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Abstract Games under precedence constraints model situations, where players in a
cooperative transferable utility game belong to some hierarchical structure, which is
represented by an acyclic digraph (partial order). In this paper, we introduce the class
of precedence power solutions for games under precedence constraints. These solu-
tions are obtained by allocating the dividends in the game proportional to some power
measure for acyclic digraphs. We show that all these solutions satisfy the desirable
axiom of irrelevant player independence, which establishes that the payoffs assigned
to relevant players are not affected by the presence of irrelevant players. We axiom-
atize these precedence power solutions using irrelevant player independence and an
axiom that uses a digraph power measure. We give special attention to the hierar-
chical solution, which applies the hierarchical measure. We argue how this solution
is related to the known precedence Shapley value, which does not satisfy irrelevant
player independence, and thus is not a precedence power solution. We also axiomatize
the hierarchical measure as a digraph power measure.
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1 Introduction

A situation, in which a finite set of players can generate certain payoffs by cooperation,
can be described by a cooperative game with transferable utility (or simply a TU-
game). Such a game consists of a (finite) set of players and for every subset of this
set of players, called coalition, a real number representing the worth that the players
in this coalition can earn by cooperating. Depending on the application, players in a
game can represent, for example, rational decision-making agents, political parties in
a voting body, tasks to be served by a server, etc. In many applications, there is some
structure on the player set. In the literature, such structures can be modeled by various
combinatorial structures, such as ‘classic’ undirected graphs inMyerson [1] or directed
graphs in Gilles et al. [2] or Faigle and Kern [3], but also more general structures such
as antimatroids in Algaba et al. [4], convex geometries in Bilbao and Edelman [5],
augmenting systems in Bilbao [6], regular set systems in Honda and Grabisch [7]
and Lange and Grabisch [8] or union stable systems in Algaba et al. [9,10]. In the
underlying paper, we focus on games, where there is a hierarchical structure on the
set of players. For example, consider a set of tasks, say tasks 1, 2 and 3, that have to
be served on a server, such that there is some (partial) order by which the tasks must
be served, say that task 1 cannot be started before another task 2 has been completed.
Furthermore, when a given product has to be disassembled, often some components
can be removed only after other components have previously been removed.

In order to model these kind of situations, cooperative TU-games are enriched with
a directed graph on the set of players. Two approaches that are followed in the literature
are the following. First, in the games with a permission structure, introduced by Gilles
et al. [2], restrictions in coalition formation aremodeled by a ‘set approach’ in the sense
that from the digraph we derive a set of feasible coalitions, i.e., a subset of the power
set of all players. The second approach is that of games under precedence constraints,
introduced by Faigle and Kern [3] (see also Grabisch and Sudhölter [11,12]) where,
instead of restricting the set of feasible coalitions, one follows an ‘order approach’
and restricts the set of admissible orders in which coalitions form. In this paper, we
follow the second approach. A game under a precedence constraint is a game, where
the player set is endowed with a precedence relation, represented by a partial order
(i.e., reflexive, antisymmetric and transitive relation) on the player set. Equivalently,
it can be represented by an acyclic directed graph. Players enter to form the ‘grand
coalition,’ consisting of all players according to some permutation on the player set.
Given an acyclic digraph, a permutation of the players is called admissible, if players
enter after their successors in the digraph. Consequently, a coalition of players is
considered feasible, if for every player in the coalition, all of its successors in the
digraph are also present in the coalition. The fact that the set of players is partially
ordered by an acyclic digraph allows for enumerating all feasible subsets, which has
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important implications in problems for systems of tasks with this type of ordering
constraints (see Skiena [13]).

A player is a null player in a game under precedence constraints, if its contribution
to every admissible permutation is zero. A player is called irrelevant if it is a null player
and all its superiors in the digraph are also null players. Irrelevant player independence
is subsequently defined as the property that the payoff to relevant players (i.e., players
that are not irrelevant) is not affected by the presence of irrelevant players. Since
irrelevant players have no contribution in the game, nor are they needed to allow
cooperation with any player who has a contribution in the game, we consider this a
desirable property.

We introduce a new class of solutions for games under precedence constraints that
satisfy irrelevant player independence. Using this independence axiom, we obtain
axiomatizations of the solutions in this class by the well-known axioms of efficiency
and linearity, and new axioms called irrelevant player property and p-strength. The
irrelevant player property requires that irrelevant players earn a zero payoff. This is a
considerable weakening of the null player property used by Faigle and Kern [3] (and
[14], for a special case), which requires that every null player earns a zero payoff, and
thus ignores the fact that null players might still have predecessors that are non-null
players, but who need the presence of the null player. The irrelevant player property
allows that null players still earn a nonzero payoff because of having the ability to
make non-null players active. The p-strength axiom requires that in case we consider
the unanimity game of the ‘grand coalition,’ consisting of all players, then the payoffs
are allocated proportional to some power measure p. A power measure for acyclic
digraphs is a function that assigns values to the players in an acyclic digraph that can
be interpreted as the ‘strength’ or ‘influence’ of these players in the digraph. Besides
using arbitrary power measures, this is a modification of the hierarchical strength
axiom of Faigle and Kern [3] in the sense that they consider the unanimity game of
any coalition. By considering only the unanimity game of the grand coalition, we only
consider situations where all players are identical in the game, and therefore, the only
difference is with respect to their position in the digraph. According to p-strength,
the payoff allocation in the unanimity game, where all players are identical, is fully
determined by the power measure p. The class of solutions that is characterized by the
above axioms is what we call the class of precedence power solutions. For a positive
power measure p, the corresponding p-hierarchical solution that is characterized by
the above axioms is the solution that allocates the so-called Harsanyi dividends of any
feasible coalition in a game over the players in that coalition, proportional to their
power according to measure p.

Within the new class of precedence power solutions, we give special attention to the
hierarchical solution, which is based on the hierarchical measure as power measure
for acyclic digraphs, and compare it with the known precedence Shapley value of
Faigle and Kern [3], which is not a precedence power solution since it does not satisfy
independence of irrelevant players. However, other powermeasures from the literature
can be applied, such as the ones given by Gould [15], White and Borgatti [16], the
β-measure of van den Brink and Gilles [17] and its reflexive version in van den Brink
and Borm [18], the λ-measure of Borm et al. [19], the positional power measure of
Herings et al. [20] or the centrality measures in del Pozo et al. [21]. This also shows
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how social network theory and mathematical game theory are intertwined as soon
as we consider network structures among players in a game. We end the paper with
giving an axiomatization of the hierarchical measure as power measure.

After preliminaries in Sect. 2, we introduce and axiomatize the class of precedence
power solutions in Sect. 3. In Sect. 4, we focus on the specific hierarchical solution
and compare it with the precedence Shapley value. In Sect. 5, we characterize the
hierarchical measure that underlies the hierarchical solution, before concluding in
Sect. 6.

2 Preliminaries: Games Under Precedence Constraints

Precedence constraints are given by an acyclic digraph. An irreflexive directed graph
or irreflexive digraph is a pair (N , D), with N a finite set of positive integers whose
elements are called nodes, and D ⊆ {(i, j) : i, j ∈ N , i �= j} is an (irreflexive)
binary relation on N , consisting of ordered pairs called arcs. Since the nodes will
represent players, we often refer to the nodes as players. For i ∈ N , the nodes in
FD(i) := { j ∈ N : (i, j) ∈ D} are called the followers or successors of i in D,
and the nodes in PD(i) := { j ∈ N : ( j, i) ∈ D} are called the predecessors of
i in D. Furthermore, we define the set of subordinates of i in D as the set ̂FD(i)
such that j ∈ ̂FD(i) iff there exists a sequence of players (h1, . . . , ht ) with h1 = i ,
hk+1 ∈ FD(hk), for all 1 ≤ k ≤ t − 1, and ht = j . We refer to the players in the set
̂PD(i) = { j ∈ N : i ∈ ̂FD( j)} as i’s superiors. The digraph (N , D) is acyclic iff
i /∈ ̂FD(i), for all i ∈ N . We denote the collection of all acyclic digraphs by D. By
TOP(N , D) = {i ∈ N : PD(i) = ∅}, we denote the set of top players in (N , D), i.e.,
the set of players without predecessors. Note that TOP(N , D) �= ∅ if the digraph is
acyclic.

Faigle and Kern [3] consider situations, where cooperation between players in a
cooperative TU-game is restricted by a partial order on the player set, that can be
represented by an acyclic digraph. A coalition is feasible iff for any player in the
coalition all of its successors in the digraph are also present in the coalition. The set
Φ p(N , D) of feasible coalitions, according to digraph (N , D) ∈ D, is thus given by

Φ p(N , D) = {S ⊆ N : FD(i) ⊆ S, for all i ∈ S}. (1)

A permutation π : N → N is admissible in acyclic digraph (N , D) iff π(i) > π( j)
whenever (i, j) ∈ D, i.e., successors enter before their predecessors in the digraph.
The set of admissible permutations ΠD(N ) in D is

ΠD(N ) = {π : N → N : π(i) > π( j) if (i, j) ∈ D}. (2)

A TU-game under precedence constraints is a triple (N , v, D), where N is a finite
set of positive integers whose elements are called players, (N , D) ∈ D is an acyclic
digraph and v : Φ p(N , D) → IR is a characteristic function (cooperative TU-game),
that assigns to every set S inΦ p(N , D) aworth v(S), with v(∅) = 0. Theworth v(S) of
coalition S ⊆ N iswhat the players in S can earn by cooperating.Wedenote the class of
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all games under precedence constraints by GPC . For (N , v, D), (N , w, D) ∈ GPC and
α, β ∈ IR, the game (N , αv+βw, D) is defined by (αv+βw)(S) := αv(S)+βw(S)

for S ∈ Φ p(N , D). For each T ∈ Φ p(N , D), T �= ∅, the unanimity game under
precedence constraints (N , uT , D) ∈ GPC is given by uT (S) = 1 if T ⊆ S, and
uT (S) = 0, otherwise, S ∈ Φ p(N , D). For every (N , v, D) ∈ GPC , Faigle and Kern
[3] show that the characteristic function in (N , v, D) can be written as

v =
∑

T∈Φ p(N ,D), T �=∅
ΔD

v (T )uT , (3)

with ΔD
v (T ) the dividend of S ∈ Φ p(N , D), recursively obtained according to the

size of the feasible coalitions:

ΔD
v (T ) = v(T ) −

∑

H⊂T,H∈Φ p(N ,D),H �=∅
ΔD

v (H). (4)

Harsanyi [22] assumed that every coalition in a TU-game negotiates a vector of
dividends such that the sumof all coalitions’ dividends vectorswould be a feasible allo-
cation for the grand coalition N . Therefore, the dividend of a coalition S is what is left
after all proper subcoalitions of S have received their dividends. If Φ p(N , D) = 2N ,
then all notions as unanimity games and dividends boil down to the standard notions
for cooperative TU-games. Finally, for (N , v, D) ∈ GPC and S ∈ Φ p(N , D), the
subgame (S, vS, D(S)), is given by vS(T ) = v(T ), for all feasible coalitions T ⊆ S,
and D(S) = {(i, j) ∈ D : {i, j} ⊆ S}.

3 Precedence Power Solutions

A power measure for acyclic digraphs is a function p that to every acyclic digraph
(N , D) ∈ D assigns a vector p(N , D) ∈ RN . For a player i ∈ N , pi (N , D) is
a measure of its ‘power’ or ‘influence’ in (N , D). In this paper, we only consider
positive power measures, meaning that

∑

j∈N p j (N , D) > 0, for all (N , D) ∈ D.
Let P be the collection of all positive power measures.

A solution for games under precedence constraints is a function f, assigning to every
game under precedence constraints (N , v, D) ∈ GPC a real vector of n-components
f (N , v, D) ∈ RN , where each component represents the payoff assigned to each
player. For positive power measure p, we define the p-hierarchical solution as the
solution that allocates the dividend of a coalition S ∈ Φ p(N , D) among the players
in S proportionally to p(S, D(S)).

Definition 3.1 For a positive power measure p, the p-hierarchical solution is the
solution H p on GPC given by

H p
i (N , v, D) =

∑

S∈Φ p (N ,D)

i∈S

pi (S, D(S))
∑

j∈S p j (S, D(S))
ΔD

v (S), for all i ∈ N .
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We refer to the class, consisting of all p-hierarchical solutions, as the class of
precedence power solutions. To distinguish different solutions, and to motivate the
use of a particular solution in an application, we follow the axiomatic approach. This
means that we define several axioms or properties that are satisfied by a particular
solution and only by this solution. If one accepts the axioms, then one should use
the corresponding solution. Otherwise, one can identify which axiom is not desirable,
which ismuchmore helpful than just rejecting thewhole solution. The first two axioms
are straightforward adaptations of known axioms for TU-game solutions.

Efficiency For each game (N , v, D) ∈ GPC ,
∑

i∈N fi (N , v, D) = v(N ).

Linearity For every pair of games (N , v, D), (N , w, D) ∈ GPC and α, β ∈ R, it
holds that f (N , αv + βw, D) = α f (N , v, D) + β f (N , w, D).

For admissible permutationπ ∈ ΠD(N ) andplayer i ∈ N , theprecedencemarginal
vector mπ (N , v, D) ∈ RN is given by

mπ
i (N , v, D) = v({ j ∈ N : π( j) ≤ π(i)}) − v({ j ∈ N : π( j) < π(i)}). (5)

A player i ∈ N is a null player in game under precedence constraints (N , v, D),
iff for every π ∈ ΠD(N ) it holds thatmπ

i (N , v, D) = 0. Player i ∈ N is an irrelevant
player in (N , v, D) iff i is a null player, and every j ∈ ̂PD(i) is also a null player. A
player i ∈ N is relevant if it is not an irrelevant player. The irrelevant player property
requires that an irrelevant player earns a zero payoff.

Irrelevant player property For each (N , v, D) ∈ GPC , if i ∈ N is an irrelevant
player in (N , v, D), then fi (N , v, D) = 0.

Let Irr(N , v, D) be the set of irrelevant players in game under precedence con-
straints (N , v, D). For F ⊆ 2N , S ⊆ N , let FS = {T ∈ F : T ⊆ S} be
the collection of subsets of S in F . Given N ′ = N \ Irr(N , v, D), it holds that
Φ

p
N ′(N , D) = Φ p(N ′, D(N ′)). This means that removing irrelevant players does not

have an effect on the ability of relevant players to cooperate. Since irrelevant play-
ers are null players, they do not make any contribution to their subordinates in the
digraph. Moreover, their superiors are also null players, and thus, an irrelevant player
does not make any contribution either by letting other players that need them to be
present in any feasible coalition inΦ p(N , D) cooperate. Since irrelevant players have
no influence in creating value or by letting other players create value, we require that
the removal of irrelevant players from the game does not affect the payoff to relevant
players.

Irrelevant player independence Let N ′ = N \ Irr(N , v, D). For every (N , v, D) ∈
GPC , it holds that fi (N , v, D) = fi (N ′, vN ′ , D(N ′)) for i ∈ N ′.
Finally, we introduce an axiom that reflects the power of the players in the digraph.

In the unanimity game (N , uN ) on the grand coalition N , all players are equivalent
with respect to the game since all players must agree to achieve a non-null worth. In
that case, we require that the dividend allocation only depends on the strength of the
players in the digraph, by assuming that the payoff allocation is proportional to some
positive digraph power measure p.
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p-strength For every (N , D) ∈ D, positive power measure p and i, j ∈ N , it holds
that pi (N , D) f j (N , uN , D) = p j (N , D) fi (N , uN , D).

The p-hierarchical solution is axiomatized by the above four axioms. We first
provide two lemmas.

Lemma 3.1 Let (N , v, D) be a game under precedence constraints. If coalition S ∈
Φ p(N , D) contains a player i who is a null player in (N , v, D), and moreover S ⊆
N \ PD(i), then ΔD

v (S) = 0.

Proof Consider a feasible coalition S, containing null player i and no predecessors
of i . Let H(S) = S \ ̂FD(i) be the set of players in S, that are not subordinates of
player i in D. By induction on |H(S)|, if |H(S)| = 0, then the only feasible subset
of S, containing player i is S itself. Therefore, v(S) − v(S \ {i}) = ΔD

v (S). Since i
is a null player in (N , v, D), it holds that v(S) − v(S \ {i}) = 0 = ΔD

v (S). Assume
ΔD

v (T ) = 0, if 0 ≤ |H(T )| < |H(S)|. Since |H(S)| > 0, it holds that S is no longer
the only feasible subset of S, containing player i . Let K (S) = {T ∈ Φ p(N , D) : i ∈
T and T ⊂ S}. It now holds that v(S)−v(S\{i}) = ∑

T∈K (S) ΔD
v (T )+ΔD

v (S). Since
|H(T )| < |H(S)| for T ∈ K (S), by induction,we haveΔD

v (T ) = 0, for all T ∈ K (S).
Since i is a null player in (N , v, D), it holds that v(S) − v(S \ {i}) = 0 = ΔD

v (S). 
�
Lemma 3.2 Let (N , v, D) be a game under precedence constraints. Player i ∈ N
is an irrelevant player in game under precedence constraints (N , v, D) if and only if
ΔD

v (S) = 0 for every coalition S ∈ Φ p(N , D) with i ∈ S.

Proof (i) To prove the ‘only if’ part, for S ⊆ N , define PD(S) := ⋃

i∈S PD(i). Let
i ∈ N be an irrelevant player in (N , v, D). Let S ∈ Φ p(N , D) such that i ∈ S.
We show by induction on |̂PD(i)| that ΔD

v (S) = 0. If |̂PD(i)| = 0, then player
i has no predecessors in (N , D). Let S ∈ Φ p(N , D) such that i ∈ S. In this
case, S ⊆ N = N \ PD(i). Therefore, by Lemma 3.1, we have ΔD

v (S) = 0.
Proceeding by induction, assume that for every irrelevant player j such that
|̂PD( j)| < |̂PD(i)| it holds that ΔD

v (S) = 0, for all coalitions S ∈ Φ p(N , D)

with j ∈ S. We already know thatΔD
v (S) = 0, for S such that S∩ ̂PD(i) �= ∅, by

the fact that predecessors of irrelevant players are themselves also irrelevant and
|̂PD( j)| < |̂PD(i)|, for any j ∈ ̂PD(i). Therefore,we only need to consider those
feasible coalitions S ∈ Φ p(N , D), such that S∩ ̂PD(i) = ∅. For these coalitions,
it holds that S ⊆ N \ PD(i). Hence, by Lemma 3.1, we have ΔD

v (S) = 0.
(ii) To prove the ‘if’ part, suppose that i is not an irrelevant player in (N , v, D).

If i is not a null player in (N , v, D), then there exists S ∈ Φ p(N , D), with
i ∈ S, such that S \ {i} ∈ Φ p(N , D) and v(S) − v(S \ {i}) �= 0. We also have
v(S)−v(S \{i}) = ∑

T⊆S,i∈T,T∈Φ p(N ,D) ΔD
v (T ). It follows that there is at least

one S ∈ Φ p(N , D), i ∈ S, such that ΔD
v (S) �= 0. If i is a null player, but there

is a j ∈ ̂PD(i) that is not a null player, then we can reason in a similar way to
obtain that there exists at least one S ∈ Φ p(N , D), j ∈ S, such thatΔD

v (S) �= 0.
Since i is a subordinate of j , i must be in S ∈ Φ p(N , D).


�
Next, the main theorem characterizes the precedence power solutions.
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Theorem 3.1 Let p be a positive power measure. A solution for games under prece-
dence constraints is equal to the p-hierarchical solution H p if and only if it satisfies
efficiency, linearity, the irrelevant player property, irrelevant player independence and
p-strength.

Proof It is straightforward to show that H p satisfies efficiency, linearity, the irrelevant
player property and p-strength. To show irrelevant player independence, consider
game under precedence constraints (N , v, D) and precedence power solution H p,

obtained from power measure p. Let N ′ = N \ Irr(N , v, D). By Lemma 3.2, it holds
that ΔD

v (S) = 0 if S ∩ Irr(N , v, D) �= ∅, and from expression (4) of dividends, it
follows that ΔD

v (S) = ΔD
vN ′ (S) for S ∈ Φ

p
N ′(N , D).

For i ∈ N ′, it holds that H p
i (N , v, D) = ∑

S∈Φ p(N ,D),i∈S
pi (S,D(S))

∑

j∈S p j (S,D(S))
ΔD

v (S).

Therefore, H p
i (N , v, D) = ∑

S∈Φ
p
(N ′,D(N ′),i∈S

pi (S,D(S))
∑

j∈S p j (S,D(S))
ΔvD

N ′ (S). Moreover,

H p
i (N ′, vN ′ , D(N ′)) = ∑

S∈Φ p(N ′,D(N ′)),i∈S
pi (S,D(N ′)(S))

∑

j∈S p j (S,D(N ′)(S))
Δ

D(N ′)
vN ′ (S).

For all S ∈ Φ p(N ′, D(N ′)) = Φ
p
N ′(N , D) := {T ∈ Φ p(N , D) : T ⊆ N ′} it

holds D(S) = D(N ′)(S), and thus, pi (S, D(S)) = pi (S, D(N ′)(S)), for all i ∈ S.
Hence, we conclude that H p

i (N , v, D) = H p
i (N ′, vN ′ , D(N ′)), showing irrelevant

player independence.
To prove uniqueness, assume that solution f satisfies the axioms. Since f satisfies

linearity, by (3) it is sufficient to consider uniqueness of f on unanimity games under
precedence constraints. For unanimity game under precedence constraints (N , uS, D),
S ∈ Φ p(N , D), the set of irrelevant players is given by N \ S (since S ∈ Φ p(N , D)

implies ̂FD(S) ⊆ S). Applying the irrelevant player property, these players are
assigned zero payoff by f . By irrelevant player independence, for all i ∈ S, it holds
that fi (N , uS, D) = fi (S, uS, D).1 Since uS(S) = 1, from efficiency it follows that

∑

k∈S
fk(S, uS, D) = uS(S) = 1. (6)

Now consider any player i ∈ S. If |S| = 1, then efficiency determines fi (S, uS, D).
Therefore, suppose that |S| ≥ 2. Since (S, uS, D) is a unanimity game on the grand
coalition S, we can apply p-strength to player i and any player k ∈ S \ {i} to obtain

pi (S, D(S)) fk(S, uS, D) = pk(S, D(S)) fi (S, uS, D). (7)

We distinguish the following two cases:

(i) Suppose that pi (S, D(S)) = 0. Since
∑

j∈S p j (S, D(S)) > 0, there exists at
least one k ∈ S \ {i} such that hk(S, D(S)) �= 0. It follows from Eq. ( 7) applied
to players i and k that fi (S, uS, D) = 0.

(ii) Suppose that pi (S, D(S)) > 0. For k ∈ S \ {i}, from Eq. (7) it follows

fk(S, uS, D) = pk(S, D(S))

pi (S, D(S))
fi (S, uS, D). (8)

1 For convenience, we write the subgame on S by (S, uS , D) instead of (S, uS |S , D(S)).
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By substituting this expression in Eq. (6), we obtain

∑

k∈S

pk(S, D(S))

pi (S, D(S))
fi (S, uS, D) = 1 (9)

As pk(S, D(S)) is known for k ∈ S, fi (S, uS, D) is uniquely determined. 
�
We remark that the axioms are logically independent. Examples, showing logical

independence, can be obtained from the authors on request.

4 A Special Case: The Hierarchical Solution

Consider a game under precedence constraints (N , v, D). For i ∈ N , let

Π i
D(N ) = {π ∈ ΠD(N ) : π(i) > π( j), for all j ∈ N \ {i}}, (10)

be the collection of those permutations inΠD(N ),where i enters after all other players
in N \ {i}. Consider the power measure that assigns to every player the number of
admissible permutations of N , where it is the last player to enter.

Definition 4.1 The hierarchical measure η is the power measure on D given by
ηi (N , D) = |Π i

D(N )|, for all i ∈ N .

We analyze this measure in the next section. Here, we apply it to define and charac-
terize the specific precedence power solution that is obtained by taking the hierarchical
measure as power measure in Definition 3.1 and Theorem 3.1.

Definition 4.2 The hierarchical solution Hη is the solution on GPC given by

Hη
i (N , v, D) =

∑

S∈Φ p (N ,D)

i∈S

ηi (S, D(S))
∑

j∈S η j (S, D(S))
ΔD

v (S), i ∈ N . (11)

Next, we compare this hierarchical solution with the known precedence Shapley
value of Faigle and Kern [3]. For a game under precedence constraints (N , v, D), and
i ∈ S, S ∈ Φ p(N , D), let

Π i
D(N , S) = {π ∈ ΠD(N ) : π(i) > π( j), for all j ∈ S \ {i}}, (12)

be the collection of those permutations in ΠD(N ), where i enters after the play-
ers in S \ {i}. Note that Π i

D(N ) = Π i
D(N , N ) in case N = S. The (absolute)

hierarchical strength is the function h that assigns to every (N , D) ∈ D and coali-
tion S ∈ Φ p(N , D) the vector h(N , D, S) ∈ IRS , where hi (N , D, S) is equal to
|Π i

D(N , S)|, i.e., the number of permutations in ΠD(N ), where i ∈ S enters after
the players in S \ {i}. Note that this is not a power measure as defined in Sect. 3
since the ‘power’ of a node also depends on the subset of the player set, which we are
considering.
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Whereas the hierarchical solution allocates the dividend of a feasible coalition, S ∈
Φ p(N , D), proportionally to the hierarchical measure ηi (S, D(S)), the precedence
Shapley value applies the hierarchical strength h (N , D, S)

Hi (N , v, D) =
∑

S∈Φ p(N ,D)
i∈S

hi (N , D, S)
∑

j∈S h j (N , D, S)
ΔD

v (S), for all i ∈ N . (13)

Since the Shapley value for TU-games [23] allocates the Harsanyi dividends [22]
equally over all players, in the corresponding coalition, when D = ∅ (and thus,
Φ p(N , D) = 2N ), both the precedence Shapley value and the hierarchical solution
assign the classical Shapley value. However, the precedence Shapley value is not a
precedence power solution. This can be seen from the fact that it does not satisfy
irrelevant player independence, as illustrated by the following example, which also
illustrates the difference between the precedence Shapley value and the hierarchical
solution.

Example 4.1 Consider a set of four tasks, which have to be performed in a certain
(partial) order. The payoff to a coalition is one when at least tasks 1, 2 and 4 are
completed and zero, otherwise. If tasks could be completed in any order, then the
digraph that describes the order in which the tasks must be performed would be the
empty set and, in that case, the hierarchical solution and the precedence Shapley value
would be equal to the Shapley value, assigning

( 1
3 ,

1
3 , 0,

1
3

)

, in this example. But
now, suppose that task 1 has to be completed before task 3 and task 2 before tasks
3 and 4. This situation can be represented by the game under precedence constraints
(N , v, D) ,where N = {1, 2, 3, 4} , v = u{1,2,4} and D = {(3, 1) , (3, 2) , (4, 2)}. The
dividends of v are given by ΔD

v ({1, 2, 4}) = 1 and ΔD
v (S) = 0, otherwise. The set of

admissible permutations is

ΠD (N ) = {(1, 2, 3, 4) , (1, 2, 4, 3) , (2, 1, 3, 4) , (2, 1, 4, 3) , (2, 4, 1, 3)} .

For S = {1, 2, 4} ∈ Φ p(N , D), we get h1 (N , D, S) = 1, h2 (N , D, S) = 0
and h4 (N , D, S) = 4, and, in this case, the precedence Shapley value is given by
H (N , v, D) = ( 1

5 , 0, 0,
4
5

)

.
The set of admissible permutations in subgraph (S, D(S)) is

ΠD(S)(S) = {(1, 2, 4) , (2, 1, 4) , (2, 4, 1)} . (14)

Therefore, η1 (S, D(S)) = 1, η2 (S, D(S)) = 0, and η4 (S, D(S)) = 2, yielding the
hierarchical solution Hη (N , v, D) = ( 1

3 , 0, 0,
2
3

)

(Fig. 1).
Player 3 is an irrelevant player. Deleting player 3 yields game under precedence

constraint (N ′, v′, D′) with N ′ = {1, 2, 4}, v′ = u{1,2,4} and D′ = {(4, 2)}. Then,
the dividends of v′ are given by ΔD′

v′ ({1, 2, 4}) = 1 and ΔD′
v′ (S) = 0, otherwise.

Since N ′ = S, the set of admissible permutationsΠD(S) is given by (14):ΠD
(

N ′) =
ΠD(S) = {(1, 2, 4) , (2, 1, 4) , (2, 4, 1)} . Hence, for S = N ′ ∈ Φ p(N , D), we have
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Fig. 1 Digraphs (N , D) and
(S, D(S))

h1
(

N ′, D′, S
) = 1, h2

(

N ′, D′, S
) = 0 and h4

(

N ′, D′, S
) = 2. Therefore, the pres-

ence of irrelevant player 3 has an effect on the payoff allocation for the precedence
Shapley value. Obviously, in the case of the hierarchical solution, the payoffs are not
influenced by the presence of player 3 since η(S, D(S)) is the same as before. 
�

Faigle and Kern [3] give an axiomatization of the precedence Shapley value, using
efficiency, linearity, and the following two axioms.

Null player property For each (N , v, D) ∈ GPC , if i ∈ N is a null player in
(N , v, D), then fi (N , v, D) = 0.

Hierarchical strength 2 For every (N , D) ∈ D, S ∈ Φ p(N , D) and i, j ∈ S, it
holds that hi (N , D, S) f j (N , uS, D) = h j (N , D, S) fi (N , uS, D).

Theorem 4.1 (Faigle andKern [3])Asolution for gamesunder precedence constraints
is equal to the precedence Shapley value H if and only if it satisfies efficiency, linearity,
the null player property and hierarchical strength.

Notice that the null player property is stronger than the irrelevant player property
since irrelevant players are null players, but not every null player is an irrelevant player.
Further, the hierarchical strength h(N , D, S) is defined for every coalition S relative
to the player set N . This is a main difference with p-strength, specifically η-strength,
which only considers the unanimity game of the ‘grand coalition’ N , while hierarchical
strength considers the unanimity game of any coalition. In the unanimity game of the
‘grand coalition’ N , all the players are symmetric, and therefore, a difference in payoffs
assigned to different players must come from different digraph positions. However,
when considering the unanimity game of a proper subcoalition of N , there might
be also asymmetries between the players in the unanimity coalition with respect to
their relation with null and non-null players. So, p-strength (specifically η-strength)
is more appealing than hierarchical strength. Using these weaker and more appealing
properties comes at a ‘price,’ namely that we need one axiom more. However, this
axiom is irrelevant player independence, which we consider a desirable axiom, and
hence an advantage of the hierarchical solution with respect to the precedence Shapley
value, which does not satisfy it.

2 Faigle and Kern [3] use the normalized hierarchical strength h that assigns to every (N , D) ∈ D and

S ∈ Φ p(N , D) the vector h(N , D, S) ∈ IRS , with hi (N , D, S) = |Π i
D (N ,S)|

|ΠD (N )| is the fraction of permutations

in ΠD(N ), where i ∈ S enters after the players in S \ {i}.
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5 An Axiomatization of the Hierarchical Measure

Faigle and Kern [3] use the hierarchical strength as a tool to axiomatize the precedence
Shapley value H . In the previous section, we saw that the hierarchical measure is a
related power measure that underlies the hierarchical solution. To provide a deeper
insight in the hierarchical measure η, we give an axiomatization of this power measure
on the class of acyclic digraphs. Therefore, we introduce several axioms that can be
satisfied by a generic power measure p for acyclic digraphs.

The first axiom, 1-normalization, states that if digraph (N , D) contains only one
player, then this player has power one.

1-Normalization For (N , D) ∈ D with N = {i}, pi (N , D) = 1.

The second axiom, the non-top property, states that players that are not top players
in the graph have zero power. The digraph is interpreted as a hierarchical structure,
where the only players that can enter as last player, and therefore are not depending
on players that always enter after them, are players without predecessors.

Non-top property For every (N , D) ∈ D and i ∈ N such that PD(i) �= ∅, it holds
that pi (N , D) = 0.

The third axiom is independence of successors and states that the power of a player
does not depend on its successors. For a player i ∈ N , the set of outgoing arcs from i
is given by the set outD(i) := {(k, l) ∈ D : k = i}.

Independence of successors For every (N , D) ∈ D and each player i ∈ N , it holds
that pi (N , D) = pi (N , D \ outD(i)).

Finally, the isolated player property states that the power of an isolated player (i.e.,
a player having no successors or predecessors) is equal to the sum of the powers of all
other players in the subgraph without this isolated player. As isolated players neither
have successors nor predecessors, these players might be considered to interact freely
with any of the other players in the digraph. The isolated player property reflects that
the power of an isolated player depends on the combined strength of the relations it is
able to have with any of the other players, where the strength of each relation depends
on the powers of the other players in the subgraph without the isolated player.

Isolated player property For every (N , D) ∈ D and i ∈ N such that FD(i) ∪
PD(i) = ∅, it holds that pi (N , D) = ∑

j∈N\{i} p j (N \ {i}, D−i ).

The four previous axioms characterize the hierarchicalmeasure. Examples, showing
logical independence of the axioms, can be obtained from the authors on request.

Theorem 5.1 A power measure for acyclic digraphs is equal to the hierarchical mea-
sure η if and only if it satisfies 1-normalization, the non-top property, independence
of successors and the isolated player property.

Proof Consider acyclic digraph (N , D). Since the only permutation on N = {i} is
(i), it follows that hierarchical measure η satisfies 1-normalization.

Since j ∈ PD(i) implies that π(i) < π( j), for all π ∈ ΠD(N ), there is no
π ∈ ΠD(N ) such that π(i) = n , and therefore, ηi (N , D) = 0, showing that η

satisfies the non-top property.

123



1020 J Optim Theory Appl (2017) 172:1008–1022

Suppose that j ∈ FD(i). Since conditions ΠD(N ) ⊂ ΠD\{(i, j)}(N ) and π ∈
ΠD\{(i, j)}(N ) \ ΠD(N ) imply that π( j) > π(i), then, we conclude that ηi (N , D) =
ηi (N , D \ {(i, j)}). Repeated application for all arcs in outD(i) shows that η satisfies
independence of successors.

For an isolated player i ∈ N , there does not exist j ∈ N \ {i} such that (i, j) ∈ D
or ( j, i) ∈ D. It therefore holds that π ∈ ΠD(N ) if and only if πN\{i} ∈ ΠD−i (N \
{i}). The number of admissible permutations in Π i

D(N ) is therefore equal to the
number of possible relative orders πN\{i} of the players in N \ {i}. It follows that
|Π i

D(N )| = |ΠD−i (N \ {i})|. Applying the definition of the hierarchical measure, it
holds |ΠD−i (N \ {i})| = ∑

j∈N\{i} η j (N \ {i}, D−i ). Then, ηi (N , D) = |Π i
D(N )| =

|ΠD−i (N \ {i})| = ∑

j∈N\{i} η j (N \ {i}, D−i ), showing that η satisfies the isolated
player property.

To prove uniqueness, let p be a positive power measure, satisfying the axioms.
We perform induction on |N |. If |N | = 1, then pi ({i}, D) = 1 by 1-normalization.
Proceeding by induction, assume that p(N ′, D′) is uniquely determined if |N ′| < |N |,
and consider (N , D) ∈ D. If PD(i) �= ∅, then it holds fi (N , D) = 0 by the non-
top property. Suppose that PD(i) = ∅. By independence of successors, pi (N , D) =
pi (N , D \ outD(i)), and therefore, pi (N , D) = pi (N , D−i ) = ∑

j∈N\{i} p j (N \
{i}, D−i ), where the last equality follows from the isolated player property. By the
induction hypothesis, p j (N \ {i}, D−i ), j ∈ N \ {i}, are known, and thus, pi (N , D)

is uniquely determined. 
�

6 Conclusions

In the literature, the Shapley value has been extended to games associated with com-
binatorial structures more general than a digraph. For example, Algaba et al. [24]
consider it in games on antimatroids, Bilbao and Edelman [5] studied it on convex
geometries, and Bilbao and Ordoñez [25] and Algaba et al. [26] on augmenting sys-
tems. Convex geometries and augmenting systems have been shown to be contained
in the class of so-called regular set systems considered by Honda and Grabisch [7]
and Lange and Grabisch [8], who also consider an extension of the precedence Shap-
ley value to games on regular set systems. We can use the ‘maximal chains’ in the
definition of a regular set system to extend the hierarchical measure to this class.

Besides these generalizations, we can apply precedence power solutions to several
applications of games on acyclic digraph structures. Two important applications con-
cern the allocation of clean river water. The river games of Ambec and Sprumont [27]
consider the problem of allocating clean water among the agents (countries), living
along the river. On the other hand, Dong et al. [28] consider the cost allocation prob-
lem, where cleaning costs to clean a river from its pollution have to be allocated over
the agents along the river. Applying precedence power solutions, we can consider dif-
ferent allocation rules, where the different power measures, on which the solutions are
based, express the right of the agents on clean water (in case of allocating clean river
water) or the responsibility of the agents in the pollution (in case of allocating cleaning
costs). In allocating pollution cleaning costs over agents based on responsibility, the
identification of contamination as studied by Gugat [29] is useful.
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