Skip to main content
Log in

Desired form of polymorphism of 6-chloro-2,4-dinitroaniline crystals grown by controlled growth temperature in melt growth

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the important form of a polymorphism of 6-chloro-2,4-dinitroaniline (CDA) crystals grown by the melt growth technique and its structure, physical, properties were discussed. Single crystals of form II and form III were grown by spontaneous nucleation of CDA melt. Unit cell parameters of these two forms were determined by the single-crystal X-ray diffraction technique. A powder X-ray diffraction pattern obtained from single-crystal data was compared with the experimental pattern. Functional groups presented in the molecules were identified by FTIR spectra, and packing difference between the two forms was realized by splitting of the absorption band and inter- and intramolecular interaction. DSC and TG/DTA analyses confirmed that each form has its own melting peak around 160 (form II) and 162 °C (form III) and there is no phase transition occurring between these forms. Harmonic vibrational frequency (β) of CDA was evaluated theoretically using HF/6-31G level and this value was compared with the experimental Kurtz–Perry technique. The calculated HOMO-LUMO energy shows that charge transfer occurred within the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lian Y. Survival of the fittest polymorph: how fast nucleater can lose to fast grower. Cryst Eng Commun. 2007;9:847–51.

    Article  Google Scholar 

  2. Desiraju GR. Crystal engineering: the design of organic solids. New York: Elsevier; 1989.

    Google Scholar 

  3. Bernstein J, Davey RJ, Henck JO. Concomitant polymorphs. Angew Chem Int Ed. 1999;38:3440–61.

    Article  Google Scholar 

  4. Veesler S, Ferte N, Costes MS, Czjzek M, Astier JP. Temperature and pH effect on the polymorphism of aprotinin (BPTI) in sodium bromide solutions. Cryst Growth Des. 2004;4:1137–41.

    Article  CAS  Google Scholar 

  5. Kitamura M. Controlling factors and mechanism of polymorphic crystallization. Cryst Growth Des. 2004;4:1153–9.

    Article  CAS  Google Scholar 

  6. Li T, Ayers PW, Liu S, Swadley MJ, Medendorp CA. Crystallization force: a density functional theory concept for revealing intermolecular interactions and molecular packing in organic crystals. Chem Eur J. 2009;15:361–71.

    Article  CAS  Google Scholar 

  7. Sato K, Yoshimoto N, Suzuki M, Kobayashi M, Kaneko F. Structure and transformation in polymorphism of petroselinic acid (cis-.omega.-12-octadecenoic acid). J Phys Chem. 1990;94:3180–5.

    Article  CAS  Google Scholar 

  8. Wishkerman S, Bernstein J, Stephens PW. Polymorphism in 4-methoxy-3-nitrobenzaldehyde. Cryst Growth Des. 2006;6:1366–73.

    Article  CAS  Google Scholar 

  9. Giron D. Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates. Thermochim Acta. 1995;248:1–59.

    Article  CAS  Google Scholar 

  10. Reddy CM, Basavoja S, Desiraju GR. Sorting of polymorphs based on mechanical properties. Trimorphs of 6-chloro-2,4-dinitroaniline. Chem Commun. 2005;0:2439–2441.

    Google Scholar 

  11. Bag PP, Chen M, Sun CC, Reddy CM. Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound. Cryst Eng Commun. 2012;14:3865–7.

    Article  CAS  Google Scholar 

  12. Dunitz JD, Bernstein J. Disappearing polymorphs. Acc Chem Res. 1995;28:193–200.

    Article  CAS  Google Scholar 

  13. Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J. Ritonavir: an extraordinary example of conformational polymorphism. J Pharm Res. 2001;18:859–66.

    Article  CAS  Google Scholar 

  14. Veesler S, Lafferrere L, Garcia E, Hoff C. Phase transitions in supersaturated drug solution. Org Process Res Dev. 2003;7:983–9.

    Article  CAS  Google Scholar 

  15. Repka MA, Majumdar S, Battu SK, Srirangam R, Upadhye SB. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5:1357–76.

    Article  CAS  Google Scholar 

  16. Caira MR, Foppoli A, Sangalli ME, Zema L, Giordano F. Thermal and structural properties of ambroxol polymorphs. J Therm Anal Calorim. 2004;77:653–62.

    Article  CAS  Google Scholar 

  17. Pan F, Bosshard C, Wong MS, Serbutoviez C, Follonier S, Gunter P, Schenk K. Polymorphism, growth and characterization of a new organic nonlinear optical crystal: 4-dimethylaminobenzaldehyde-4-nitrophenylhydrazone (DANPH). J Cryst Growth. 1996;165:273–83.

    Article  CAS  Google Scholar 

  18. Diaz CIS, Martinislan AP, Cartwright JHE. Chiral symmetry breaking and polymorphism in 1,1′-binaphthyl melt crystallization. J Phys Chem B. 2005;109:18758–64.

    Article  Google Scholar 

  19. Mikhailenko MA. Growth of large single crystals of the orthorhombic paracetamol. J Cryst Growth. 2004;265:616–8.

    Article  CAS  Google Scholar 

  20. Ghosh AK, Woo EM, Sun YS, Lee LT, Wu MC. Characterization and analyses on complex melting, polymorphism, and crystal phases in melt-crystallized poly(hexamethylene terephthalate). Macromolecules. 2005;38:4780–90.

    Article  CAS  Google Scholar 

  21. Meille SV. Melt temperature effects on the polymorphic behaviour of melt-crystallized polypivalolactone. Polymer. 1994;35:2607–12.

    Article  CAS  Google Scholar 

  22. Lu M, Zhao X, Xiong XLC, Zhang J, Mai K, Wu C. Nucleation effect on polymorphism of melt-crystallized syndiotactic polystyrene. Polymer. 2011;52:1102–6.

    Article  CAS  Google Scholar 

  23. Carpentier L, Rharrassi KF, Derollez P, Guinet Y. Crystallization and polymorphism of l-arabitol. Thermochim Acta. 2013;556:63–7.

    Article  CAS  Google Scholar 

  24. Nichols G, Frampton CS. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J Pharm Sci. 1998;87:684–93.

    Article  CAS  Google Scholar 

  25. Vijayan N, Bhagavannarayana G, Babu RR, Gopalakrishnan R, Maurya KK, Ramasamy P. A comparative study on solution- and bridgman-grown single crystals of benzimidazole by high-resolution X-ray diffractometry, fourier transform infrared, microhardness, laser damage threshold, and second-harmonic generation measurements. Cryst Growth Des. 2006;6:1542–6.

    Article  CAS  Google Scholar 

  26. Munshi P, Venugopala KN, Jayashree BS, Guru Row TN. Concomitant polymorphism in 3-acetylcoumarin: role of weak C–H···O and C–H···π interactions. Cryst Growth Des. 2004;4:1105–7.

    Article  CAS  Google Scholar 

  27. Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res. 1990;23:120–6.

    Article  CAS  Google Scholar 

  28. Bernstein J, Davis RE, Shimoni L, Chang NL. Muster aus H-brücken: ihre funktionalität und ihre graphentheoretische analyse in kristallen. Angew Chem. 1995;107:1689–708.

    Article  Google Scholar 

  29. Desiraju GR. Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res. 2002;35:565–73.

    Article  CAS  Google Scholar 

  30. Steiner T. Die wasserstoffbrücke im festkörper. Angew Chem. 2002;114:50–80.

    Article  Google Scholar 

  31. Guthmuller J, Cecchet F, Lis D, Caudano Y, Mani AA, Thiry PA, Peremans A, Champagne B. Theoretical simulation of vibrational sum-frequency generation spectra from density functional theory: application to p-nitrothiophenol and 2,4-dinitroaniline. Chem Phys Chem. 2009;10:2132–42.

    Article  CAS  Google Scholar 

  32. Hoghes DL, Trotter J. Crystal structure of 2,6-dichloro-4-nitroaniline. J Chem Soc A. 1971;0:2181–4.

    Article  Google Scholar 

  33. George S. Infrared and Raman characteristic group frequencies, tables and charts. 3rd ed. Chichester: Wiley; 2001.

    Google Scholar 

  34. Piela K, Tyrk IT, Drozd M, Szostak MM. Polymorphism and cold crystallization in optically nonlinear N-benzyl-2-methyl-4-nitroaniline crystal studied by X-ray diffraction, calorimetry and Raman spectroscopy. J Mol Struct. 2011;991:42–9.

    Article  CAS  Google Scholar 

  35. Lakshmaiah B, Rao GR. Vibrational analysis of substituted anisoles. I-vibrational spectra and normal coordinate analysis of some fluoro and chloro compounds. J Raman Spectrosc. 1989;20:439–48.

    Article  CAS  Google Scholar 

  36. Sathyanarayana DN. Vibrational spectroscopy. Theory and applications. New Delhi: New Age International (P) Limited Publishers; 1996.

    Google Scholar 

  37. Roy S, Aitipamula S, Nangia A. Thermochemical analysis of venlafaxine hydrochloride polymorphs 1–5. Cryst Growth Des. 2005;5:2268–76.

    Article  CAS  Google Scholar 

  38. Nangia A. Conformational polymorphism in organic crystals. Acc Chem Res. 2008;41:594–604.

    Article  Google Scholar 

  39. Cherukuvada S, Thakuria R, Nangia A. Pyrazinamide polymorphs: relative stability and vibrational spectroscopy. Cryst Growth Des. 2010;10:3931–41.

    Article  CAS  Google Scholar 

  40. Halim HA, Cowan DO, Robinson DW, Wiygul FM, Kimura M. Preliminary study of the nonlinear optical properties of 4-amino-4′-nitrodiphenyl sulfide. J Phys Chem. 1986;90:5654–8.

    Article  Google Scholar 

  41. Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013;111:1033–7.

    Article  CAS  Google Scholar 

  42. Prasad LG, Krishnakumar V, Nagalakshmi R. Growth and nonlinear optical studies of N-acetyl-l-cysteine crystal. Eur Phys J Appl Phys. 2012;57:10201–8.

    Article  Google Scholar 

  43. Xavier TS, Rashid N, Joe IH. Vibrational spectra and DFT study of anticancer active molecule 2-(4-bromophenyl)-1H-benzimidazole by normal coordinate analysis. Spectrochim Acta Part A. 2011;78:319–26.

    Article  CAS  Google Scholar 

  44. Arivazhagan M, Jeyavijayan S. Vibrational spectroscopic, first-order hyperpolarizability and HOMO, LUMO studies of 1,2-dichloro-4-nitrobenzene based on Hartree–Fock and DFT calculations. Spectrochim Acta Part A. 2011;79:376–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to DRDO–ERIP, New Delhi, for financial assistance under the major research project. We thank Prof. P. K. Das, Indian Institute of Science, Bangalore, for support in the SHG measurement and SAIF-IIT Madras for X-ray diffraction and thermal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Krishnakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnakumar, V., Rajaboopathi, M. Desired form of polymorphism of 6-chloro-2,4-dinitroaniline crystals grown by controlled growth temperature in melt growth. J Therm Anal Calorim 115, 723–730 (2014). https://doi.org/10.1007/s10973-013-3181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3181-5

Keywords

Navigation