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Abstract We consider systems of agents interacting through topological interactions. These
have been shown to play an important part in animal and human behavior. Precisely, the
system consists of a finite number of particles characterized by their positions and velocities.
At random times a randomly chosen particle, the follower, adopts the velocity of its closest
neighbor, the leader. We study the limit of a system size going to infinity and, under the
assumption of propagation of chaos, show that the limit kinetic equation is a non-standard
spatial diffusion equation for the particle distribution function.We also study the casewherein
the particles interact with their K closest neighbors and show that the corresponding kinetic
equation is the same. Finally, we prove that these models can be seen as a singular limit
of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys
163:41–60, 2016). The proofs are based on a combinatorial interpretation of the rank as well
as some concentration of measure arguments.

Keywords Rank-based interaction · Spatial diffusion equation · Continuity equation ·
Concentration of measure

1 Introduction

In the literature on animal behavior including fish [3], birds [40] and even pedestrians [34],
interactions between individuals are often assumed to be strongly dependent on their relative
distance. However it has recently been demonstrated that individuals in bird flocks interact
with their nearest neighbors irrespective of their distance [5,18]. More precisely, the authors
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in [5] claim that each bird interacts with between six to eight of its closest neighbors. The
authors coined the term of “topological interaction” to refer to such interaction mechanisms
and ”topological distance” to refer to how many other individuals were closer. Even though
the reality of this topological interaction has been debated [26], it now seems to receive con-
sensus following reports that self-propelled particle models based on topological interactions
successfully reproduce the observed experimental features [11,14,30].

The understanding that birds interact through topological rather than metric distance has
generated an intense literature. Topological interactions have been introduced to themodeling
of many natural phenomena, from birds [35] to pedestrians [38]. Mixed metric-topologic
interactions have also been proposed [43,46]. Proof of flocking under topological interaction
has been given in [33,41,48], while speed to consensus has been shown to depend on the
number of interacting neighbors in [47]. Similarly, interactions depending of the behavior of
the closest neighbor are probably at play in human interactions such as portfolio theory [6,27,
37], competition between coworkers within a firm, risk-taking among traders or aggressive
behavior to reach a sexual partner, see for example [24,36]. Rank-based dynamics bears
similarities with rearrangement (see e.g. [13] and references therein).

One of the striking features of topological compared to metric interactions is their scale-
invariance property. Indeed, irrespective of the bird concentration within the flock, [5] proved
that the interaction features remain unchanged. In human cognition models, it is also more
relevant to restrict interactions to the closest neighbors, as the attention of a subject is intrin-
sically directed to only a few people around him/her [44]. Interactions with close neighbors
do not preclude interactions at a longer range, as interactions spread with the conscious or
unconscious signals sent by the subjects in response to these interactions. However, issues
such as quantify the propagation speed of information sent via topological interactions are
poorly understood so far, in particular in the presence of a large number of subjects. This calls
for a large-scale theory of topological interactions, or in other words, for the development of
meso or macroscopic models of particle systems connected through topological interactions.
The aim of this article is specifically to derive a macroscopic model for a large population
of particles interacting through topological interactions, starting from a simple microscopic
model. To the best of our knowledge, the present work and its predecessor [10] are the first
to develop a rigorous coarse-graining of topological interactions, with the exception of [33]
which tackled a similar question but for a different kind of interaction, closer to mean-field
type interactions.

More precisely, we will consider a system with interacting mobile agents. At Poisson
random times a given agent selects a partner to interact with according to a probability rule
which depends on the proximity rank of the partner. The interaction rule is then very simple:
the agent changes its velocity to align with that of its partner. The goal of the present work
is, by letting the number of agents tend to infinity, to derive an equation for the probability
distribution of the agents in phase space (positions, velocities). Thanks to the choice of
this simple interaction rule, inspired from earlier work [15,16], we can concentrate on the
mathematical aspects of this derivation. In previous work by the authors [10], the probability
rule solely depended on the proximity rank normalized by the total number of interacting
partners (or equivalently, on a proximity rank expressed as a percentage). This rule made
the number of potential interacting partners tend to infinity as the number of agents also
did so. We will refer to this rule as the ”smooth rank-based dynamics”. By contrast, in the
present work, we will concentrate on the case where there is only one interaction partner (the
nearest one) or a finite number of them (the K nearest ones), even in the limit of the number
of agents tending to infinity. We will refer to these dynamics as the “nearest-neighbor” or
“K -nearest-neighbor” dynamics.
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In this paper, we show (under the Propagation of Chaos assumption) that the kinetic
equation resulting from the nearest-neighbor or K -nearest neighbor dynamics is a nonlinear
spatial diffusion equation for the particle distribution function in phase space (position,
velocity). This equation has a non-classical feature as it involves a spatial anti-diffusion of the
density (which is a velocity integral of the distribution function). We will show that this term
results from the constraint that the density must satisfy the continuity equation, a constraint
resulting from the preservation of the number of particles in the course of an interaction. By
contrast, in the previous work [10] relative to the smooth rank-based dynamics, we showed
(also under the Propagation of Chaos assumption), that the resulting kinetic equation involved
a spatially non-local integral equation and that the continuity equation for the density was
also satisfied. In the present paper, we also show that we can pass from the non-local integral
equation issued from the smooth rank-based dynamics to the nonlinear spatial diffusion
equation for the nearest-neighbor dynamics by a process involving a singular concentration
of the kernel of the integral equation. This provides a vision of the nearest-neighbor dynamics
as a singular limit of the previously studied smooth rank-based dynamics.

Rank-based dynamics (either smooth or nearest-neighbor) are natural from amathematical
point of view. The proximity rank includes information about the most immediate interaction
partners of a given particle. Although the rank is a highly non-linear function of the particle
positions and is subject to jumps when two particles cross, it has robust properties such as
invariance by permutation of the particle numbers, and has combinatorial interpretation: the
probability for an agent to have a rank k with respect to agent i is equal to the probability
of having k − 1 agents between them. Our results strongly rely on this interpretation of the
rank, together with some concentration of measure arguments. Rank-based dynamics also
exhibit a certain universality, as their kinetic model does not depend on the (finite) number of
interacting agents. The kinetic equation that we derive in this work leads to many questions.
This equation is a non-standard diffusion equation with mainly unkonwn properties, from
the perspective of well-posedness, large-time behavior, regularity, etc. We believe that these
questions open fascinating new directions of research in kinetic theory.

Kinetic models of flocking or swarming behavior have been widely investigated in the
context of metric interactions. The literature is vast and it is virtually impossible to be exhaus-
tive. Below is a sample of major publications on this topic. Derivation of kinetic models from
underlying particle models have been established in [12,23,32,45]. Flocking behavior and
pattern formation has been investigated in [1,9,17,31,32,42]. Equilibria and phase transitions
in kinetic flocking models have been studied in [7,21,22]. Passage from kinetic to hydro-
dynamic descriptions of flocking has been investigated in [8,21–23,25,28,39]. Numerical
simulation methods have been put forward in [2,29].

The organization of the paper is as follows. Section 2 is dedicated to the presentation of
the models and our main results, as well as a detailed discussion of them. Section 3 covers
the nearest-neighbor case and the derivation of the kinetic model in this case. Section 4
extends these results to the case where the particles interact with their K closest neighbors.
Section 5 develops the proof that the kinetic model of the nearest-neighbor (or K -nearest-
neighbor) interaction is the limit of the kinetic smooth rank-based interaction model of [10].
A conclusion to this article is given in Sect. 6.
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2 Models and Main Results

2.1 General Framework

Consider a set of N particles. The particle i is characterized by its position xi ∈ R
d and

its velocity vi ∈ R
d where d ≥ 1 is both the spatial and velocity dimension. The particles

{(x1(t), v1(t)), . . . , (xN (t), vN (t))} are subject to the following dynamics

– The dynamics is a succession of free-flights and collisions.
– During free-flight, particles follow straight trajectories{

ẋi = vi ,

v̇i = 0.

– Let (πN
i j )(i, j)∈{1,...,N }2 be a stochasticmatrix, i.e. for all (i, j) ∈ {1, . . . , N }2,πN

i j ∈ [0, 1]
and for all i ∈ {1, . . . , N },∑N

j=1 πN
i j = 1. At Poisson random times with a rate equals to

Nλ(N ), particles undergo the following collisions process: pick a particle i in {1, . . . , N }
with uniform probability 1/N ; then pick a collision partner j with probability πN

i j and
perform the collision: {

(xi , x j ) remains unchanged,
(vi , v j ) is changed into (v j , v j ).

We will assume that πN
i j is a function of the particle positions (x1, . . . , xN ), i.e. πN

i j =
πN
i j (x1, . . . , xN ) and is permutation invariant, i.e. for any permutation σ ∈ SN where SN

denotes the set of permutations of {1, . . . , N }, we have
πN

σ(i)σ ( j)(xσ(1), . . . , xσ(N )) = πN
i j (x1, . . . , xN ). (1)

The function λ(N ) is an appropriate scaling factor whichwill be defined and discussed below.
The choice to define the Poisson random times as Nλ(N ) allows to avoid heavy notations
during the computations. Specifically, λ(N ) represents the rate of jump per individual.

To simplify the notation, when no confusion is possible, wewill denote x := (x1, . . . , xN ),
v := (v1, . . . , vN ), Zi := (xi , vi ), Z := (Z1, . . . , ZN ) and dZ := dx1 dv1 . . . dxN dvN .
We will also use f (dZ) instead of f (Z) dx .

The system will be described through the master equation which provides the dynamics
of the N -particles distribution f (N )(Z1, . . . , ZN ), i.e. the joint probability of particles 1 to
N to be at location (in phase space) Z1 to ZN . As shown in [10], thanks to (1) if f (N )(t) is
permutation invariant at time t = 0 then it is permutation invariant for all times. We study the
limit of this dynamics when the number of particles goes to∞. First define the k-th marginal
(k ∈ {1, . . . , N }) as

f (k)
N (Z1, · · · , ZN , t) :=

∫
f (N )(Z) dZk+1 . . . dZN .

We assume that “Propagation of Chaos” holds true i.e. ∀Z ∈ R
2nN , ∀t ∈ [0,∞):

f (N )(Z1, · · · , ZN , t) =
N∏

�=1

f (1)
N (Z�, t) + negligible terms as N → ∞. (2)

This definition is formal as long as we do not specify in which topology the remainder
becomes negligible. Making this definition rigorous would require a topology on spaces of
functions of an arbitrary number of variables, which is a highly technical endeavor. Usual
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definitions of propagation of chaos assume that the k-th marginal factorizes in the limit
N → ∞ for any arbitrary k and so, avoids this problem by considering functions of a fixed
number k of variables. Unfortunately, this more tractable definition does not suffice here
as the number of particles interacting with a given particle is not bounded. So, we will use
the formal definition (2) without further discussion and leave the formulation of a rigorous
theory for future work. Assuming that f (1)

N → f in the limit N → ∞, we aim to derive the
equation satisfied by f .

In this article we are interested in situations in which a population of agents interact not
based on their metric distance but on their topological distance. To do so we introduce the
following definition:

Definition 1 (Rank). Consider N particles located at x1, . . . , xN . Consider the i-th particle
and order the list

(|x j − xi |
)
j=1,...,N , j �=i by increasing order and denote by r N (i, j) ∈

{1, . . . , N − 1} the position of the j-th item in this list. If two indices j and j ′ are such that
|x j − xi | = |x j ′ − xi |, then we choose arbitrarily an ordering between these two numbers.
We define r N (i, i) = 0. Now, we define the rank of j with respect to i as:

RN (i, j) = r N (i, j)

N − 1
∈

N−1⋃
k=1

{ k

N − 1

}
.

Remark 1 The notation r and R have been interchanged compared with [10].

We assume that the interaction probabilitiesπN
i j depend on the particle positions (x1, . . . , xN )

only through the rank of j with respect to i , i.e. πN
i j = �(r N (i, j)) where the function �

will take different forms according to the chosen model. Since the rank of j with respect to i
is an intrinsic property of the positions of the particles and does not depend on how they are
numbered, we have the following properties of the rank:

Remark 2 Let (x1, . . . , xN ) be a set of N particles.

(i) The rank r N (i, j), and hence πN
i j , is a function of (x1, . . . , xN ), i.e.

r N (i, j) = r N (i, j)(x1, . . . , xN ) .

More precisely, we consider the rank r N (i, j) as a function of L∞(RnN ).
(ii) The rank is permutation invariant, i.e. for any permutation σ ∈ SN where SN denotes

the set of permutations of {1, . . . , N }, we have
r N (σ (i), σ ( j))(xσ(1), . . . , xσ(N )) = r N (i, j)(x1, . . . , xN ).

We will be considering three different type of collision dynamics which we will describe
in the following three sections.

2.2 Nearest Neighbor Dynamics

In this article we first consider the case where the collision takes place with the closest
neighbor i.e.

πN
i j = δ1(r

N (i, j))

where δx stands for the Dirac delta centered at x .
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Wewill prove the following: Assume Propagation of Chaos (2) and assume a specific form
for λ(N ) to be made precise in (22) below. Then, if f (1)

N → f and ρ
(1)
N := ∫

f (1)
N dv →

ρ = ∫
f dv as N → ∞, f and ρ satisfy

∂t f (x, v) + v · ∇x f (x, v) = Q[ f ](x, v), (3)

where the collision operator Q[ f ] is defined by

Q[ f ] := 1

ρ
2
d

[

x f − f

ρ

xρ

]
. (4)

Note that we do not intend to give a fully rigorous derivation of this model but of course
some assumptions have to be made to ensure that ρ for instance remains positive in the
considered domain. In the same spirit the topology in which the convergence takes place will
be omitted here and discussed in future works.

2.3 K -Nearest Neighbor Dynamics

Let K be a fixed integer in {1, . . . , N } and let (αk)k∈{1,...,K } be a given sequence such that∑K
k=1 αk = 1. We extend this sequence for k in {1, . . . , N } by taking αk = 0 for all

k > K . We consider a collision rule by which particle i adopts the j th-particle velocity with
probability αk if particle j is particle i’s k-th nearest neighbor, i.e. the probability πi j is given
by πi j = ∑N

k=1 αk δk
(
r N (i, j)

)
. Section 2.2 on nearest neighbor interaction was dedicated

to the case α1 = 1 and αk ≡ 0 for all k > 1, i.e. K = 1. The rule considered here is a
generalization to the K nearest neighbors i.e. :

oπN
i j (x) =

N∑
k=1

αk δk(r
N (i, j)(x)) . (5)

Under the propagation of chaos (2) and upon choosing a convenient scaling function λ(N )

given in (33) and discussed in Remark 16, we will prove that f satisfies the same equation
(3) as before, with the same collision operator (4).

2.4 Smooth Rank-Based Dynamics

This case has been studied in [10].We recall it here for reference and further comparisonswith
the othermodels introducedbelow.We introduce a function K : R ∈ [0, 1] �→ K (R) ∈ [0,∞)

such that ∫ 1

0
K (R) dR = 1.

We define

K N (R) = K (R)∑N−1
k=1 K

(
k

N−1

) ,

in order to have for any i ∈ {1, . . . , N }:
N∑
j=1
j �=i

K N (
RN (i, j)

) =
N−1∑
k=1

K N
(

k

N − 1

)
= 1 .
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In this way, for any i ∈ {1, . . . , N }, the collection (πi j )
N
j=1, j �=i , where

πN
i j = K N (

RN (i, j)
)
,

defines a discrete probability measure on the set { j ∈ {1, . . . , N }, j �= i}. The collision rule
is then as follows

Definition 2 (Smooth rank-based dynamics) Pick a particle i in {1, . . . , N } with uniform
probability 1/N ; then pick a particle j �= i with probability πN

i j = K N
(
RN (i, j)

)
and

perform the collision: {
(xi , x j ) remains unchanged,
(vi , v j ) is changed into (v j , v j ).

Assuming that f (1)
N → f and ρ

(1)
N := ∫

f (1)
N dv → ρ = ∫

f dv, as N → ∞, and
assuming λ(N ) = 1, we prove in [10] that f is a solution of the kinetic equation:

∂ f

∂t
(x, v) + v · ∇x f (x, v) = ρ(x)

∫
f (x ′, v) K

(
Mρ(x, |x ′ − x |)) dx ′ − f (x, v), (6)

where Mρ is the partial mass of ρ and is defined by

Mρ(x, s) =
∫

{x ′∈Rd | |x ′−x |≤s}
ρ(x ′) dx ′ . (7)

2.5 Discussion

As mentioned in Sects. 2.2 and 2.3, the kinetic models derived from the nearest neighbor
interaction or the K -nearest neighbor interactions are the same. On the other hand, these
models differ quite significantly from that obtained from the smooth ranked-based dynamics
of [10] as recalled in Sect. 2.4. However, we show in Sect. 5 that the former are limits of the
latter when the interaction kernel K concentrates (with a convenient scaling) near zero. In this
limit, since only the closest neighbors interact, and these closest neighbors are likely to be
spatially close (especially when the density is large) the spatially non-local integral operator
appearing in (6) converges to the diffusion operator (4). Note that this diffusion is multiplied
by an inverse power of the density. This is easily understood as, when the density is small,
the particles are very far apart, resulting in spatial communications between the particles
over larger distances, and eventually, into a larger diffusion coefficient. This interpretation is
reinforced by the fact that the inverse power of the density depends on the dimension, in the
same way as the scaling between the inter-particle distance and the density depends on the
dimension.

In [10], we noted that any solution of the smooth rank-based dynamic kinetic model (6)
satisfies the mass conservation equation

∂tρ + ∇x · (ρu) = 0,

with ρ = ∫
f dv and ρu = ∫

f v dv. The nearest-neighbor kinetic model (3) also satisfies
the mass conservation equation. To see this, it is enough to show that

∫
Q( f ) dv = 0. But

we easily check that it is the case. Indeed:∫
Q( f ) dv = 1

ρ
2
d

[

x

(∫
f dv

)
− 1

ρ

(∫
f dv

)

xρ

]

= 1

ρ
2
d

[
xρ − 
xρ] = 0.

123



936 A. Blanchet, P. Degond

The collision operator (4) has the form of a spatial diffusion of f but with an anti-diffusion
in ρ. In fact, this anti-diffusion is exactly the term that needs to be added to turn a pure spatial

diffusion ρ− 2
d 
x f into an operator that conserves mass i.e. that satisfies

∫
Q( f ) dv = 0. At

themicroscopic level, the collisiondynamics describes particles communicating their velocity
to spatially distant (although close) neighbors. Therefore, information about the velocity
distribution propagates to neighboring particles randomly leading to a spatial diffusion of
this distribution. However, this spatial diffusion of the velocity distribution is constrained to
obey local mass conservation, which is the reason of the anti-diffusion term acting on the
density, as stressed above. If there is no spatial variation of the velocity distribution, particles
communicating their velocity to their neighbors will not modify the velocity distribution
in this neighborhood, which explains why the collision operator vanishes in this case. The
well-posedness theory of (3) is still open but from this remark we can conjecture that the
model is well-posed. Indeed, apart from a mass-carrying component, the equation is a spatial
diffusion. And the mass carrying component satisfies a continuity equation. So, it seems that
the model couples two components each of which solves a well-posed equation. Of course,
the coupling is non-trivial and this may result into a lack of well-posedness. This issue will
be dealt with in future work.

3 Nearest Neighbor Interaction

3.1 Master Equation and Propagation of Chaos

3.1.1 Master Equation

As recalled in [10], when the collisions occur at Poisson times with rate Nλ(N ), the master
equation for the N -particle distribution function f (N ) in weak form is, for all test function
φN : Z �→ φN (Z), given by:∫

∂t f
(N )(Z) φN (Z) dZ =

N∑
i=1

∫
f (N )(Z) (vi · ∇xi )φ

N (Z) dZ

+ λ(N )

N∑
i, j=1
j �=i

∫∫
δ1[r N (i, j)(x)]

[
φN (Z1, . . . , xi , v j , . . . , x j , v j , . . . ZN )−φN (Z)

]

f (N )(Z) dZ ,′ (8)

where δ1 denotes the Dirac Delta centered at 1.

3.1.2 Propagation of Chaos and First Marginal

The following proposition provides the equation for the first marginal f (1)
N under the Propa-

gation of Chaos Assumption (2). This equation is given in weak form by using a test function
φ(Z1) only depending on the first coordinate Z1 in Eq. (8) and inserting (2) into (8). In all
this section, we drop the drift term (the first term at the right-hand side of (8)) as its treatment
is classical (see e.g. [19]). This leads to the following proposition

Proposition 3 (First marginal equation with propagation of chaos) Under the propagation
of chaos assumption (2), for all test function φ(Z1) and dropping the drift term as well as
the negligible terms when N → ∞ in (2), we have:
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1

λ(N ) (N − 1)

∫
∂t f

(1)
N (Z1) φ(Z1) dZ1

=
∫

[φ(x1, v2) − φ(Z1)]
(
1 − M

ρ
(1)
N

(x1, |x2 − x1|)
)N−2

f (1)
N (dZ1) f

(1)
N (dZ2) , (9)

with Mρ given by (7).

Proof As pointed out above, we drop the drift term for simplicity as this term can be handled
with classical methods. Taking φN (Z) = φ(Z1) as a test function in the master equation (8)
and using the permutation invariance as well as a straightforward combinatorial argument
shows that

1

λ(N ) (N − 1)

∫
∂t f

(N )(Z) φN (Z1) dZ

=
∫

δ1[r N (1, 2)(x)] [φ(x1, v2) − φ(Z1)] f
(N )(Z) dZ

+
∫

δ1[r N (2, 1)(x)] [φ(Z1) − φ(Z1)] f
(N )(dZ)

+ (N − 2)
∫

δ1[r N (2, 3)(x)] [φ(Z1) − φ(Z1)] f
(N )(dZ) .

The last two terms obviously vanish.
Using the propagation of chaos assumption (2) we obtain

1

λ(N ) (N − 1)

∫
∂t f

(1)
N (Z) φ(Z1) dZ

=
∫

[φ(x1, v2) − φ(Z1)]

{∫
δ1[r N (1, 2)(x)]

N∏
�=3

dρ(1)
N (x�)

}

f (1)
N (dZ1) f

(1)
N (dZ2) .

As shown in [10], the integral
∫

δ1(r
N (1, 2)(x))

N∏
�=3

dρ(1)
N (x�)

can be interpreted as the expectation of δ1(r N (1, 2)(x)) for fixed (x1, x2)when x3,…, xN are
drawn randomly and independently with probability ρ

(1)
N . Using the combinatorial approach

of [10] to evaluate this probability, we obtain

E
ρ

(1)
N

[
δ1(r

N (1, 2)(x))
]

=
N−1∑
R=1

δ1 (R)

(
N − 2

R − 1

)
pR−1 (1 − p)N−2−(R−1)

= (1 − p)N−2,

with
p := M

ρ
(1)
N

(x1, |x2 − x1|),
which gives the stated result. 
�

For a given smooth function ρ and x ∈ R
d , let m ∈ [0, 1) �→ Rρ(x,m) ∈ [0,∞) be the

inverse function of r �→ Mρ(x, r). Note that Rρ(x, 0) = 0.
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938 A. Blanchet, P. Degond

Proposition 4 For any test function φ(Z1), we have∫
∂t f

(1)
N (Z1) φ(Z1) dZ1 =

∫
[φ(x1, v2) − φ(Z1)]F f (1)

N
(x1, v2) f

(1)
N (dZ1) dv2, (10)

where for given smooth functions (x, v) �→ η(x, v) and ρη(x) = ∫
η(x, v) dv, we define

FN
η (x, v) := λ(N ) (N − 1)

∫ 1

0
Gη(x, v,m) (1 − m)N−2 dm , (11)

and

Gη(x, v,m) =
∫
Sd−1 η(x + Rρη (x,m) ω, v) dω∫
Sd−1 ρη(x + Rρη (x,m) ω) dω

.

Proof Using polar coordinates x2 = x1 + rω, r ∈ [0,∞), ω ∈ S
d−1 with

∫
Sd−1 dω = 1, we

can rewrite Eq. (9) as∫
∂t f

(1)
N (Z1) φ(Z1) dZ1 =

∫
[φ(x1, v2) − φ(Z1)]FN

f (1)
N

(x1, v2) f
(1)
N (dZ1) dv2

where, we temporarily define FN
η , for a given function (x, v) �→ η(x, v) by

FN
η (x, v) = λ(N ) (N − 1)

∫
η(x + rω, v)

(
1 − Mρη (x, r)

)N−2
rd−1 dr dω .

We perform the change of variable m := Mρη (x, r), so that r := Rρη (x,m). It is then
straightforward to see thatFN

η is indeed defined by (11) as the jacobian of the diffeomorphism
is

rd−1 dr = dm∫
Sd−1 ρη(x + Rρη (x,m)ω) dω

.


�
3.2 Limit Equation

3.2.1 Preliminaries

The passage to the limit with different scaling assumptions on λ in the various considered
models will use a fundamental lemma: Let a and b be two positive parameters. Define the
Beta-distribution, βa,b, the probability density function given for all s ∈ [0, 1] by

βa,b(s) := sa−1 (1 − s)b−1

B(a, b)
,

where the Beta-function B(a, b) is defined by

B(a, b) :=
∫ 1

0
ua−1 (1 − u)b−1 du .

Lemma 5 Let (hN )N∈N be a sequence of uniformly bounded smooth functions [0, 1] → R

and (bN )N∈N be a sequence going to ∞. If hN (u) converges to 0 as u goes to 0 uniformly in
N then the expected value of hN under the Beta-distribution of parameters (a, bN ):

Eβa,bN
[hN ] =

∫ 1
0 hN (u) ua−1 (1 − u)bN−1 du

B(a, bN )

converges to 0 when N goes to ∞.
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Proof As hN (u) converges to 0 as u goes to 0 uniformly in N , we have

∀ε > 0 , ∃δ > 0 such that ∀u ∈ (0, δ) ,∀N ∈ N , |hN (u)| < ε .

Moreover, by assumption, there existsC such that for all u ∈ (0, 1) and N ∈ N, |hN (u)| < C .
Therefore

Eβa,bN
[hN ] ≤ ε + C

∫ 1
δ
ua−1 (1 − u)bN−1 du

B(a, bN )
. (12)

Note that the fraction is closely related to the incomplete regularized Beta-distribution. On
one hand, the function u �→ ua−1 (1− u)bN−1 is increasing on [0, ua,bN ] and decreasing on
[ua,bN , 1] where

ua,bN := a − 1

a + bN − 2
,

is the maximum on [0, 1]. As (bN )N∈N goes to ∞, for N large enough, ua,bN is less than δ.
As a consequence, for N large enough

∫ 1

δ

ua−1 (1 − u)bN−1 du ≤ δa−1(1 − δ)bN−1 . (13)

On the other hand, by standard properties of the Beta-distribution, see [4], as N goes to ∞
and a is fixed

B(a, bN ) =
∫ 1

0
ua−1 (1 − u)bN−1 du ∼ � (a) b−a

N , (14)

where � is the Gamma-function. Collecting (13) and (14) we obtain that there exists C such
that ∫ 1

δ
ua−1 (1 − u)bN−1 du

B(a, bN )
≤ C(1 − δ)bN−1baN .

This term converges to 0 for N large. Coming back to (12) gives the stated result. 
�

3.2.2 Case λ(N ) = 1

In this section, we show that the kinetic model obtained with λ(N ) = 1 is trivial, i.e. it
involves no contribution of the particle interactions to the final dynamics.

Proposition 6 (Case λ(N ) = 1) Assume that ( f (1)
N )N∈N and (ρ

(1)
N )N∈N converge toward

smooth functions f and ρ respectively. If the convergence of ( f (1)
N )N∈N to f is such that the

sequence hN = G
f (1)
N

(x1, v2, ·) − G
f (1)
N

(x1, v2, 0) satisfies the assumptions of Lemma 5 then

we have ∫
∂t f (Z1) φ(Z1) dZ1 = 0 .

In strong form and after restoring the drift term, the equation for f is the free transport
equation:

∂t f + v · ∇x f = 0. (15)

Proof By Lemma 5 applied to a = 1, bN = N − 1, we have

lim
N→∞FN

f (1)
N

(x1, v2) = G f (x1, v2, 0) = f (x1, v2)

ρ(x1)
.
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Therefore we have

lim
N→∞

∫
∂t f

(1)
N (Z1) φ(Z1) dZ1 =

∫
[φ(x1, v2) − φ(Z1)]

f (x1, v2)

ρ(x1)
f (dZ1) dv2 .

If we exchange v1 and v2, the term φ(x1, v2) − φ(x1, v1) changes of sign while

f (x1, v1)
f (x1, v2)

ρ(x1)

remains unchanged, so that the integral vanishes. 
�

3.2.3 Non-trivial Limit

Here, we determine what must be the expression of the scaling factor λ(N ) such that the
contribution of the particle interactions in the limit N → ∞ is non-trivial and we determine
the corresponding limit model. Before stating the main theorem, we need the following
technical lemma.

Lemma 7 (Higher order expansion)Let (x, v) �→ η(x, v)bea smooth function andρη(x) :=∫
η(x, v) dv. Define

D[ρη, η](x, v) = 
xη(x, v) − η(x, v)

ρη(x)

xρη(x) . (16)

For m small enough, we have for all (x, v) ∈ R
2d :

Gη(x, v,m) − Gη(x, v, 0) = m
2
d d

2
d −1

2

1

ρη(x)1+
2
d

D[ρη, η](x, v) + o(m
2
d ) , (17)

where recall that
Gη(x, v, 0) = η(x, v)

ρη(x)
.

Proof We need to develop m �→ Gη(x, v,m) for m small to higher order terms. To do so we
first compute the next two orders of Gη expanded in powers of Rρη = Rρη (x,m):

Gη(x, v,m) − Gη(x, v, 0)

= Rρη

[∫
(ω · ∇xη)(x + Rρηω, v) dω∫

ρη(x + Rρηω) dω

−
∫

η(x + Rρηω, v) dω(∫
ρη(x + Rρηω) dω

)2
∫

ω · ∇xρη(x + Rρηω) dω

]

+ R2
ρη

2

[∫
(ω · ∇x )

2η(x + Rρηω, v) dω∫
ρη(x + Rρηω) dω

− 2

∫
(ω · ∇xη)(x + Rρηω, v) dω(∫

ρη(x + Rρηω) dω
)2

∫
ω · ∇xρη(x + Rρηω) dω

+ 2

∫
η(x + Rρηω, v) dω(∫
ρη(x + Rρηω) dω

)3
(∫

ω · ∇xρη(x + Rρηω) dω

)2

−
∫

η(x + Rρηω, v) dω(∫
ρη(x + Rρηω) dω

)2
(∫

(ω · ∇x )
2ρη(x + Rρηω) dω

)2 ]
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Fortunately all the first order terms and the second and third terms in the expression of the
second order terms are zero by anti-symmetry. Now, since

∫
Sd−1 ω⊗ω dω = Id/d , we obtain

when Rρη → 0:

Gη(x, v,m) − Gη(x, v, 0) = R2
ρη

2 d

[

η(x, v)

ρη(x)
− η(x, v)
xρη(x)

ρη(x)2

]
+ o

(
R2

ρη

)
. (18)

Let us now develop m �→ Rρη (x,m) in powers of m. We have for r small enough

M(x, r) :=
∫

|x−x ′|<r
ρη(x

′) dx ′ = ρη(x)
rd

d
+ o(rd) .

Therefore for m small enough

Rρη =
(

d m

ρη(x)

) 1
d + o(m

1
d ) ,

which concludes the proof by inserting this expression in (18). 
�

Before stating the theorem, we introduce the following notations: define

hN (m) = HN (m) − HN (0), (19)

where

HN (m) :=
G
f (1)
N

(x1, v2,m) − G
f (1)
N

(x1, v2, 0)

m
2
d

, (20)

and

HN (0) := d
2
d −1

2

1

ρ
(1)
N (x1)

2
d +1

D[ρ(1)
N , f (1)

N ](x1, v2) . (21)

We note that from Lemma 7, hN (m) → 0 as m → 0 for all integer N . We assume in
the theorem below that this convergence is uniform with respect to N . This assumption
prevents the occurrence of particle concentrations in the limit N → ∞ which would lead to
a non-smooth behavior of G f (x1, v2,m) at m = 0. Now we state the main theorem of this
paper:

Theorem 8 Assume that ( f (1)
N )N∈N and (ρ

(1)
N )N∈N converge toward smooth functions f and

ρ respectively. Assume that the convergence of ( f (1)
N )N∈N to f is such that the sequence hN

defined by (19) satisfies the assumptions of Lemma 5. Set λ(N ) to the value

λ(N ) = 1

(N − 1) d
2
d −1

2 B(1 + 2
d , N − 1)

. (22)

Then for all test functions φ(Z1) we have∫
∂t f (Z1) φ(Z1) dZ1

=
∫

φ(Z1)
1

ρ(x1)
2
d

[

x f (Z1) − f (Z1)

ρ(x1)

xρ(x1)

]
dZ1 . (23)
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942 A. Blanchet, P. Degond

In strong form, introducing the collision operator

Q[ f ] := 1

ρ
2
d

[

x f − f

ρ

xρ

]
, (24)

and after restoring the drift term, the equation for f reads:

∂t f + v · ∇x f = Q[ f ]. (25)

Before proving this theorem, we first prove the following intermediate step:

Proposition 9 Under the assumptions of Theorem 8, for all test functions φ(Z1), we have

lim
N→∞

∫ 1

0

[
G
f (1)
N

(x1, v2,m) − G
f (1)
N

(x1, v2, 0)
] (1 − m)N−2

B(1 + 2
d , N − 1)

dm

= d
2
d −1

2

1

ρ(x1)
2
d +1

D[ρ, f ](x1, v2). (26)

Proof of Proposition 9 Thanks to the assumptions on hN , we can apply Lemma 5 with a =
1 + 2

d and bN = N − 1, and obtain

lim
N→∞

∫ 1

0
hN (m) dβ 2

d −1,N−1 = 0 .

As β 2
d −1,N−1 is a probability this proves that

lim
N→∞

∫ 1

0
HN (m) dβ1+ 2

d ,N−1 = H(0) , (27)

where H(0) is defined from (21) by replacing f (1)
N , ρ(1)

N by f , ρ respectively.
Using (20), we have

∫ 1

0
HN (m) dβ1+ 2

d ,N−1

=
∫ 1

0

[
G
f (1)
N

(x1, v2,m) − G
f (1)
N

(x1, v2, 0)
] (1 − m)N−2

B(1 + 2
d , N − 1)

dm . (28)

Inserting (28) and the expression of H(0) given by (21) into (27) leads to (26). 
�
Proof of Theorem 8 We start from (10) where FN is defined by (11). Using (26) and owing
to the fact that the term involving G

f (1)
N

(x1, v2, 0) vanishes upon integration with respect

to (Z1, v2) (exactly like in the proof of Proposition 6), we deduce that, for N large, up to
negligible terms when N → ∞, we have∫

∂t f (Z1) φ(Z1) dZ1

= λ(N ) (N − 1)
d

2
d −1

2
B(1 + 2

d
, N − 1)∫

[φ(x1, v2) − φ(x1, v1)]
f (Z1)

ρ(x1)
2
d +1

D[ρ, f ](x1, v2) dZ1 dv2.
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Using Definition (16) of D, we see that the second term of f (Z1)D[ρ, f ](x1, v2) is sym-
metric by exchange of (v1, v2). Since [φ(x1, v2) − φ(x1, v1)] is anti-symmetric under this
exchange, this second term vanishes after integration. Therefore, the only non-zero term
comes from the first term of D, which leads to (up to negligible terms when N → ∞) to

∫
∂t f (Z1) φ(Z1) dZ1

= λ(N ) (N − 1)
d

2
d −1

2
B(1 + 2

d
, N − 1)

∫
φ(Z1)

1

ρ(x1)
2
d

[

x f (Z1) − f (Z1)

ρ(x1)

xρ(x1)

]
dZ1 ,

and with the choice (22), this leads to (23). It readily seen, applying Green’s formula, that
the strong form of the equation is (25), upon inserting back the drift term. 
�

Remark 10 We note that λ(N ) → ∞ as N → ∞. In particular, in the case d = 2, λ(N ) can
be easily computed and has value λ(N ) = 2N . This means that the limit is non-trivial only
if the number of collisions per unit time is larger than for the standard kinetic scale (which
corresponds to λ(N ) = 1).

4 K -Nearest Neighbor Dynamics

4.1 Master Equation

Let K be a fixed integer in {1, . . . , N } and a sequence (αk)k∈{1,...,K such that
∑K

k=1 αk = 1
being given. We extend this sequence for k in {1, . . . , N } by taking αk = 0 for all k > K .
The particle i will adopt the velocity of its j th-nearest neighbor with a probability πN

i j given
by (5). Section 3 was devoted to the case α1 = 1 and α j ≡ 0 for all j > 1.

As shown in [10], when the collisions occur at Poisson times with rate λ(N )N , the master
equation of the N -particle distribution function f (N ) in weak form is, for all test function
φN : Z �→ φN (Z):

∫
∂t f

(N )(Z) φN (Z) dZ =
N∑
i=1

∫
f (N )(Z) (vi · ∇xi )φ

N (Z) dZ

+ λ(N )

N∑
i=1

N∑
j=1
j �=i

∫∫ K∑
k=1

αkδk[r N (i, j)(x)][φN (Z1, . . . , xi , v j , . . . , x j , v j , . . . ZN )

−φN (Z)
]
f (N )(Z) dZ . (29)

4.2 Propagation of Chaos

Proposition 11 (First marginal equation with propagation of chaos) Under the propagation
of chaos assumption (2) we have for all test function φ

1

λ(N ) (N − 1)

∫
∂t f

(1)
N (Z1) φ(Z1) dZ1 =

K∑
k=1

αk

(
N − 2

k − 1

)
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944 A. Blanchet, P. Degond

∫
[φ(x1, v2) − φ(Z1)]Mρ

(1)
N

(x1, |x2 − x1|)k−1
(
1 − M

ρ
(1)
N

(x1, |x2 − x1|)
)N−k−1

f (1)
N (dZ1) f

(1)
N (dZ2) . (30)

Proof As before we have

1

λ(N ) (N − 1)

∫
∂t f

(N )(Z) φN (Z1) dZ

=
K∑

k=1

αk

∫ K∑
k=1

δk[r N (1, 2)(x)] [φ(x1, v2) − φ(Z1)] f
(N )(Z) dZ ,

which leads, by the propagation of chaos assumption (2) to

1

λ(N ) (N − 1)

∫
∂t f

(1)
N (Z) φ(Z1) dZ

=
K∑

k=1

αk

∫
[φ(x1, v2) − φ(Z1)]

{∫
δk[r N (1, 2)(x)]

N∏
�=3

dρ(1)
N (x�)

}

f (1)
N (dZ1) f

(1)
N (dZ2) ,

up to negligible terms as N → ∞. The computation of the integral

∫
δk(r

N (1, 2)(x))
N∏

�=3

dρ(1)
N (x�)

is slightly different from before as here (see [10] for details)

E
ρ

(1)
N

[
δk(r

N (1, 2)(x))
]

=
N−1∑
R=1

δk (R)

(
N − 2

R − 1

)
pR−1 (1 − p)N−2−(R−1)

=
(
N − 2

k − 1

)
pk−1 (1 − p)N−k−1,

with
p := M

ρ
(1)
N

(x1, |x2 − x1|),
which gives the stated result. 
�
The probability considered in Sect. 3 was the Bernoulli distribution. A similar result can be
proved with a more general binomial distribution: For a given smooth function ρ and x ∈ R

d ,
let m ∈ [0, 1) �→ Rρ(x,m) ∈ [0,∞) be the inverse function of r �→ Mρ(x, r). We also
define the binomial distribution with parameters n ∈ N and p ∈ [0, 1], denotedM(n, p), as
the probability on the discrete set {0, 1, . . . , N } given by the probability mass function:

μ(k; n, p) = P(X = k) =
(
n

k

)
pk (1 − p)n−k .

We note that, by integration by parts, we have

(n + 1)
∫ 1

0
μ(k; n, p) dp = 1. (31)
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Proposition 12 We have
∫

∂t f
(1)
N (Z1) φ(Z1) dZ1

=
∫

[φ(x1, v2) − φ(Z1)]FN
f (1)
N ,K

(x1, v2) f
(1)
N (dZ1) dv2

where for given smooth functions (x, v) �→ η(x, v) and ρη(x) = ∫
η(x, v) dv, we define

FN
η,K (x, v) := λ(N )

∫ 1

0
Gη(x, v,m) νK (m) dm , (32)

with

νK (m) := (N − 1)
K∑

k=1

αkμ(k − 1; N − 2,m)

and

Gη(x, v,m) =
∫
Sd−1 η(x + Rρη (x,m) ω, v) dω∫
Sd−1 ρη(x + Rρη (x,m) ω) dω

.

The proof is identical andwill not be repeated here. Also note that νK (m), dm is a probability
on [0,1]. Indeed, thanks to (31), we have

∫ 1

0
νK (m) dm = (N − 1)

K∑
k=1

αk

∫
μ(k − 1; N − 2,m) dm =

K∑
k=1

αk = 1 .

4.3 Limit Equation

4.3.1 Case λ(N ) = 1

Proposition 13 (Case λ(N ) = 1) Assume that ( f (1)
N )N∈N and (ρ

(1)
N )N∈N converge toward

smooth functions f and ρ respectively. If the convergence of ( f (1)
N )n∈N to f is such that the

sequence hN = G
f (1)
N

(x1, v2, ·) − G
f (1)
N

(x1, v2, 0) satisfies the assumptions of Lemma 5 then

for all test functions φ we have
∫

∂t f (Z1) φ(Z1) dZ1 = 0 .

In strong form and after restoring the drift term, the equation for f is the free transport
equation (15).

Proof As νK (m) is a convex linear combination of binomial distributions, we can apply
Lemma 5 to μ(k − 1; N − 2,m) for any k and this leads to the result. 
�

4.3.2 Non-trivial Case

Like in Sect. 3.2.3, we now determine the scaling factor λ(N ) for the particle interactions
to have a non-trivial contribution in the limit N → ∞ and we determine the corresponding
limit model.
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946 A. Blanchet, P. Degond

Theorem 14 Assume that ( f (1)
N )N∈N and (ρ

(1)
N )N∈N converge toward smooth functions f

and ρ respectively. Assume that the convergence of ( f (1)
N )N∈N to f is such that the sequence

hN defined by (19) satisfies the assumptions of Lemma 5. Set λ(N ) to the value

λ(N ) = 1

(N − 1) d
2
d −1

2

∑K
k=1 αk

(N−2
k−1

)B(k + 2
d , N − k)

. (33)

Then for all test functions φ(Z1), f satisfies Eq. (23). In strong form and after restoring the
drift term, the equation for f is given by (25)

The result still relies on Lemma 7 and the following analog of Proposition 9:

Proposition 15 Under the assumptions of Theorem 14, for all test functions φ(Z1), we have

lim
N→∞

∫ 1

0

[
G
f (1)
N

(x1, v2,m) − G
f (1)
N

(x1, v2, 0)
]

×
∑K

k=1 αk
(N−2
k−1

)
mk−1(1 − m)N−k−1

∑K
k=1 αk

(N−2
k−1

)B(k + 2
d , N − k)

dm

= d
2
d −1

2

1

ρ(x1)
2
d +1

D[ρ, f ](x1, v2) .

The proof Proposition 15 is similar to that of Proposition 9 and is left to the reader. The
deduction of Theorem 14 from Proposition 15 is exactly the same as that of Theorem 8 from
Proposition 9.

Remark 16 We note the following property which can be proven by integration by parts: for
all k ∈ Z, for all a ∈ [−k,∞), for all b ∈ [k,∞), we have:

B(a + k, b − k) = B(a, b)

(
a + k − 1

k

) (
b − 1

k

)−1

.

Thanks to this property, we have for k ∈ N, k ≥ 2:(
N − 2

k − 1

)
B(k + 2

d
, N − k) =

( 2
d + k − 1

k − 1

)
B(1 + 2

d
, N − 1).

Thus,

λ(N ) = 1∑K
k=1

( 2
d +k−1
k−1

)
αk

1

(N − 1) d
2
d −1

2 B(1 + 2
d , N − 1)

.

Therefore, we find the same scaling of λ(N ) as in the nearest neighbor interaction case, up

to the multiplication by the constant factor (
∑K

k=1

( 2
d +k−1
k−1

)
αk)

−1.

5 From Smooth to Nearest-Neighbor Interaction

In this section we investigate the connection between the smooth rank-based interaction
developed in [10] and the nearest neighbor (or K nearest-neighbor) interaction considered
here. We show that when the kernel K (m) concentrates near m = 0, we pass from (6) to (3).
As the kernel K concentrates, it needs to be rescaled in the appropriate way. More precisely,
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we introduce a rescaling parameter ε which we will tend to zero and the following rescaled
kernel

K ε(m) = 1

ε1+ 2
d

K 0
(m

ε

)
, (34)

and we assume that K0 is normalized such that

d
2
d −1

2

∫
m

2
d K 0(m) dm = 1. (35)

Proposition 17 The kinetic nearest-neighbor interaction model (3) is the limit when ε goes
to 0 of the kinetic smooth rank-based interaction model (6) with interaction kernel K = K ε

given by (34) with normalization given by (35).

Proof Theweak form of the kinetic smooth rank-based interactionmodel (6) obtained in [10]
is given, for any test function φ(Z1) by∫

∂t f (Z1, t)φ(Z1) dZ1 =
∫

[φ(Z1) − φ(x1, v2)]
K ε

(
Mρ(x1, |x2 − x1|)

)
f ( dZ1) f ( dZ2) .

Passing to polar coordinates in x2, i.e. writing x2 = x1 + rω, r = |x2 − x1|, ω = x2−x1|x2−x1| ,
this equation reads∫

∂t f (Z1, t)φ(Z1) dZ1 =
∫

[φ(Z1) − φ(x1, v2)] f (x1 + r ω, v2)

K ε
(
Mρ(x1, r)

)
f ( dZ1)r

d−1 dr dω .

Using the change of coordinates m = Mρ(x1, r) the inverse function of which is r =
Rρ(x1,m) and the jacobian of which is

dm = ρ(x1 + rω)rd−1 dr,

we obtain ∫
∂t f (Z1, t)φ(Z1) dZ1 =

∫
[φ(Z1) − φ(x1, v2)]G(x1, v2,m)

K ε (m) f ( dZ1) dm dω dv2 ,

where

G(x, v,m) := f (x + Rρ(x,m) ω, v)

ρ(x1 + Rρ(x1,m) ω)
.

Let us look at the limit of
∫
K ε(m)G(x, v,m) dm when ε goes to 0. By Lemma 7, we have

for small ε∫
K ε(m)G(x, v,m) dm = 1

ε1+ 2
d

∫
K 0

(m
ε

)
G(m) dm = 1

ε
2
d

∫
K 0(m)G(εm) dm

= 1

ε
2
d

∫
K 0(m)

[
G(x, v, 0) + ε

2
d

2
m

2
d G(2)(x, v, 0) + o(ε

2
d )

]
dm

where by (17)

G(2)(x, v, 0) := d
2
d −1

2

1

ρ(x)
2
d +1

D[ρ, f ](x, v) .
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As the first term is anti-symmetric in the transform (v1, v2) → (v2, v1), we obtain at the
limit ε → 0 and thanks again to Lemma 7:

∫
∂t f (Z1, t)φ(Z1) dZ1

=
∫

m
2
d K 0(m) dm

∫
[φ(Z1) − φ(x1, v2)]G(2)(x1, v2, 0) f ( dZ1) dv2

=
(
d

2
d −1

2

∫
m

2
d K 0(m) dm

) ∫
[φ(Z1) − φ(x1, v2)] 1

ρ(x1)
2
d +1

D[ρ, f ](x1, v2) f ( dZ1) dv2 .

The passage to the strong form is identical to that of Sect. 3.2.3 and we obtain

∂t f =
(
d

2
d −1

2

∫
m

2
d K 0(m) dm

)
Q[ f ],

where Q is defined by (24). This concludes the proof assuming that K0 is normalized accord-
ing to (35). 
�

6 Conclusion

In this paper, we have put forward a particle interaction model where particles interact with
their nearest neighbor. We have shown that the large particle limit under the Propagation of
Chaos assumption is a spatial diffusion for the particle distribution function corrected by an
anti-diffusion term acting on the spatial density. We have shown that the appearance of this
anti-diffusion term depending on the spatial density results from the fact that the interactions
are mass-preserving. We have also considered a model in which particles interact with their
K nearest neighbors, for a fixed value of K , showing that the corresponding kinetic model is
the same as in the nearest neighbor interaction case. Finally, we have linked this work with
the previous article [10] where smooth rank-based dynamics were considered and shown that
the kinetic nearest-neighbor model can be recovered from the former through a singular limit
involving a scaling of the interaction kernel.

The kinetic models obtained here, as in [10], are novel. Their mathematical theory is
entirely open: proving existence and uniqueness of solutions, investigating large-time behav-
ior, equilibria and other qualitative properties of the solutions will require the establishment
of an appropriate mathematical framework. In parallel, more elaborate physical interaction
models (such as the Cucker–Smale [20] or Motsch–Tadmor [42] models) should also be
considered. One important question is to investigate how the present results are robust to the
introduction of noise in the interaction dynamics. Indeed, noise play an important part of
many flocking models in nature. Finally, adequate numerical methods for the kinetic mod-
els must be developed and the assessment of the kinetic models against the particle ones
in realistic situations should be carefully documented so that these models can be used in
practice.
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