PO4)2·8H2O using the deconvolution and the simplified master plots combined with nonlinear regression

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetic triplet of the complex decomposition processes of Co3Ni3(PO4)2·8H2O was evaluated for the first time by using the deconvolution method to separate the overlapping DTG curves. After the completion of the deconvolution, five steps of the decomposition were obtained. The activation energy E and the pre-exponential factor A of each step were determined by KAS method. The kinetic compensation effect (KCE) method was applied to identify the individual step of the decomposition. Each master plot was simplified by generating the general equations and combined with the nonlinear regression curve fitting. According to kinetic analysis results obtained from this modified method, it was found that the early four steps of dehydration follow the mechanisms of nucleation and subsequent growth with different n-orders, while the last step occurs in the same mechanism but accompanied by the phase transition (lattice reorientation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mesguer S, Tena MA, Gargori C, Galindo R, Badenes JA, Llusar M. Development of blue ceramic dyes from cobalt phosphates. Ceram Int. 2008;34(6):1431–8.

    Article  Google Scholar 

  2. Mesguer S, Tena MA, Gargori C, Badenes JA, Llusar M, Monrόs G. Structure and colour of cobalt ceramic pigments from phosphates. Ceram Int. 2007;33(5):843–9.

    Article  Google Scholar 

  3. Kullyakool S, Danvirutai C, Siriwong K, Noisong P. Thermal behavior, surface properties and vibrational spectroscopic studies of the synthesized Co3x Ni3−3x ·(PO4)2·8H2O (0 ≤ x ≤ 1). Solid State Sci. 2013;24:147–53.

    Article  CAS  Google Scholar 

  4. Viter VN, Nagornyi PG. Synthesis and study of solid solutions between cobalt and nickel phosphates with varied degree of anion protonation. Zh Phrikl Khim. 2009;82(6):881–5.

    Google Scholar 

  5. Gralwey AK. Structure and order in thermal dehydration of crystalline solids. Thermochim Acta. 2000;355:181–238.

    Article  Google Scholar 

  6. Gralwey AK. Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochim Acta. 2004;413:139–83.

    Article  Google Scholar 

  7. Searcy AW, Berutot D. Kinetics of endothermic decomposition reactions. 2. Effects of the solid and gaseous products. J Phys Chem. 1978;82:2–6.

    Google Scholar 

  8. Boontima S, Danvirutai C, Srithanratana T. Thermal decomposition kinetics and reversible hydration study of the Li2Zn(HPO4)2·H2O. Solid State Sci. 2010;10:1226–30.

    Article  Google Scholar 

  9. Kullyakool S, Siriwong K, Noisong P, Danvirutai C. Studies of thermal decomposition kinetics and temperature dependence of thermodynamic functions of the new precursor LiNiPO4·3H2O for the synthesis of olivine LiNiPO4. J Therm Anal Calorim. 2015;122:665–77.

    Article  CAS  Google Scholar 

  10. Perejón A, Sáchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    Article  Google Scholar 

  11. Cheng Z, Wu W, Ji P, Zhou X, Liu R, Cai J. Applicability of Fraser-Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J Therm Anal Calorim. 2015;119:1429–38.

    Article  CAS  Google Scholar 

  12. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  13. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J. Res. Natl Bur Stand Sect A. 1966;70A(6):487–523.

    Article  Google Scholar 

  14. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  15. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Tech. 1964;20:22–3.

    Google Scholar 

  16. Vyazovkin S, Burnhan AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetic committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  17. Xia Y, Huang Y, Li Y, Liao S, Long Q, Liang J. LiPO4: Ce, Tb, Yb Phosphor-synthesis and kinetics study for thermal process of precursor by Vyazovkin, OFW, KAS, Staring, and Mastplosts methods. J Therm Anal Calorim. 2015;120:1635–43.

    Article  CAS  Google Scholar 

  18. Senum GI, Yang RT. Rational approximation of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–7.

    Article  Google Scholar 

  19. Gotor FJ, Criado MJ, Malek J, Koga N. Kinetic analysis of solid-state reaction: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:0777–10782.

    Article  Google Scholar 

  20. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of nonisothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol. 2008;81(2):253–62.

    Article  CAS  Google Scholar 

  21. Rooney JJ. Isokinetic temperature and the compensation effect in catalysis. J Mol Catal A Chem. 1998;133:303–5.

    Article  CAS  Google Scholar 

  22. Karunakaran C, Chidambaranathan V. Linear free energy relationships near isokinetic temperature. Oxidation of organic sulfides with nicotinium dichromate. Croat Chem Acta. 2001;74(1):51–9.

    CAS  Google Scholar 

  23. Galwey AK, Brown ME. Arrhenius parameter and compensation behaviour in solid-state decompositions. Thermochim Acta. 1997;300:107–15.

    Article  CAS  Google Scholar 

  24. Kullyakool S, Siriwong K, Noisong P, Danvirutai C. Determination of kinetic triplet of the synthesized Ni3(PO4)2·8H2O by non-isothermal and isothermal kinetic methods. J Therm Anal Calorim. 2014;115:1497–507.

    Article  CAS  Google Scholar 

  25. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  Google Scholar 

  26. Koga N, Šimon P, Šesták J. Some fundamental and historical aspects of phenomenological kinetics in solid-state studied by thermal analysis, chap. 1. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials. Berlin: Springer; 2013. p. 1–28.

    Google Scholar 

Download references

Acknowledgements

We thank the Department of Chemistry and the Department of Physics (for XRD), Faculty of Science, Khon Kaen University, for providing research facilities. The financial support from the Center for Innovation in Chemistry (PERCH-CIC), Ministry of Education as well as from the Higher Education Research Promotion and National Research University Project of Thailand, Office of Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen University (contract number NRU544018), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanaiporn Danvirutai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The relationship between dα/dT (K−1) and α; (a) F-models, (b) P-models, (c)–(d) R-models, (e) D-models, and (f) A-models [22] (TIFF 8652 kb)

Fig. S2

The simulated theoretical Y-function, (Y)Theoretical (TIFF 10,457 kb)

Supplementary material 3 (DOCX 16 kb)

Supplementary material 4 (DOCX 21 kb)

Supplementary material 5 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kullyakool, S., Siriwong, K., Noisong, P. et al. Kinetic triplet evaluation of a complicated dehydration of Co3(PO4)2·8H2O using the deconvolution and the simplified master plots combined with nonlinear regression. J Therm Anal Calorim 127, 1963–1974 (2017). https://doi.org/10.1007/s10973-016-5837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5837-4

Keywords

Navigation