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Abstract In this article, a general method for shape-topology sensitivity analysis of
contact problems is proposed. The method uses domain decomposition combined with
specific properties of minimizers for the energy functional. The method is applied to
the static problem of an elastic body in frictionless contact with a rigid foundation.
The contact model allows a small interpenetration of the bodies in the contact region.
This interpenetration is modeled by means of a scalar function that depends on the
normal component of the displacement field on the potential contact zone. We present
the asymptotic behavior of the energy shape functional when a spheroidal void is
introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we
use a nonoverlapping domain decomposition technique and the associated Steklov–
Poincaré pseudodifferential operator. The differentiability of the energy with respect to
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the nonsmooth perturbation is established, and the topological derivative is presented
in the closed form.

Keywords Topological derivative · Static frictionless contact problem · Asymptotic
analysis · Domain decomposition · Steklov–Poincaré operator
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1 Introduction

Topological asymptotic analysis [1–3] allows us to obtain an asymptotic expansion of
a given shape functional of linear elasticity when a geometrical domain is singularly
perturbed by the insertion of holes, inclusions, source-terms, or even cracks. The main
concept arising from this analysis is the topological derivative. This derivative can be
seen as a first-order correction of the unperturbed shape functional to approximate the
perturbed shape functional. The topological derivative was rigorously introduced in
[4]. Since then, this concept has proved extremely useful in the treatment of a wide
range of problems; see, for instance, [5–11]. Concerning the theoretical development
of the topological asymptotic analysis, besides the monograph [1], the reader is referred
to [12–15].

Classically, contact problems are modeled by means of a nonpenetration condition
between an elastic body and a rigid obstacle or foundation. This is known as a unilateral
contact condition and is modeled using variational inequalities originated by the so-
called Signorini Contact Problem. A less restrictive boundary condition on the contact
region is obtained by considering the normal compliance model. In this kind of models,
based on the assumption of small displacement, some interpenetration between the
contacting bodies is allowed, and the boundary forces are given as a function of the
interpenetration. However, such models allow an arbitrarily large interpenetration of
the bodies in contact, which is physically rather unrealistic. Recently, a new class of
models has been presented in [16], using less restrictive boundary conditions that allow
small interpenetrations of the bodies. In such a model, the small interpenetration is
governed by a function that depends on the normal component of the displacement field
on the boundary of the potential contact region. Clearly, this is a nonlinear boundary
condition for the contact problem, leading to a new class of variational inequalities.

The shape and topological asymptotic analysis for contact problems have been
studied in [17–20]. In these works, the differentiability of the energy functional with
respect to a singular perturbation has been developed for the usual boundary conditions
in contact problems. Due to the nonlinear condition over the contact zone, the boundary
value problem becomes nonsmooth. Therefore, nonsmooth analysis is necessary since
the shape differentiability of solutions to contact problems is obtained only in the
framework of Hadamard differentiability of metric projections onto polyhedric sets in
appropriate Sobolev spaces.

In this work, we consider the asymptotic behavior of the energy shape functional
when a spheroidal void is introduced at an arbitrary point of the elastic body. We
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Fig. 1 Contact problem

consider the energy shape functional associated to the frictionless contact problem
allowing a small interpenetration between the elastic body and a rigid foundation,
developed in [16]. For the asymptotic analysis, we use a domain decomposition tech-
nique and an associated Steklov–Poincaré pseudodifferential operator. The differen-
tiability of the energy of this new class of variational problems, with respect to the
nonsmooth perturbation, is established. A closed form for the topological derivative
in the three-dimensional space is also presented.

The paper is organized as follows. The frictionless contact problem with small
interpenetration is presented in Sect. 2. The topological asymptotic analysis, with
respect to the nucleation of spherical holes (voids) in three spatial dimensions, is
developed with all details in Sect. 3; here, a closed form of the topological derivatives
associated with the energy shape functional is presented. The paper ends with some
concluding remarks in Sect. 4.

2 Static Contact Model for Small Interpenetration

We consider the problem of an elastic body having contact with a rigid foundation.
The domain of the body, denoted by � ⊂ R3, is assumed to be bounded and to have
Lipschitz boundary ∂� consisting of three mutually disjoint parts �D , �N , and �C

with positive measures, where different boundary conditions are prescribed. On�D , we
prescribe Dirichlet boundary conditions (displacement), on �N Neumann boundary
conditions (traction), and on �C a contact condition with the rigid foundation that
admits interpenetration; see Fig. 1.

For the contact on �C , we consider only the normal compliance law of the type

σn(u) = −p(un − g), (1)

where un := u · n denotes the normal component of the displacement field u, n is
the unit outward normal vector to the boundary ∂�, and g is the gap on the potential
contact zone. Moreover, in (1), σn(u) represents the normal component to the boundary
of the stress tensor σ (u), i.e., σn(u) = σ (u)n · n. The Cauchy stress tensor σ (u) is
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defined as
σ (u) := Cε(u),

where ε(u) is the symmetric part of the gradient of the displacement field u, i.e.,

ε(u) := 1

2

(
∇u + (∇u)�

)
,

and C denotes the fourth-order elastic tensor. For an isotropic elastic body, this tensor
is given by

C = 2μI + λ(I ⊗ I),

with μ and λ denoting the Lamé coefficients. In the above expression, we use I and I
to denote the fourth-order and the second-order identity tensors, respectively. In terms
of the engineering constant E (Young’s modulus) and υ (Poisson’s ratio), the above
constitutive response can be written as

C = E

1 − υ2 [(1 − υ)I + υ(I ⊗ I)]. (2)

The function p : R → R+ = [0,+∞] in (1) is used to model the interpenetration
between the body and the foundation. There are two parameters, β > α, where α

indicates the initial contact and the value of β describes a limit such that no further
interpenetration is possible. The function p is monotone with the following properties:

p(y) = 0 for y ≤ α,

lim
y↑β

p(y) = +∞,

p(y) = +∞ for y ≥ β.

(3)

The strong form of the equilibrium problem under this contact condition is to find
a displacement field u : � → R3 such that

−div σ(u) = 0 in �,

u = u on �D,

σ (u)n = t on �N ,

σn(u) = −p(un − g) on �C ,

σ τ (u) = 0 on �C .

(4)

The last condition in (4) indicates that the contact is without friction, where σ τ (u) =
σ (u)n − σn(u)n denotes the tangential component of the stress tensor σ (u).

We assume that the stress operator σ is bounded and positive definite, i.e., there
exist two constants σ , σ > 0 such that

|σ | ≤ σ , ∀φ ∈ R3×3 : σ (φ) · φ ≥ σ |φ|2,
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Fig. 2 Perturbed contact problem

and the data satisfy

g ∈ H1/2(�C ), u ∈ H1(�;R3), un|�C = g and t ∈
(

H1/2(�N ;R3))∗
.

The weak formulation of the problem stated in (4) is given by the following varia-
tional problem: find u ∈ U with un − g ∈ dom(p) such that

〈σ (u), ε(v) − ε(u)〉� + 〈p(un − g), vn − un〉�C = 〈 t̄, v − u〉�N ∀v ∈ U , (5)

where the set U of admissible functions is given by

U := {ϕ ∈ H1(�;R3) : ϕ = u on �D}, (6)

and the domain of definition of the function p is

dom(p) :=
ϕ ∈ L1(�C ) : p(ϕ) ∈ L1(�C ), ∃C > 0 :

∫

�C

p(ϕ)v ≤ C‖v‖H1/2(�C ). (7)

For a complete and detailed description of this model, we refer the reader to [16],
where it was proved that, under the above assumptions, problem (5) has a unique
solution.

3 Topological Asymptotic Analysis

In this section, we obtain an asymptotic expansion for the energy shape functional
when a small spheroidal cavity of radius ρ is introduced at an arbitrary point x̂ of �,
far enough from the potential contact region �C ; see Fig. 2.
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The main term of this expansion is the topological derivative operator, which rep-
resents a first-order asymptotic correction term of the given shape functional with
respect to the singular domain perturbation [4].

Let us consider a shape functional defined on � and depending on the solution u,
denoted by J�(u). After the introduction of a singular perturbation at x̂, we have a
new domain �ρ := � \ Bρ , where Bρ is the ball of radius ρ centered at x̂, that is,
Bρ := {

x ∈ R3 : |x − x̂| < ρ
}
; see Fig. 2.

Therefore, an asymptotic expansion of the energy shape functional defined on the
perturbed domain �ρ , i.e., J�ρ , can be written as

J�ρ (uρ) = J�(u) + f (ρ)T�(x̂) + o
(

f (ρ)
)
, (8)

where f (ρ) is a decreasing positive function such that f (ρ) → 0 as ρ ↓ 0, T�(x̂) is
the topological derivative of J� at x̂, and uρ is the solution of the following contact
problem in the perturbed domain: find a displacement field uρ : �ρ → R3 such that

−div σ(uρ) = 0 in �ρ,

uρ = u on �D,

σ (uρ)n = t on �N ,

σn(uρ) = −p(uρ · n − g) on �C ,

σ τ (uρ) = 0 on �C ,

σ (uρ)n = 0 on ∂Bρ.

(9)

Note that there is no traction applied on the boundary of the hole, i.e., the homogeneous
Neumann boundary condition is assumed on ∂Bρ .

From (8), in accordance with the classical definition of the topological derivative
(see [4]), we have

T�(x̂) := lim
ρ↓0

J�ρ (uρ) − J�(u)

f (ρ)
. (10)

In order to perform the asymptotic expansion and evaluation of the topological
derivative of problem (9), in this work, we apply a domain decomposition method and
the associated Steklov–Poincaré pseudodifferential operator.

3.1 Domain Decomposition

We start by decomposing the domain �ρ into two parts: (i) a ball BR of radius R >

ρ > 0 centered at x̂ ∈ �, that is, BR := {
x ∈ R3 : |x − x̂| < R

}
, and (ii) the domain

�R := � \ BR . Clearly, BR contains the small cavity Bρ , and, for this perturbed
configuration, we can define the domain as C(R, ρ) := BR \ Bρ ; see Fig. 3.

We use �R to denote the exterior boundary ∂BR of the domain C(R, ρ).
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(a) Domains ΩR and BR.

(b) Domain C(R, ρ).

Fig. 3 Decomposition of the domain �

First, we consider the following linear elasticity problem in C(R, ρ): given v ∈
H1/2(�R;R3), find a displacement field ωρ : C(R, ρ) → R3 such that

−div σ(ωρ) = 0 in C(R, ρ),

ωρ = v on �R,

σ (ωρ)n = 0 on ∂Bρ.

(11)

Using (11), we can define the Steklov–Poincaré boundary operator Sρ on �R as

Sρ : v ∈ H1/2(�R;R3) → σ (ωρ)ν ∈ H−1/2(�R;R3), (12)

where ν denotes the unit normal vector to the boundary �R pointing outside the ball
BR . Next, we consider the following contact problem in �R : find a displacement field
uR

ρ : �R → R3 such that

−div σ(uR
ρ ) = 0 in �R,

uR
ρ = u on �D,

σ (uR
ρ )n = t on �N ,

σn(uR
ρ ) = −p(uR

ρ · n − g) on �C ,

σ τ (uR
ρ ) = 0 on �C ,

σ (uR
ρ )ν = Sρ(uR

ρ ) on �R .

(13)
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Its variational formulation can be written as follows: find a displacement field uR
ρ ∈ UR

with p(uR
ρ · n − g) ∈ dom(p) such that

〈σ (
uR

ρ

)
, ε(v) − ε

(
uR

ρ

)〉�R + 〈p
(
uR

ρ · n − g
)
, vn − uR

ρ · n〉�C

+〈Sρ

(
uR

ρ

)
, v − uR

ρ 〉�R = 〈t, v − uR
ρ 〉�N ∀v ∈ UR, (14)

where the set UR of admissible functions is given by

UR := {ϕ ∈ H1(�R;R3) : ϕ = u on �D}. (15)

From (11) and (12), it follows that the solution uρ of (9) satisfies

σ (uρ)ν = Sρ(uρ) on �R .

Consequently, the restriction of uρ to the truncated domain �R coincides with
the solution uR

ρ of (13) and similarly uρ |C(R,ρ) = ωρ , where ωρ is the solution to
(11) with v = uρ |�R . We also observe that, by the definition of the Steklov–Poincaré
boundary operator in C(R, ρ), the solution ωρ of (11) satisfies

∫

C(R,ρ)

σ
(
ωρ

) · ε(ωρ) = 〈Sρ(v), v〉�R . (16)

For the unperturbed case (ρ = 0), we define the Steklov–Poincaré operator as

S := S0 : v ∈ H1/2(�R;R3) → σ (ω)ν ∈ H−1/2(�R;R3),

associated with the problem

−div σ(ω) = 0 in BR,

ω = v on �R .
(17)

Applying the domain decomposition technique to the problem (4) on �, we can
rewrite (5) as follows:

〈σ (u), ε(v) − ε(u)〉�R + 〈p(un − g), vn − un〉�C + 〈S(u), v − u〉�R

= 〈t, v − u〉�N ∀v ∈ UR . (18)

It is well known that Sρ is a positive definite operator for any ρ ≥ 0, and that the
following asymptotic expansion holds:

Sρ = S + ρ3S ′ + o
(
ρ3), ρ ↓ 0, (19)

with a bounded linear operator S ′ [17].
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3.2 Topological Derivative

For the contact model studied in this work, the energy shape functional associated to
the domain � is given by [16]

J�(u) := 1

2
〈σ (u), ε(u)〉� − 〈 t̄, u〉�N +

∫

�C

P(un − g), (20)

where u denotes the solution of the problem in the unperturbed domain (see (4)), and
the function P(y) is given by

P(y) :=
y∫

−∞
p(z). (21)

Considering the singular perturbation Bρ , the energy shape functional associated
to the perturbed domain �ρ is given by

J�ρ (uρ) := 1

2
〈σ (uρ), ε(uρ)〉�ρ − 〈 t̄, uρ〉�N +

∫

�C

P(uρ · n − g), (22)

where uρ is the solution of the problem in �ρ [(see (9)].
Now, by taking into account the domain decomposition and the Steklov–Poincaré

boundary operator presented above, we can define the following functional associated
to the truncated domain �R :

I�R (uR
ρ ) := 1

2 〈σ (uR
ρ ), ε(uR

ρ )〉�R − 〈 t̄, uR
ρ 〉�N + ∫

�C
P(uR

ρ · n − g)

+ 1
2 〈Sρ(uR

ρ ), uR
ρ 〉�R . (23)

In terms of the above functional, the contact problem in the truncated domain �R ,
given by (13), can be written as the following optimization problem: the displacement
field uR

ρ is the unique minimizer such that

I�R

(
uR

ρ

) = inf
v∈dom

(
I�R

) I�R (v), (24)

where
dom

(
I�R

) :=
{
v ∈ UR : P(vn − g) ∈ L1(�C )

}
. (25)

For the optimization problem (24), we can establish the equivalence

I�R

(
uR

ρ

) ≡ J�ρ (uρ), (26)
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since the minimizer in (24) coincides with the restriction to �R of the minimizer uρ

of the corresponding quadratic functional defined in the whole singularly perturbed
domain �ρ .

Proposition 3.1 Let u and uρ be the solutions to (5) and (14), respectively. Then

uρ → u strongly in H1(�R;R3) as ρ ↓ 0. (27)

Proof First, we show that the sequence {uρ}, ρ ↓ 0, is bounded in H1(�R;R3). Using
v := 2uρ − u as a test function in (14), we obtain

〈σ (uρ), ε(uρ)〉�R + 〈p(uρ · n − g), uρ · n − g〉�C + 〈Sρ(uρ), uρ〉
= 〈σ (uρ), ε(u)〉�R + 〈p(uρ · n − g), un − g〉�C

+〈Sρ(uρ), u〉�R + 〈t, uρ − u〉�N . (28)

The terms on the right-hand side can be estimated using the boundedness of σ , the
expression (16), and the properties of the data u and t as follows:

〈σ (uρ), ε(u)〉�R + 〈Sρ(uρ), u〉�R = 〈σ (uρ), ε(u)〉�ρ

≤ σ‖ε(uρ)‖
L2

(
�ρ,R3

)‖ε(u)‖
L2

(
�ρ,R3

),
〈p(uρ · n − g), un − g〉�C = 0,

〈t, uρ − u〉�N ≤ ‖t‖
(H1/2

(
�N ;R3)

)∗
(
‖uρ‖

H1/2
(
�N ;R3

)

+‖u‖
H1/2

(
�N ;R3

)).

Using positive definiteness of σ , the expression (16), and the monotonicity of p, we
get a lower bound for the left-hand side of (28):

〈σ (uρ), ε(uρ)〉�R + 〈p(uρ · n − g), uρ · n − g〉�C + 〈Sρ(uρ), uρ〉�R

≥ σ‖ε(uρ)‖2
L2

(
�ρ ;R3

).

Combining the above estimates with (28), we find that there is a constant C1 > 0
depending only on σ , σ , ‖u‖H1(�;R3) and ‖t‖(H1/2(�N ;R3))∗ such that

‖ε(uρ)‖2
L2(�ρ ;R3)

≤ C1

(
‖ε(uρ)‖L2(�ρ ;R3) + ‖uρ‖H1/2(�N ;R3) + ‖u‖

H1/2
(
�N ;R3

)).

Now, we use the embedding H1(�R;R3) ↪→ H1/2(�N ;R3), Young’s inequality, and
Korn’s inequality in H1(�R;R3) to obtain

‖uρ‖
H1

(
�R;R3

) ≤ CK ‖ε(uρ)‖
L2

(
�R;R3

) ≤ CK ‖ε(uρ)‖
L2

(
�ρ,R3

) ≤ C2,
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where CK > 0 is the constant in the Korn inequality and C2 > 0 depends on the same
quantities as C1. To show strong convergence, we test (14) with v := u and (18) with
v := uρ . Adding the resulting equations and multiplying by −1, we obtain

〈σ (uρ) − σ (u), ε(uρ) − ε(u)〉�R + 〈p(uρ · n − g) − p(un − g), uρ · n − un〉�C

+〈Sρ(uρ) − S(u), uρ − u〉�R = 0.

(29)

Since Sρ is a positive definite operator which admits the asymptotic expansion (19),
and the sequence {uρ} is bounded in H1

(
�R;R3

)
, the last term in (29) satisfies

〈Sρ(uρ) − S(u), uρ − u〉�R = 〈Sρ(uρ) − Sρ(u), uρ − u〉�R

+〈Sρ(u) − S(u), uρ − u〉�R

≥ 〈ρ3S ′(u), uρ − u〉�R + o
(
ρ3) → 0 as ρ ↓ 0.

Using this, together with the Korn inequality and the facts that σ is positive definite
and p is nondecreasing, we deduce from (29) that

lim
ρ↓0

‖uρ − u‖2
H1

(
�R;R3

) ≤ 0,

as desired. ��
Proposition 3.2 The functional I�R , defined in (23), is right-differentiable at ρ = 0
for any fixed R > ρ with ρ ≥ 0, and its derivative is

I ′
�R

= 1

2

∫

�R

S ′(uR)
uR = 1

2
〈S ′(uR)

, uR〉�R , (30)

where S ′ is the main term of the asymptotic expansion of the Steklov–Poincaré bound-
ary operator Sρ in the space of Steklov–Poincaré operators, given by

Sρ = S + ρ3S ′ + o
(
ρ3) (31)

Proof The derivative of I�R at ρ = 0 can be written as

I ′
�R

:= lim
ρ↓0

I�R

(
uR

ρ

) − I�

(
uR

)

ρ3 . (32)

Let us consider the following inequalities:

I�R

(
uR

ρ

) − I�

(
uR

ρ

)

ρ3 ≤ I ′
�R

≤ I�R

(
uR

) − I�

(
uR

)

ρ3 . (33)
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Now, for the left-hand side of (33), we have

I�R

(
uR

ρ

) − I�

(
uR

ρ

)

ρ3 = 1
ρ3

{
1
2 〈σ (

uR
ρ

)
, ε

(
uR

ρ

)〉�R − 〈t, uR
ρ 〉�N + ∫

�C
P

(
uR

ρ · n − g
)

+ 1
2 〈Sρ

(
uR

ρ

)
, uR

ρ 〉�R − 1
2 〈σ (

uR
ρ

)
, ε(uR

ρ )〉� + 〈t, uR
ρ 〉�N

− ∫
�C

P
(
uR

ρ · n − g
)}

= 1
ρ3

{
1
2 〈σ (

uR
ρ

)
, ε

(
uR

ρ

)〉�R − 〈t, uR
ρ 〉�N + ∫

�C
P

(
uR

ρ · n − g
)

+ 1
2 〈Sρ

(
uR

ρ

)
, uR

ρ 〉�R − 1
2 〈σ (

uR
ρ

)
, ε

(
uR

ρ )
〉
�R + 〈t, uR

ρ 〉�N

− ∫
�C

P
(
uR

ρ · n − g
) − 1

2 〈S(
uR

ρ

)
, uR

ρ 〉�R

}

= 1
2ρ3 〈Sρ

(
uR

ρ

) − S
(
uR

ρ

)
, uR

ρ 〉�R . (34)

Considering the asymptotic expansion of the Steklov–Poincaré operator, we have

I�R

(
uR

ρ

) − I�

(
uR

ρ

)

ρ3 = 1
2ρ3 〈S(

uR
ρ

) + ρ3S ′(uR
ρ

) + o
(
ρ3

) − S
(
uR

ρ

)
, uR

ρ 〉�R

= 1
2 〈S ′(uR

ρ

)
, uR

ρ 〉�R + 1
2

〈
o(ρ3)

ρ3 , uR
ρ

〉
�R

. (35)

Using the strong convergence of uR
ρ to uR and the linearity of S ′, we obtain

lim
ρ↓0

I�R (uR
ρ ) − I�(uR

ρ )

ρ3 = 1

2
〈S ′(uR), uR〉�R . (36)

Now, the right-hand side of (33) can be written as

I�R

(
uR

) − I�

(
uR

)

ρ3 = 1
ρ3

{
1
2 〈σ (

uR
)
, ε

(
uR

)〉�R − 〈t, uR〉�N + ∫
�C

P
(
u R

n − g
)

+ 1
2 〈Sρ

(
uR

)
, uR〉�R − 1

2 〈σ (
uR

)
, ε

(
uR

)〉� + 〈t, uR〉�N

− ∫
�C

P
(
u R

n − g
)}

= 1
ρ3

{
1
2 〈σ (

uR
)
, ε

(
uR

)〉�R − 〈t, uR〉�N + ∫
�C

P
(
u R

n − g
)

+ 1
2 〈Sρ

(
uR

)
, uR〉�R − 1

2 〈σ (
uR

)
, ε

(
uR

)〉�R + 〈t, uR〉�N

− ∫
�C

P
(
u R

n − g
) − 1

2 〈S(
uR

)
, uR〉�R

}

= 1
2ρ3 〈Sρ

(
uR

) − S
(
uR

)
, uR〉�R . (37)
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Considering the asymptotic expansion of the Steklov–Poincaré operator, we have

I�R (uR) − I�

(
uR

)

ρ3 = 1
2ρ3 〈S(

uR
) + ρ3S ′(uR

) + o
(
ρ3

) − S
(
uR

)
, uR〉�R

= 1
2 〈S ′(uR

)
, uR〉�R + 1

2

〈
o
(
ρ3

)
ρ3 , uR

〉

�R

. (38)

By taking the limit of the above expression as ρ ↓ 0, we obtain

lim
ρ↓0

I�R

(
uR

) − I�

(
uR

)

ρ3 = 1

2
〈S ′(uR)

, uR〉�R . (39)

Finally, the expressions (36) and (39) imply (30). �

Remark 3.1 Using Proposition 3.2, the asymptotic expansion of the functional I�R

can be written as

I�R = I� + ρ3

2
〈S ′(uR)

, uR〉�R + o
(
ρ3), (40)

and in view of the asymptotic expansion (8), we finally see that the topological deriv-
ative satisfies the following identity:

T�(x̂) = 1

2
〈S ′(uR)

, uR〉�R . (41)

Proposition 3.2 establishes the differentiability of the energy shape functional for
this contact model with respect to the nonsmooth perturbation denoted by Bρ . This is
an abstract result, whose closed form for the topological derivative T�(x̂) is presented
in the next section.

3.3 Topological Derivative Evaluation

By the main result of the previous section, the energy shape functional has an asymp-
totic expansion as ρ ↓ 0; see (8) and (41). This means that the asymptotic behavior of
the energy in C(R, ρ) holds in the whole domain �. Now, we only need to compute the
topological derivative for the energy shape functional in C(R, ρ), with its associated
elastic problem (11). In order to evaluate that topological derivative, we can use the
techniques available in the literature: see for instance [4,21–23]. Finally, an explicit
and analytical formula for the topological derivative T�(x̂) is given in the following
result:

Theorem 3.1 The energy shape functional of an elastic solid, characterized by the
constitutive Eq. (2), with a spherical cavity of radius ρ with homogeneous Neumann
boundary condition and centered at a point x̂ ∈ �, admits for ρ ↓ 0 the following
asymptotic expansion:

J�ρ (uρ) = J�(u) + ρ3πHσ (u(x̂)) · ε(u(x̂)) + o
(
ρ3) ∀x̂ ∈ �, (42)
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where u(x̂) is the solution of problem (4) evaluated at x̂, and H is a fourth-order
tensor defined as

H := 1 − υ

7 − 5υ

(
10I − 1 − 5υ

1 − 2υ
I ⊗ I

)
, (43)

where υ is the Poisson ratio of the elastic medium, and I and I are the second-order
and fourth-order identity tensors, respectively.

Proof The reader interested in the proof of this result may refer to [24–26]. ��
Remark 3.2 The fourth-order tensor H in (42) can be interpreted as the polarization
tensor associated to this problem. This concept is very useful, since the topological
derivative formula can be written explicitly in terms of this tensor. The reader interested
in this topic may refer to [13,27,28].

4 Conclusions

Topological derivatives are used in shape optimization [1] to determine the location of
small inclusions or voids. There are applications for the optimal design in structural
mechanics, or for numerical solution of inverse problems. Therefore, the knowledge of
analytical form of topological derivatives is important in numerical methods of shape
optimization. In general, the topological derivatives cannot be determined directly for
variational inequalities. The existence of topological derivatives for contact problems
with friction, dynamic contact problems, or elastic-plastic problems is not known,
and it is a difficult open problem. There are no asymptotic analysis tools which can
be applied in the general case of nonlinear structural models in mechanics. The only
known results on topological derivatives of shape functionals are derived for the static,
frictionless contact problems with the unilateral conditions [1].

An analytical expression for the topological derivative of the energy shape func-
tional associated to a new frictionless contact model [16] has been derived. The model
allows for a small interpenetration between an elastic body and a rigid foundation. The
results obtained can be extended to some nonsmooth domains, including the cracks
with nonpenetration conditions. This issue is a subject of current research.

The asymptotic analysis is developed for the specific case of spherical voids intro-
duced in an elastic body. Similar results can be derived for elastic inclusions [1]. The
results are obtained by an application of a nonoverlapping domain decomposition
technique with the associated Steklov–Poincaré pseudodifferential operators. In this
way, the differentiability of the energy can be established. The final formula is a simple
analytical expression, in terms of the solution of the state equation and the constitutive
parameters, evaluated at each point of the unperturbed domain. Therefore, numerical
results can be obtained for this class of models and for shape-topological optimization
problems.

We point out that the small interpenetration condition, prescribed in the potential
contact zone, does not contribute explicitly to the first-order topological derivative of
the energy functional. This means that the formula for the topological derivative of
the energy functional for the contact problems takes the same form as was obtained
for the classical elasticity problem for an isotropic and homogeneous medium [1,2].
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The contribution of the contact model in the topological derivative is through the
displacement field, the solution of the contact problem with a nonlinear boundary
condition (small interpenetration). This information can be potentially used in the
topological design of mechanical components, under contact conditions, to achieve a
specified behavior.

The simple formula for the topological derivative of the energy functional for con-
tact problems can be used in numerical methods of optimum design which is the
subject of current research in this domain.
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