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Abstract Nanocomposites of ferrite and ferroelectric

phases are attractive functional ceramic materials. In this

work, the nanocomposite Ni1-xCoxFe2O4–BaTiO3(x = 0.2,

0.3, 0.4, 0.5) fibers with fine diameters of 3 * 7 lm and

high aspect ratios were synthesized by the organic gel-

thermal decomposition process from the raw materials of

citric acid and metal salts. The structure, thermal decom-

position process and morphologies of the gel precursors and

the resultant fibers derived from thermal decomposition of

the gel precursors were characterized by Fourier transform

infrared spectroscopy, thermogravimetric differential ther-

mal analysis, X-ray diffraction and scanning electron

microscopy. The magnetic properties of the nanocomposite

fibers were measured by vibrating sample magnetometer.

The nanocomposite fibers of ferrite Ni1-xCoxFe2O4 and

perovskite BaTiO3 are formed at the calcination temperature

of 900 �C for 2 h. The average grain sizes of Ni1-xCox

Fe2O4 and BaTiO3 in the nanocomposite fibers increase

from about 15 nm to approximately 67 nm with the

increasing calcination temperatures from 900 to 1,180 �C.

The saturation magnetization of the nanocomposite Ni1-x

CoxFe2O4–BaTiO3(x = 0.2, 0.3, 0.4, 0.5) fibers increases

with the increase of grain sizes of Ni1-xCoxFe2O4 and Co

content, while the coercivity reaches a maximum value at

the single-domain size of about 65 nm of Ni0.5Co0.5Fe2O4

obtained at the calcination temperature of 1,100 �C.

Keywords Nanocomposite fibers � Organic

gel-thermal decomposition process � Ferrite �
Magnetic property

1 Introduction

Multiferroic magnetoelectric composite materials, which

consist of ferromagnetic and ferroelectric phases and

simultaneously exhibit magnetic and electric orderings,

have stimulated a increasing number of research activities

for their functional features and potential applications in

advanced multifunctional devices such as magnetic sen-

sors, microwave devices, transformers and actuators et al.

[1–3]. The heterostructures of nanocomposite, solid solu-

tion and superlattice are allowed to acquire a tight coupling

between the ferromagnetic and ferroelectric phases [4, 5].

Compared with multilayer structures, the nanocomposite

multiferroic fibers consisting of ferrite and ferroelectric

phases can produce a maximum intrinsic magnetoelectric

coupling without the substrate constraint and can magnify

the mechanical displacement arising from the piezoelectric

or magnetostrictive effect due to a high aspect ratio [6, 7].

Quasi-one-dimensional (Q1D) nanostructured multifer-

roic materials are potential building blocks for the next-

generation electromagnetic devices [8]. At present, there

are two methods used for preparation of Q1D ferromag-

netic and ferroelectric composite materials. Hua et al. [9]

synthesized CoFe2O4/Pb (Zr0.52Ti0.48)O3(PZT) nanotubes

by the sol–gel template process. These CoFe2O4/PZT

composite nanotubes were characterized with diameters of

80 * 300 nm, and about 100 lm in length. Xie et al. [10]

prepared CoFe2O4/PZT nanofibers by electrospinning with

diameters of 100 * 300 nm. However, the template and

electrospinning processes are considered hard to efficiently

produce Q1D multiferroic materials on a large scale. There

is therefore a demand for the preparative process of

nanocomposite multiferroic fibers. Due to simple and low

cost, the gel thermal decomposition process is commonly

used to prepare single phase metal and ceramic fibers
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[11, 12]. The aim of this investigation is to fabricate

nanocomposite Ni1-xCoxFe2O4–BaTiO3(x = 0.2, 0.3, 0.4,

0.5) fibers by the organic gel-thermal decomposition pro-

cess and examine the magnetic properties of these nano-

composite fibers.

2 Experimental

The nanocomposite 0.5Ni1-xCoxFe2O4–0.5BaTiO3(x = 0.2,

0.3, 0.4, 0.5) fibers were prepared by the organic gel-thermal

decomposition process and the process was described in

detail previously [13]. The starting reagents used were ana-

lytical grade Fe(NO3)3�9H2O, NiCO3�2Ni(OH)2�4H2O,

Co(NO3)2�6H2O, BaCO3, Ti(OC4H9) and citric acid. The

required metal salts and citric acid were dissolved in an

aqueous and ethanol hybrid solution at pH 7.0 with a con-

tinuous magnetic stirring. The solution was magnetically

stirred for 20 * 24 h at room temperatures and then

removed surplus water in a vacuum rotary evaporator at

60 * 80 �C until a viscous liquid was obtained. The gel

fibers were drawn from the spinnable gels by the domestic

machine and dried in a vacuum oven at 80 �C for about 24 h.

The dried gel fibers were then put in an alumina crucible and

subsequently were calcined at different temperatures for 2 h

under an ambient atmosphere to form the nanocomposite

fibers.

The structure, composition and morphologies of the gel

precursors and the resultant fibers were examined by

Fourier transform infrared spectroscopy (FTIR) using a

model of Nexu670 spectrometer, X-ray diffraction (XRD)

using a D/max2500PC diffractometer (RIGAKU), and

scanning electron microscopy (SEM) using a field emission

scanning electron microscopy (JSM-7001F). The decom-

position process was investigated by thermo-gravimetric

(TG) analysis and differential scanning calorimetry (DSC)

using a SDT2960 (TA) system. Magnetic measurements

were carried out at room temperatures by a vibrating

sample magnetometer (VSM).

3 Results and discussion

3.1 FTIR spectra of gel precursor and fibers calcined

at different temperatures

Figure 1 shows the FTIR spectra of the gel precursor for

0.5Ni0.5Co0.5Fe2O4–0.5BaTiO3 fibers and the products

derived from calcination of the precursor at different

temperatures. From the FTIR spectrum for the gel pre-

cursor in Fig. 1a, the two bands at 1,614 and 1,384 cm-1

arise from the RCOO- symmetrical and asymmetrical

stretching vibration, which are the characteristic absorption

peaks for the citrate. The bands at 1,072, 845, 690, 637 and

555 cm-1 can be assigned to the characteristic vibration

peaks of C–OH, Ti–O, Co–O, Ni–O and Fe–O bonds

[14–16], respectively. This is indicative of the complex

formation of metal ions and citric acid.

For the samples obtained at 300 �C, as shown in Fig. 1b,

the characteristic absorption peak for the citrate at around

1,614 cm-1 disappears owing to the decomposition of

citrate. Two bands at 1,470 and 859 cm-1 can be assigned

to the characteristic absorption peaks for BaCO3. The

bands at 1,386 and 1,060 cm-1 are corresponding the

characteristic vibration peaks of NO3
- and Fe2O3, and

the band at about 582 cm-1 is assigned to NiO2, Co3O4 and

TiO2 [17–19]. With the calcination temperature increased

to 900 �C, as shown in Fig. 1c, the peaks assigned to

BaCO3 and metal oxides disappear and the characteristic

peak at around 580 cm-1 is detected due to the stretching

mode of Fe–O at tetrahedral sites in the spinel structure and

the stretching mode of Ti–O in the perovskite BaTiO3,

which indicates that Ni0.5Co0.5Fe2O4 and BaTiO3 would be

formed at this calcination temperature [20, 21].

3.2 Thermal decomposition of gel precursor

Figure 2 shows the TG-DSC curves of the 0.5Ni0.5Co0.5

Fe2O4–0.5BaTiO3 gel precursor and the thermal decom-

position process roughly consists of the following three

stages. The first stage takes place at the temperature range

of 50 * 300 �C. The DSC curve exhibits a broad endo-

thermic event corresponding to a weight loss of about 10%

at low temperatures 50 * 180 �C and this is attributed to

the loss of free water and bound water from the gel pre-

cursor. Then a large and sharp exothermic event occurs at

Fig. 1 FTIR spectra of the gel precursor and composite fibers

calcined at different temperatures
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around 210 �C in the DSC curve correspondingly a weight

loss of about 27%, owing to the initial break-down of the

complexes and a spontaneous combustion. The spontane-

ous combustion is induced by the in situ oxidizing inter-

actions of citrate, nitrate ions and ammonium nitrate in

the gel accompanying with liberation of H2O, CO2, NOX

[22, 23].

The second stage at the temperature range of

300 * 900 �C, the DSC curve exhibits a broad exothermic

event and a series of small endothermic peaks. The broad

exothermic event at around 380 �C is accompanied by a

weight loss of 23% due to continuing oxidation of the

organic matters and formation of metal oxides. A series of

small endothermic peaks at around 800 �C correspond to a

weight loss of about 10%, and it is believed that at this

temperature range the formation of Ni0.5Co0.5Fe2O4 and

BaTiO3 takes place.

The third stage at the temperature range of

900 * 1,180 �C, the TG curve shows almost no changes in

weight loss and some small endothermic events occur in the

DSC curve owing to the crystallization and grain growth of

the formed Ni0.5Co0.5Fe2O4 and BaTiO3, which is evi-

denced by the above FTIR (Fig. 1c) analysis and confirmed

by the following XRD data.

3.3 Structural characterization of nanocomposite

0.5Ni1-xCoxFe2O4–0.5BaTiO3 fibers

Figure 3 shows XRD patterns of the nanocomposite

0.5Ni0.5Co0.5Fe2O4–0.5BaTiO3 fibers obtained at various

calcination temperatures for 2 h. After calcination at

900 �C, the diffraction collections are indexed just to both

the spinel ferrite NiFe2O4 (JCPDS No. 10-0325) and

perovskite BaTiO3 (JCPDS No. 05-0626) phases, which is

in agreement with the above FTIR and TG/DSC analyses.

As the ferrite NiFe2O4 has the same structure with

Ni0.5Co0.5Fe2O4, it can be deduced that the composite

consisting of the ferrite Ni0.5Co0.5Fe2O4 and perovskite

BaTiO3 is formed at this calcination temperature. With the

calcination temperature increasing from 900 to 1,180 �C,

the corresponding peaks become sharper and narrower, and

the crystallization of Ni0.5Co0.5Fe2O4 and BaTiO3 is

improved and the consequent crystalline grains grow.

The average crystalline size (D) of Ni1-xCoxFe2O4 and

BaTiO3 phases in the fibers can be calculated from the full

width at half maximum (FWHM) of the reflection peaks of

(311) and (101) using Scherrer’s equation. The calculated

average crystalline grain size D of Ni1-xCoxFe2O4 and

BaTiO3 phases in 0.5Ni1-xCoxFe2O4–0.5BaTiO3(x = 0.2,

0.3, 0.4, 0.5) fibers with the calcination temperatures is

plotted in Fig. 4. The crystalline grain sizes are influenced

largely by the calcination temperature and the cobalt con-

tent in Ni1-xCoxFe2O4. For both Ni1-xCoxFe2O4 and

BaTiO3 phases at low cobalt content 0.2, D values increase

from about 15 to 55 nm with the calcination temperature

from 900 to 1,180 �C. By substitution of Ni with Co in

Ni1-xCoxFe2O4, the grain sizes of Ni1-xCoxFe2O4 and

BaTiO3 tend to increase at various calcination tempera-

tures, whilst it finds that the average grain size of BaTiO3

in 0.5Ni0.5Co0.5Fe2O4–0.5BaTiO3 composite has almost a

same size when the calcination temperature over 1,000 �C.

The lattice parameter of Ni1-xCoxFe2O4 was calculated

by use of a special software (MDI Jade 5.0). The average

grain size and lattice parameter of Ni1-xCoxFe2O4 with

various Co content obtained at 1,180 �C are represented in

Table 1. It can be seen that from Table 1 that the grain size

and lattice parameter of Ni1-xCoxFe2O4 increase with Co

content, owing to the crystal lattice inflation induced by the

substitution of Ni cations (0.78 Å) with larger Co cations

Fig. 2 TG/DSC curves of gel precursor for 0.5Ni0.5Co0.5Fe2O4–

0.5BaTiO3 fibers

Fig. 3 XRD patterns of nanocomposite 0.5Ni0.5Co0.5Fe2O4–

0.5BaTiO3 fibers calcined at different temperatures
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(0.82 Å) [24]. The grain sizes and the coupling of ferro-

magnetic Ni1-xCoxFe2O4 and ferroelectric BaTiO3 nano-

phases so that can be tailored by controlling the calcination

process and chemical composition.

The SEM graphs of the typical nanocomposite

0.5Ni0.5Co0.5Fe2O4–0.5BaTiO3 fibers obtained at 1,180 �C

for 2 h are showed in Fig. 5. It can be seen that the fibers

are characterized with a diameter range of 3 * 7 lm, a

high aspect ratio up to 1 9 103 and a dense surface. These

fibers are composed of nanosized particles of Ni0.5Co0.5

Fe2O4 and BaTiO3. In comparison with the average crys-

talline size estimated by Scherrer’s equation, the particle

size observed is in a range 50 to 300 nm and generally in a

nano-scale, whilst some particles are larger possibly owing

to particle aggregations. The morphologies of the other

nanocomposite 0.5Ni1-xCoxFe2O4–0.5BaTiO3(x = 0.2, 0.3,

0.4, 0.5) fibers are very similar.

3.4 Magnetic properties

The hysteresis loops were measured to determine saturation

magnetization (Ms) and coercivity (Hc). Figure 6 shows the

hysteresis loops of the randomly oriented nanocomposite

0.5Ni0.5Co0.5Fe2O4–0.5BaTiO3 fibers obtained at differ-

ent calcination temperatures for 2 h. These loops are

characterized with typical soft magnetic properties of

Ni0.5Co0.5Fe2O4 ferrite, implying a magnetic ordering in the

as-prepared nanocomposite fibers. The magnetic parameters

of the Ni0.5Co0.5Fe2O4–BaTiO3 fibers with calcination

temperature are represented in Table 2. It can be seen that

Ms and magnetic remance (Mr) increase from 7.69 to

20.62 Am2/kg and 0.70 to 7.05 Am2/kg, respectively cor-

responding the calcination temperature from 900 to

1,180 �C. This phenomenon can be explained due to the

crystallization improvement and grain growth of the ferrite

[25].

As showed in Table 2, the coercivity increases initially

with the calcination temperature and reaches a maximum

value at around 1,100 �C due to the increasing magneto-

crystalline anisotropy. According to the Stoner–Wohlfarth

single-domain theory [26], when the crystalline grain size

of Ni0.5Co0.5Fe2O4 is within the single-domain size, the

magnetocrystalline anisotropy energy of a nanocrystal

single domain Ni0.5Co0.5Fe2O4 is proportion to the volume

of nanocrystal particles and the magnetocrystalline

anisotropy of Ni0.5Co0.5Fe2O4 increases with the increasing

grain size from about 34 to 65 nm corresponding the cal-

cination temperature from 900 to 1,100 �C as showed in

Table 2. With a further increase of calcination temperature

over 1,100 �C, the coercivity then exhibits a reduction

tendency as the Ni0.5Co0.5Fe2O4 grain size is larger than

the single-domain size and the particles become multi-

domains. The domain-wall motions taking place in these

multi-domain particles will result in the coercivity reduc-

tion [27]. It can be reasoned that the single-domain size of

Ni0.5Co0.5Fe2O4 in the nanocomposite Ni0.5Co0.5Fe2O4–

BaTiO3 fibers is around 65 nm, which is close to the value

70 nm for CoFe2O4 particles reported by Rashada et al.

[28] and 100 nm for NiFe2O4 particles reported by Yao

et al. [29]. The effect of calcination temperature on the

squareness (Mr/Ms) of Ni0.5Co0.5Fe2O4 in the nanocom-

posite fibers is similar to that of coercivity.

Fig. 4 Grain sizes of Ni1-xCoxFe2O4(x = 0.2, 0.3, 0.4, 0.5) and BaTiO3 in nanocomposite 0.5Ni1-xCoxFe2O4–0.5BaTiO3 fibers with calcination

temperature

Table 1 The effects of Co content (x) on grain size (D) and lattice

parameter (a) of Ni1-xCoxFe2O4 and Ms and Hc of 0.5Ni1-xCox

Fe2O4–0.5BaTiO3 fibers obtained at 1,180 �C

Co (x) D (nm) a (Å) Ms (Am2kg-1) Hc (kAm-1)

0.2 58.7 8.345 12.95 26.32

0.3 62.9 8.347 14.98 27.80

0.4 65.2 8.355 15.79 27.52

0.5 67.4 8.366 20.62 24.73
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Figure 7 shows the hysteresis loops of the randomly

oriented nanocomposite 0.5Ni1-xCoxFe2O4–0.5BaTiO3

(x = 0.2, 0.3, 0.4, 0.5) fibers obtained at 1,180 �C for 2 h.

The saturation magnetization of Ni1-xCoxFe2O4–Ba-

TiO3(x = 0.2, 0.3, 0.4, 0.5) fibers obtained at 1,180 �C for

2 h are represented in Table 1. It can be seen that Ms vaules

increase from 12.95 to 20.62 Am2/kg with the increase of

Co content, which is mainly due to the substitution of

Ni2?ions by Co2? ions in the octahedral sites and higher

magnetic moment of Co2? ions [30]. In order to compare

the magnetic properties, the hysteresis loops of CoFe2O4

and NiFe2O4 fibers calcined at 1,180 �C are also showed in

Fig. 7. Compared with the saturation magnetization of the

single phase CoFe2O4 fibers (87.77 Am2/kg) and NiFe2O4

fibers (24.85 Am2/kg), the 0.5Ni1-xCoxFe2O4–0.5BaTiO3

(x = 0.2, 0.3, 0.4, 0.5) nanocomposite fibers exhibit lower

Ms values owing to non-magnetic BaTiO3 phase. The Hc

values for these nanocomposite fibers are distributed between

the coercivity value of CoFe2O4 fibers (52.42 kA/m) and

NiFe2O4 fibers (6.65 kA/m), implying the magnetization

behaviour and magnetic ordering for the nanocomposite

fibers can be tailored by design of the chemical compo-

sition.

4 Conclusions

(1) The nanocomposite 0.5Ni1-xCoxFe2O4–0.5Ba-

TiO3(x = 0.2, 0.3, 0.4, 0.5) fibers have been suc-

cessfully prepared by the organic gel-thermal

decomposition process using citric acid and metal

salts as the starting reagents. These fibers are com-

posed of nanosized ferrite Ni1-xCoxFe2O4 and

perovskite BaTiO3 and have a diameter range from 3

to 7 lm, a high aspect ratio and a dense surface.

(2) The average grain sizes of Ni1-xCoxFe2O4 and

BaTiO3 in the nanocomposite fibers increase from

about 15 to 67 nm, 17 to 64 nm with the calcination

temperature from 900 to 1,180 �C, respectively. The

grain size and lattice parameter of Ni1-xCoxFe2O4

increase in the cobalt content range of 0.2 to 0.5 at

various calcination temperatures.

Fig. 5 SEM morphologies of 0.5Ni0.5Co0.5Fe2O4–0.5BaTiO3 fibers obtained at 1,180 �C for 2 h

Fig. 6 Hysteresis loops of randomly oriented nanocomposite

0.5Ni0.5Co0.5Fe2O4–0.5BaTiO3 fibers obtained at different calcination

temperatures

Table 2 Effects of calcination

temperature on Ni0.5Co0.5Fe2O4

grain size (D) and magnetic

properties of nanocomposite

0.5Ni0.5Co0.5Fe2O4–0.5BaTiO3

fibers

Temperature (�C) D (nm) Ms (Am2kg-1) Mr (Am2kg-1) Mr/Ms Hc (kAm-1)

900 33.4 7.69 0.70 0.09 8.78

1,000 52.6 12.37 3.96 0.29 26.05

1,100 65.2 16.10 6.63 0.41 33.72

1,180 67.2 20.62 7.05 0.34 24.73
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(3) The magnetic properties for the nanocomposite fibers

are largely influenced by the grain size of Ni1-x

CoxFe2O4 and Co content. The saturation magnetiza-

tion of 0.5Ni1-xCoxFe2O4–0.5BaTiO3 fibers increases

with the grain size and cobalt content, whilst the

coercivity reaches a maximum value at the single-

domain size of about 65 nm of Ni0.5Co0.5Fe2O4

obtained at the calcination temperature of 1,100 �C.
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