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Abstract In this paper we investigate the dielectric response
of cured epoxy resins based on biphenyl group. We chose two
monomers, which were earlier synthesised, containing the
same mesogen but with long and short symmetric tails. They
were cured with standard amines (DDM, DMAP). Firstly we
optimised conditions of the curing process by dielectric and
optical observation in situ. Small differences in the dynamics
of the curing process were observed in different mixtures. For
the four selected products wemade dielectric measurements in
a wide range of frequency and temperature. Although, gener-
ally, dielectric response is similar in all the cured materials,
differences can be seen in the details. At lower temperatures,
quite strong relaxation process is seen in all products, its low
activation energy points towards a β-process, which appears
in many polymers. The Havriliak-Negami formula was fitted
to the data and characteristic parameters of the observed
relaxation processes were compared in detail. In some cases
the α-process also appears. We conclude how the longer
spacer and the type of curing process influence the electrical
properties of the resin.

Keywords Dielectric spectroscopy . Liquid crystal polymer
networks . Epoxy resins

Introduction

Nowadays, new technical developments create a demand for
new materials, one of the examples is using liquid crystalline
epoxy resins to produce polymer networks [1–10]. On the
other hand, recent research has shown that properties of epoxy
polymers can be improved by addition of some inorganic
materials as fillers [11–15]. Liquid crystal epoxy networks
may be used to produce oriented matrices - for example, to
induce global orientation of nanoparticles [6, 7, 16]. In such
networks, not only the structure but also the curing conditions
are a little different than in the case of traditional resins [17,
18]. Generally, polymer networks are created as a result of
curing which means formation of cross-linking bonds be-
tween neighboring molecules. The reaction rate depends on
many factors such as type of the monomer and curing agent,
temperature and duration of keeping the mixture at that tem-
perature. The curing conditions affect the physical properties
of the final products, e.g. the vitrification temperature [19–21].

Many experimental techniques exist which enable obser-
vation of the glassy transition. This stems from the fact that
not only thermodynamic properties change abruptly during
transition to the glassy state, but also a series of other proper-
ties [22, 23]. For instance, dynamic thermomechanical analy-
sis or dielectric spectroscopy not only allow for determination
of the vitrification temperature but can deliver rich informa-
tion about relaxation processes occurring in the studied mate-
rial. The technique of dielectric spectroscopy is based on
measuring changes in the dielectric properties of the sample
in response to the applied alternating electric field. The reac-
tion of sample polarization to a change in the electric field is
delayed, which can be observed as a relaxation process with
characteristic relaxation time. In polymers, two or three relax-
ation processes are most often observed, which are denoted
with greek letters α, β, γ [24–30]. The (structural) α-process
usually corresponds to the glass transition. It is thereby related to
hindering (freezing) of the motion of polymer chain segments,
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caused by approaching the vitrification temperature Tg. The α-
process is among the slowest ones in polymers, the processes
appearing at higher frequencies are customarily described asβ-,
γ-processes. At present, it is believed that β-process reflects
rotational motions of polar group fragments containing single
bonds, inside the molecule [26–28]. These motions can be
treated as more or less free rotations of dipolar groups. The α-
and β-processes exhibit different temperature dependencies.
The relaxation time of the process (β, γ) can usually be de-
scribed with the Arrhenius formula [26–30]:

1

t
¼ 1

t0
exp −

Ea

RT

� �
; ð1Þ

However, abrupt hindering of the dynamics near the vitri-
fication temperature results in a deviation from that exponen-
tial dependency. To describe dynamic properties of glass - e.g.
the structural (α) relaxation time – an empirical formula
proposed by Vogel, Tammann and Fulcher (VTF) is used
[26–30]:

t ¼ t0 exp
B

k T−T0ð Þ
� �

; ð2Þ

where k –Boltzmann constant; B, T0 – constants characteristic
for given material (for T0=0 the VTF equation transforms into
the Arrhenius formula). Vanishing of the structural process
therefore determines the vitrification temperature. This tech-
nique delivers important data about phenomena occurring in
the studied materials, also in the course of the curing process.
Its big advantage is the possibility to carry out measurements in
a wide range of frequency and temperature. In our work we
performed dielectric measurements for two cured epoxy resins
containing the biphenyl group. We used two different amines
and compared the obtained results. The results of in situ dielec-
tric observation during the curing process are also presented.

Materials

As precursors for the polymer networks we chose two epoxy
monomers with biphenyl group and two aromatic amines -
DDM and DMAP. The molecular structure of the used mate-
rials is shown below (Fig. 1). The synthetic route and basic
physical properties of the monomers were described else-
where [31–33]. The presence of the biphenyl group caused
the appearance of a smectic B phase in both the monomers in
the temperature range of 90–114 °C [31–33]. The selection of
curing agents and curing conditions was preceded by optical
observation. The mixture with DDM amine was prepared in
stoichiometric ratio whereas in DMAP case the amine was
only added as a catalyser (ca. 1 % of the mixture). All the final
products taken for further investigation were cured for 3 h, the
temperatures of curing are presented in Table 1.

Experimental

The optical observations of the mixtures were done using a
polarizing microscope with crossing (and not crossing) polar-
oids at a magnification of 80×, and a digital camera Moticam
2000. The material was introduced between plain glass plates.

The dielectric response during curing was recorded using
Solartron 1260 Impedance Analyser with Chelsea Dielectric
Interface 1295. The real and imaginary components of capac-
itance were evaluated in the frequency range from 10−2 to
105Hz. The temperature of the samples was stabilized with the
accuracy of 0.1 K using Unipan 620 temperature controller.
The diameter of parallel electrodes was 5 mm with a spacing
of 50 μm. Dielectric measurements for all the products were
performed in a wide range of frequency (106–10−1Hz) in the
cooling route, using the Alpha high-resolution dielectric ana-
lyzer manufactured by Novocontrol. Data were controlled by
a Quatro cryosystem (Novocontrol) and collected after ther-
mal stabilization (with accuracy of 0.1 K).
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Fig. 1 Molecular structure of the
used precursors (monomers and
amines) and acronyms thereof
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Results and discussion

Firstly, dielectric monitoring during isothermal cure was done
for all the materials. Due to relatively high temperatures of
curing which are accompanied in these materials by signifi-
cant electric conductivity, the results were analyzed using the
electric modulus (M*) representation. This quantity is related
to the dielectric permittivity by the formula [34]:

ε* ¼ 1

M*
; ð3Þ

This approach allows observation of the reaction dynamics
through changes occurring in the cured system which are well
reflected in the plots of the electric modulus vs. time.

Figure 2a presents exemplary 3D plots for the second
material (Table 1). A peak visible in the modulus representa-
tion in the observed frequency range is directly related with
ionic conductivity. The constant τσ which corresponds to the
frequency at which M” reaches its maximum value is called
the conductivity relaxation time and its value is given by the
expression [34]:

tσ ¼ ε0ε∞
σ0

ð4Þ

Plots of the M” peak frequency as a function of time are
shown for all the four products (Fig. 2b, c). Monitoring of the
curing reaction was continued for 200 min and revealed a
period of rapid, significant changes after which only slowly
progressing, small changes were visible in all the cases. Some
differences in the dynamics of the curing process were ob-
served between different mixtures. In particular, when the
monomers with long aliphatic chains were used (product 2
and 4), the conductivity peak was clearly changing during the
first hour but then it stabilized and remained practically con-
stant afterwards. In the other products the initial period of
rapid changes is much shorter which means that the progress
of the reaction slows down substantially after just several
minutes, so longer curing time (or post-curing at a higher
temperature) may be needed to obtain fully reacted product.
The dynamics of the reaction is different for amines DDM and
DMAP, in the first case the curing process starts without delay

whereas in the second case the materials have to be kept at the
curing temperature for a few minutes before the reaction gets
initiated.

In the next step, dielectric studies were carried out for the
obtained products (Table 1), in a wide range of frequency and
temperature. To describe in details the relaxation processes in
product 1, the permittivity representation was chosen. How-
ever, only the lower temperatures where the peaks appear
were taken into account - otherwise the data would be masked
by conductivity (Fig. 3). In the permittivity representation,
two peaks connected with relaxation processes are visible
(figs. 3a, b). These processes were analyzed by fitting the
Havriliak-Negami (HN) formula with conductivity term to
the experimental data [35]:

ε* ωð Þ−ε∞ ¼ −i
σ0

ε0ωs
þ
X
k

Δεk

1þ iωtkð Þαkð Þβk
ð5Þ

Here σ0 is the DC conductivity, s≤1 is a parameter describ-
ing for non-ohmic effects in the conductivity, ε0 is the electric
permittivity of vacuum,ω=2πf is the radial frequency, ε∞ is ε′
at f→∞. The dielectric strength Δε is the difference between
the high-frequency and the low-frequency electric permittivity
corresponding to the relaxation process under consideration, τ
is a characteristic relaxation time, α and β are shape param-
eters of the relaxation time spectra. Typical fitting results for
the product 1 at two temperatures 303 K and 353 K - are
shown in Fig. 3c. At each temperature, all the fitting param-
eters were calculated and an example of the fitting is shown in
Fig. 3d. Both the relaxation processes are of strongly non-
Debye type, with parameters α and β not equal to one. The
first process, appearing at the higher temperature, is similar to
a structural α-process and the second one is a β-process
probably connected with molecular activity of dipolar groups
(COO groups in the mesogen). According to the theoretical
background, disappearing of the α-process is connected with
the temperature of glass transition, which could be estimates
in this case at 333 K. The calculated activation energy for the
β-process (Ea=0.39 eV) is typical for this kind of processes.

A similar dielectric response was seen in product 2 (Fig. 4).
The coexistence of two processes was shown in a wide range
of temperature in modulus representation (Fig. 4a). The first
process (α-process) was detected in a wide range of temper-
ature and disappeared at 303 K. This gives an estimate of the
glass transition temperature, which is lower than in the previ-
ous material (Fig. 4c). The first α-process is not as strong and
well visible as in product 1 and below 343 K it exists together
with the second process (β-process). Typical observation data
along with the fitting curves for both the processes were
shown in Fig. 4b. The activation energy for the β-process is
quite high (Ea=0.81 eV) and much higher than in product 1.

Table 1 Curing conditions of the investigated materials

Name Monomer Amine Tcure [°C]

Product 1 BU1 DDM 122

Product 2 BU12 DDM 138

Product 3 BU1 DMAP 110

Product 4 BU12 DMAP 127

J Polym Res (2013) 20:227 Page 3 of 8, 227



So we can conclude that the longer carbon chain had an
influence on decreasing the temperature of glass transition
and rising the activation energy of processes connected with
the molecular mobility of dipolar groups.

For the other two products (product 3 and 4) produced from
the amine DMAP, dielectric response was quite different
(Fig. 5). In both the cases, only one process was detected

(Fig. 5a, b) – due to high conductivity the results were
presented in the modulus representation. In product 3 the
relaxation process is well seen so long as the conductivity is
not too high. Example results for the temperature of 293 K
were shown in Fig. 5c. Low temperatures at which the peak
appears and its Arrhenius-like dependence on temperature
(Fig. 5d) suggests it is a β-process connected with dipolar
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Fig. 2 Observations of the curing
process through dielectric
spectroscopy for all the
investigated mixtures: a) an
example of a 3D plot showing the
imaginary part of the electric
modulus vs. frequency and time
for mixture 2 (monomer BU12
with the amine DDM); changes in
the electric modulus are related to
the progress of the reaction. b)
changes in the maximum of M”
for mixtures 1 and 2 (with the
amine DDM) c) changes in the
maximum of M” for mixtures 3
and 4 (with the amine DMAP)
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groups in the end of the mesogen. The activation energy
obtained for this process (0.47 eV) is similar to the one
calculated for the β-process in product 1 (containing the same
monomer), which suggests the same relaxation mechanism.
This kind of process is also seen in the last material (product
4), but in this case the absorption maximum is shifted towards
high frequency, beyond our experimental range, so it is diffi-
cult to make the full analysis (Fig. 5b).

The lack of the α-process in the plots shown in Fig. 5a and
b cannot unequivocally prove that such a process does not
occur in products 3 and 4 at all, particularly at higher temper-
atures. At elevated temperatures, electric conductivity is rela-
tively high in these materials and has large contribution to the
measured electrical quantities (it is reflected e.g. by a strong
peak in the M” plot), which might have masked weaker
changes related to some relaxation process potentially occur-
ring at lower frequencies.

To summarise, the β-process is seen in all the products and
in the material containing the longer, more flexible monomer
this process is shifted towards higher frequencies and has
greater activation energy.

Conclusions

This paper demonstrated the results of dielectric measure-
ments performed on selected epoxy materials. On the grounds
of optical observations, two amines were chosen as curing
agents (DDM, DMAP) and optimal values of the curing
temperature were established for each of the studied mixtures.
The curing temperatures are somewhat higher for the mono-
mers with longer chains.

The curing process was observed in situ by means of the
dielectric spectroscopy, at previously determined temperatures.
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The curing reactions were observed in all the materials, but
they exhibited slight differences in the reaction dynamics. The
processes were seen less clearly and showed faster changes in
the mixtures with shorter monomers whereas the reaction

progressed more gradually in the mixtures with longer
monomers.

On the basis of dielectric investigations carried out in a
broad range of temperature and frequency it was concluded
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that two relaxation processes occur in the compounds with
DDM as the curing agent. In the case of product 1, the
structural α relaxation was visible in the temperature range
253 K – 323 K, and vanishing thereof enabled estimating the
vitrification temperature as Tg=333 K. The β-process was
observed at temperatures where the α-process has already
vanished (below 333 K), with activation energy determined
as Ea=0.39 eV. This process was visible in all the cases, which
suggests that it may be connected with polar COO groups
appearing in both the monomers. In product 2, both the pro-
cesses can be observed at temperatures between 303 K and
343 K, and only the structural relaxation is present above that
range. The estimated vitrification temperature, related to
vanishing of the α-process, is 303 K. Due to simultaneous
occurrence of both processes, the activation energy determined

for the β-process at 0.81 eV bears a substantial amount of
measurement uncertainty.

In the mixures with DMAP as the precursor, only one
relaxation process was observed. It was identified as the β-
process. In the case of product 3 (having shorter aliphatic
chains) the process appeared at temperatures between 300 K
and 395 K, with activation energy estimated at 0.47 eV. Sim-
ilar conclusion can be drawn from the study of product 4.
Only one relaxation occurs in this case as well, but it is
difficult to describe in more detail because it is poorly visible,
it could only be observed at a few temperatures around 360 K.
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