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Abstract Highly coarse-grained models for investigating the self-assembly of lipids and
copolymer materials are discussed. Soft interactions between segments that represent many
atoms naturally arise in the course of systematic coarse-graining, and they are necessary
for modeling fluctuation effects whose strengths is dictated by a large invariant degree of
polymerization. The soft non-bonded interactions of the coarse-grained models are related
to the excess free-energy functional of an equivalent field-theoretic description. The con-
nection between the particle-based model and the field-theoretic description helps to iden-
tify the physical significance of the model interactions. Non-bonded interactions, which
describe the complex phase behavior of compressible mixtures or include local fluid-like
packing effects of the coarse-grained segments, can be systematically constructed based on
liquid-state theory or classical density functional theory. Details of the computational imple-
mentation and limitations of soft coarse-grained models are discussed. Two computational
techniques—field-theoretic force-matching and umbrella sampling—are devised for com-
puting a free-energy functional from a particle-based description. They can be employed
to (i) derive the non-bonded free-energy functional of a soft coarse-grained model from
a more detailed computational model or to (ii) derive a field-theoretic description from a
particle-based model. Moreover, different strategies for accurately calculating free energies
of self-assembled systems are described and selected applications presented.

Keywords Computer simulation · Self-consistent field theory · Block copolymers

1 Introduction

Amphiphiles are molecules that are composed of two or more distinct building blocks, which
prefer different environments. Examples include biological lipid molecules, which contain

M. Müller (�)
Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen,
Germany
e-mail: mmueller@theorie.physik.uni-goettingen.de

mailto:mmueller@theorie.physik.uni-goettingen.de


968 M. Müller

a hydrophilic head and a hydrophobic tail, or block copolymers, which consist of two lin-
ear homopolymers that are covalently bound at their ends. Macroscopic phase separation
between the different building blocks is prevented by the molecular connectivity. Instead,
the molecules self-assemble into spatially modulated periodic phases with a characteristic
length scale that is dictated by the size of the molecules [1]. This typical elementary length
scale of a unit cell of the periodic morphology ranges from a few nanometers for biological
lipids (e.g., the thickness of a bilayer membrane) to a few tens of nanometers for synthetic
block copolymer materials. On the one hand, the time and length scales that are involved
in structure formation—tens of nanometers and microseconds—cannot be systematically
addressed by computational models with atomistic resolution. On the other hand, the small
free-energy scale involved in these collective phenomena of soft matter poses a challenge for
a coarse-grained description and requires the consideration of thermal fluctuations [2–11].

Recently, there has been much progress in studying the properties of amphiphilic systems
with coarse-grained models. The advances are rooted in the development of predictive and
computationally efficient soft coarse-grained models for polymer [12–21] and lipid systems
[5, 6, 8, 11, 22–24], as well as the development of simulation techniques [15, 25–31]. In
this paper we review some computational aspects of soft coarse-grained models and discuss
the relation of these particle-based models to a field-theoretic description. Our manuscript
is arranged as follows: First, we will describe soft coarse-grained models that have been
employed to investigate the universal aspects of structure formation in block copolymer sys-
tems. We will motivate their relevance, discuss how the model parameters can be related
to experimental realizations, and explain their advantages for studying fluctuation effects.
In particular, we will explore how to relate this class of particle-based models to a field-
theoretic description. Some limitations due to the softness of the interactions are subse-
quently discussed. Second, we will highlight recent techniques to measure free energies of
self-assembled systems [26, 28–30, 32–34]. Our contribution finishes with a brief summary
and an outlook on open questions.

2 Soft Coarse-Grained Models for Dense Amphiphilic Systems

2.1 Motivation: Universality of the Structure and Thermodynamics of Amphiphilic
Systems

One beautiful characteristics of amphiphilic systems consists in the universality of their
qualitative characteristics [1, 6]. System that markedly differ in their chemical structure
and microscopic interactions between the amphiphilic blocks exhibit qualitatively similar
behavior. For instance, if the volume fraction of the two building blocks is roughly equal, the
material will self-assemble into a lamellar structure, where planar sheet-like domains of the
components alternate. Upon decreasing the volume fraction of one block, one often observes
that the minority component forms cylinders that arrange on a hexagonal lattice. A further
decrease of the volume fraction of the minority block results in spherical aggregates (e.g.,
micelles). This sequence of morphologies is observed in biological lipids in aqueous solution
[35], where the repulsion arises from the hydrophobic effect, as well as synthetic block
copolymers in a molten state [36–38], where simple van der Waals interactions give rise to
self-assembly. The observed universality suggests that the qualitative features of structure
formation on large time and length scales can be captured by simple coarse-grained models
that only incorporate those interactions that are relevant for bringing about the self-assembly
[4, 6].
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Conceptually, one can “derive” such a coarse-grained representation by grouping a small
number of atoms in a chemically realistic description into one effective interaction center
(segment), and calculate the effective interactions between those coarse-grained segments
(bottom-up approach) [39–44]. This procedure is similar to the construction of Hamilto-
nians in renormalization group theory of critical phenomena [45–48]. In fact, for polymer
materials, this analogy to the theory of phase transitions can be made explicit due to the
scale separation between the atomic repeat units and the properties of a polymer of high
molecular weight in a melt or solution, and it has been exploited to investigate the structure
of polymer solutions [49, 50].

The so-derived effective interactions depend on the thermodynamic state of the original
system, i.e., they are free energies rather than energies [51–53]. Moreover, the more atoms
are lumped together into a coarse-grained segment, the softer are the interactions among the
coarse-grained entities. This reduction of the energy scale can be illustrated by the excluded
volume interactions. On the microscopic scale, atoms cannot overlap and their interaction
is characterized by a harsh excluded volume (Pauli repulsion). If one defines the center of
mass of a collection of a large number of atoms as a coarse-grained degree of freedom, then
these coarse-grained centers of mass may overlap, because the concomitant collections of
atoms can interdigitate without violating the microscopic excluded-volume constraint. Thus
their interaction is given by a much softer repulsion [12, 54, 55] that merely limits density
fluctuations [56]. Likewise, the energy scale of a covalent bond between two adjacent atoms
along the backbone of a polymer molecule is on the order of electron Volt, while the typical
energy of the interaction between two neighboring coarse-grained segments is only on the
order of the thermal energy scale, kBT .

2.2 Soft Interactions—A Necessity

Soft interactions on a mesoscopic length scale, which is much larger than the size of an
atom but smaller than the entire extension of the amphiphilic molecule, naturally arise as a
consequence of coarse-graining. In this subsection we argue that soft volume interactions,
which allow for an overlap between coarse-grained segments, are necessary to capture an
important property of polymer materials—the invariant degree of polymerization, N̄ . This
quantity characterizes the degree of interdigitation of molecules, and it is defined via

N̄ ≡
(

ρo

N
R3

eo

)2

(1)

where ρo denotes the number density of segments, N stands for the number of coarse-
grained interaction centers that describe a molecule, and Reo is the mean-squared end-to-
end distance that characterizes the size of a molecule in a non-interacting system. Since in
a dense polymer melt the molecular conformations of a flexible, long macromolecule obey
random-walk statistics, Reo ∼ √

N , the invariant degree of polymerization is proportional to
the number of segments, N̄ ∼ N . Note, however, that the universal properties of the Gaus-
sian chain conformations do not depend on the discretization N of the chain contour but the
fractal shape of a molecule is completely characterized by the single length scale, Reo. Also
N̄ is invariant under changing the number of effective segments N that are used to model the
molecular conformations because ρo/N is the number density of molecules. The physical
significance of N̄ consists in quantifying with how many neighbors a given macromolecule
interacts. In the limit that N̄ → ∞, one molecule interacts with many neighbors and fluctu-
ations and correlations on the length scale of Reo and beyond become less important [57].
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In this limit, the system can be accurately described by the self-consistent field theory. For
finite N̄ , however, fluctuation effects are important.

Fluctuation and correlation effects are important for a variety of equilibrium properties
[57]:

– Fluctuations in the vicinity of the critical point of demixing in polymer blends [58–63]
or the order-disorder transition in block copolymer system [64, 65] shift the location of
phase transitions and may change their qualitative character.

– Interfacial fluctuations (capillary waves) of the internal AB interfaces in binary blends
or block copolymers or the surfaces of polymer solutions and melts [66–68] broaden
apparent interfacial profiles measured in experiments or extracted from simulations.

– The correlation hole in the intermolecular pair correlation function gives rise to important
corrections to the Gaussian chain behavior in polymer melts in the bulk and thin films
[69–77] and, additionally, leads to deviations of the single-chain dynamics from the Rouse
model [77, 78].

The strength of these effects decreases with a power of N̄ . Typical values of N̄ are on
the order of 104 for copolymer materials; values are smaller for biological lipid systems
and they are often larger for mixtures of two homopolymers. Since computer simulations
play an important role in assessing the quality of the mean-field approximation invoked in
analytic or numerical calculations, e.g., the self-consistent field theory, and exploring the
consequences of fluctuations, it is important for a coarse-grained computational model to
describe a realistic value of N̄ that corresponds to experimental systems.

Modeling large values of N̄ = (ρob
3)2N with computational representations that include

excluded volume interactions between the coarse-grained segments, one faces a formidable
challenge. In models like the Flory-Huggins representation of a polymer on a simple cu-
bic lattice [79, 80], the bond fluctuation model [59, 81–83] or a Lennard-Jones bead-spring
model [67, 84, 85], the size of a segment, σ , as defined via the range of the harsh repul-
sive interactions, and the statistical segment length, b ≡ Reo/

√
N , are comparable, σ ≈ b.

Moreover, the segment density of a polymer fluid cannot be increased significantly beyond
ρoσ

3 ≈ 1, because the liquid of segments either crystallizes into a solid or it vitrifies into a
glass. Thus, in order to model a polymer liquid, ρob

3 � 1, and a value of N̄ = 104 requires
a large number of segments per chain, N ≈ 104.

The characteristic length scale of the self-assembled morphology is set by the molecular
extension of a few Reo. A small system of linear dimension L = Reo is comprised of n =
ρoL

3 = N
√

N̄ (L/Reo)
3 ≈ N3/2 = 106 effective segments. In a dense melt of these long

molecules, the chains will reptate [86, 87], and the time to diffuse a distance Reo scales like
τ = τoN

3 where τo is an N -independent microscopic time scale. To follow the system over
one characteristic time one needs about N9/2 = 1018 elementary moves.

If the harsh excluded volume interaction is replaced by a soft repulsion, one will eliminate
the constraint ρob

3 � 1, because solidification or vitrification can be avoided. In this case,
one can choose a large segment density, ρob

3 ∼
√

N̄ . For instance, choosing ρob
3 = 18, we

can model a value of N̄ = 104 by using N = 31 segments along the molecular contour. This
discretization of the molecular architecture is still sufficient to capture the characteristics of
the random-walk-like conformations on the scale Reo. Within the soft coarse-grained model,
a system of size L = Reo contains only 3 200 segments. Moreover, these non-entangled poly-
mers obey Rouse dynamics with a relaxation time τ = τoN

2. Thus the simulations require
only N3

√
N̄ ≈ 3 · 108 elementary moves, which is 11 orders of magnitude less than in mod-

els, where excluded volume is enforced on the scale of a segment.
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For this reason, soft coarse-grained models are very efficient in describing polymer sys-
tems with a realistically large value of N̄ and allow us to study collective phenomena on the
length scale of Reo and beyond. This ability can be traced back to the rather coarse repre-
sentation of the molecular contour and the concomitant large number of monomeric repeat
units that are lumped into an effective coarse-grained segment.

2.3 Bonded and Non-bonded Interactions

We consider a soft coarse-grained model that describes n polymers in a volume, V . Let {ri,s}
denotes the set of segment coordinates that completely specifies the configuration of our
system. The index i = 1, . . . , n runs over the number of molecules, and s = 1, . . . ,N labels
the N effective segments per chain molecule that describe the molecular conformation on
the coarse-grained scale.

In the following, we distinguish between bonded interactions, which define the molec-
ular shape and its fluctuations, and non-bonded interactions. The latter give rise to (i) the
near incompressibility of a dense melt and (ii) the repulsion between the different segment
species, A and B , which drives the self-assembly.

The bonded interactions, Hb({ri,s}), of the coarse-grained model can be derived by en-
forcing that the coarse-grained description reproduces the distributions of distances along
the molecular backbone [39]. In the limit that one coarse-grained segment is comprised of
a large number of microscopic repeat units along a flexible polymer, the central limit the-
orem implies that the distance between neighboring coarse-grained segments is Gaussian
distributed. Such a Gaussian distribution of coarse-grained bond lengths naturally gives rise
to a bead-spring Hamiltonian introduced by Edwards [88]

Hb({ri,s})
kBT

= 3(N − 1)

2R2
eo

N−1∑
s=1

|ri,s+1 − ri,s |2 (2)

In the non-interacting system, this bonded free energy leads to a Gaussian distribution of
the coarse-grained bond lengths and the end-to-end distance

〈|ri,s+1 − ri,s |2
〉 = R2

eo

N − 1
and

〈|ri,N − ri,1|2
〉 = R2

eo (3)

This discretized Gaussian chain model captures the molecular conformations of long flexible
polymers and their fluctuations on large length scales. Note that the large-scale conforma-
tions are complete described by the coarse-grained parameter Reo, i.e., the coarse-grained
description of the chain conformations is invariant under changing the discretization N of
the molecular contour. Such a coarse-grained representation of the molecular architecture
will be appropriate, if the characteristic length scale of the system, e.g., the width of the
interface between microphase-separated domains, is larger than the smallest length scale,
b = Reo/

√
N , on which the molecular contour is resolved. This condition results in a lower

bound for the discretization N . In lipid systems or polymer systems with extremely large
incompatibility between the species, however, the scale of spatial inhomogeneity may be-
come comparable to the size of a monomeric repeat unit. In this case, the coarse-grained
model has to incorporate further details of the local molecular architecture and liquid struc-
ture (cf. Sect. 2.8). As a first step, one can introduce a bending potential between bonds that
allows to describe the cross-over from a rigid rod-like behavior on very short length scales to
the Gaussian conformations of long macromolecules on large scales. Such a bending poten-
tial does not only parameterize the average local geometry of the molecule but it also reduces
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the conformational entropy by restricting fluctuations. Several systematic coarse-graining
schemes, e.g., Boltzmann inversion [89] or force matching [90, 91], have been devised to
derive augmented bonded free energies from a microscopic description, which includes de-
tails of the molecular architecture on short length scales (e.g., bond-length, bond-angle, or
torsional potentials).

The non-bonded interactions, which capture the repulsion between the different segment
species and the limited compressibility resulting from the excluded volume of the micro-
scopic model, can be described by an excess free-energy functional Fnb[φA,φB ] of the local
densities, φA(r) and φB(r), of the two segment species [11, 15, 25]. This general approach
can benefit from abiding knowledge of classical density functional theory for liquids, and
it allows for a great flexibility in describing a variety of phenomena, e.g., phase separation
in dense multi-component melts [17, 29, 92, 93], liquid-vapor coexistence [15, 94, 95], and
local packing effects of the fluid of segments or the main transition from a fluid to a gel
phase in lipid bilayers [22].

To retain a particle-based description, we express the local densities through the positions
of the coarse-grained segments. Schematically, one defines [96]

φ̂A(r|{ri,s}) = 1

ρo

n∑
i=1

N∑
s=1

γi,sδ(r − ri,s ) (4)

where γi,s = 1 if the s th segment of molecule i is of type A and 0 otherwise. A similar
expression holds for the microscopic B density. The “hat” indicates that the densities are
functions of the segment coordinates. Using such a relation between the positions of the
coarse-grained segments and the local densities, one can express the excess free energy as a
function of the segment coordinates [25, 97]

Hnb({ri}) ≡ Fnb[φ̂A(r|{ri,s}), φ̂B(r|{ri,s})] (5)

With these definitions the partition function of our soft coarse-grained model in the
canonical ensemble is given by

Z =
∫

D[{ri,s}] exp

(
− Hb + Hnb

kBT

)
(6)

where D[{ri,s}] ≡ 1/(n!Λ3nN
T )

∏n

i=1

∏N

s=1 d3ri,s sums over all conformations and ΛT de-
notes the thermal de-Broglie wave length. The equilibrium properties of the so-defined soft
coarse-grained model can be studied by a variety of computer simulation techniques includ-
ing Monte Carlo simulation, Brownian dynamics or Dissipative Particle Dynamics.

In order to differentiate between the role of bonded and non-bonded contributions to the
model interactions, one can rewrite the canonical partition function in the form

Z =
∫

D[φA,φB ]D[{ri,s}]e− Hb({ri,s })+Fnb[φA,φB ]
kBT δ(φA − φ̂A)δ(φB − φ̂B)

=
∫

D[φA,φB ]e
−Fnb[φA,φB ]

kBT

∫
D[{ri,s}]e− Hb({ri,s })

kBT δ(φA − φ̂A)δ(φB − φ̂B)

=
∫

D[φA,φB ]e
−Fnb[φA,φB ]

kBT e
S[φA,φB ]

kB with (7)

S[φA,φB ] ≡ kB ln
∫

D[{ri,s}]e− Hb({ri,s })
kBT δ(φA − φ̂A)δ(φB − φ̂B) (8)
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Equations (7) and (8) explicitly establish a mapping from a particle-based description to
a continuum field-theoretic one, where the collective densities, φA and φB , rather than the
segment coordinates, {ri,s}, are the fundamental degrees of freedom. The latter expression,
(8), identifies S[φA,φB ] as the entropy loss of the non-interacting molecules due to the
density constraints, φA(r) = φ̂A(r|{ri,s}) and φB(r) = φ̂B(r|{ri,s}). It is comprised of two
contribution: The entropy, Sid, of an ideal gas of non-bonded segments that accounts for the
combinatorial entropy of distributing the segments in space and an excess entropy, Sb, that
arises from the bonding of the segments into polymers and the conformational changes of
the polymers with a spatially inhomogeneous density distribution.

S[φA,φB ] = Sid[φA,φB ] + Sb[φA,φB ] (9)

Sid[φA,φB ] = −kBρo

∫
d3r(φA(r)[ln(φA(r)ρoΛ

3
T ) − 1]

+ φB(r)[ln(φB(r)ρoΛ
3
T ) − 1]) (10)

Sb[φA,φB ] = kB ln
∫

D̄[{ri,s}]e− Hb({ri,s })
kB T δ(φA − φ̂A)δ(φB − φ̂B) (11)

where D̄[{ri,s}] denotes the configurational integral for distinguishable particles.
In a one-component melt of very long flexible homopolymers, where the Ground-State

Approximation (GSA) is appropriate, S corresponds to the Lifshitz entropy [98]

− S homo[φ]
kB

√
N̄

≈ R2
eo

24

∫
d3r
R3

eo

|∇φ|2
φ

(GSA) (12)

If the variation of the densities has a small amplitude, |φ(r) − 1| 	 1, one can use the
Random-Phase Approximation (RPA) to calculate the entropy, S , of a spatially inhomo-
geneous configuration [99]. For a one-component homopolymer system, one obtains the
entropy functional

− S homo[φ]
kB

√
N̄

≈ V

2R3
eo

∑
q

|φ(q)|2
S(q)/N

(RPA) (13)

where

φ(q) = 1

V

∫
d3re−iqrφ(r) (14)

is the Fourier transform of the normalized density. The collective structure factor, S(q), of
the non-interacting system (cf. (8)) is identical to the single-chain structure factor, which is
given by the Debye function, g

S(q)

N
= g(x) = 2

x2
[e−x − 1 + x] with x = (qReo)

2

6
(15)

≈ 1 − (qReo)
2

18
+ · · · for (qReo)

2 → 0 (16)
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Thus, in the limit of small amplitude variations and (qReo)
2 → 0, the entropy of a homopoly-

mer system takes the form (up to an additive constant)

− S homo[φ]
kB

√
N̄

≈
∫

d3r
R3

eo

[
1

2
[φ(r) − 1]2 + R2

eo

36
|∇φ(r)|2

]
(RPA) (17)

In this limit, the combinatorial contribution to the entropy of the fluid of non-bonded seg-
ments can be expanded as follows

− S homo
id [φ]
kB

√
N̄

= N

∫
d3r
R3

eo

φ(r)[ln(φ(r)ρoΛ
3
T ) − 1] (18)

≈ N

∫
d3r
R3

eo

1

2
[φ(r) − 1]2 + constants (RPA) (19)

and we obtain the excess entropy (up to an additive constant)

− S homo
b [φ]
kB

√
N̄

=
∫

d3r
R3

eo

[
−N − 1

2
[φ(r) − 1]2 + R2

eo

36
|∇φ(r)|2

]
(RPA) (20)

The first term quantifies the change of the combinatorial entropy upon connecting N seg-
ments to a chain molecule, while the second contribution stems from the alteration of the
molecular conformations by the inhomogeneous environment.

In computer simulations, the entropy functional is not directly accessible but its func-
tional derivative with respect to the local density—the chemical potential—can be mea-
sured, and computational strategies will be discussed in the next Sect. 2.4. Within the RPA,
the chemical potential for a spatially inhomogeneous polymer melt takes the form:

μ(r) ≡ −T
δS

δφ(r)
(21)

μ(r)R3
eo

kBT
√

N̄
≈ φ(r) − 1 − R2

eo

18
Δφ(r) (RPA) (22)

For a blend of two homopolymers, one can assume that composition fluctuations cost
much less free energy than variations of the total density of the nearly incompressible sys-
tem, i.e., φA(r) + φB(r) = 1. The spatially varying densities can be described by the order
parameter m(r) ≡ φA(r) − φB(r), and one obtains within RPA [99]:

− S[φA,φB ]
kB

√
N̄

= V

2R3
eo

∑
q

|m(q)|2
4S(q)/N

(23)

The structure factor, S(q), of composition fluctuations in an incompressible but otherwise
ideal mixture is given by

N

S(q)
= 1

φ̄AgA(q)
+ 1

φ̄BgB(q)
(24)

where φ̄A and φ̄B = 1 − φ̄A denote the average volume fraction of A and B segments and
gA and gB are the Debye functions of the two types of homopolymers, respectively. For
a symmetric blend, where both homopolymer species have the same molecular extension,
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Reo, and φ̄A = φ̄B = 1/2, the RPA predicts in the limit of small amplitude variations and
(qReo)

2 → 0

− S sym.blend[m]
kB

√
N̄

≈
∫

d3r
R3

eo

[
1

2

(
m

2

)2

+ R2
eo

36

(∇m

2

)2]
(25)

In case of a diblock copolymer, (23) still holds and the structure factor is given by [100]

S(q)

N
= g(1, x)

g(f, x)g(1 − f,x) − 1
4 [g(1, x) − g(f, x) − g(1 − f,x)]2

(26)

with g(f, x) = 2

x2
[e−f x − 1 + f x] and x = (qReo)

2

6
(27)

where f is the composition of the block copolymer. For a symmetric diblock copolymer,
f = 1/2, this expression simplifies to

N

S(q)
= 1

g(1/2, x) − 1
4 g(1, x)

(28)

≈ 24

x
+ 7.1 + 2x with x = (qReo)

2

6
(29)

The latter approximation captures the leading-order behavior in the limit x → 0 and x → ∞
[101] and leads to the expression by Ohta and Kawasaki

− S sym.cop[m = φA − φB ]
kB

√
N̄

≈
∫

d3r
R3

eo

[
7.1

(
m

2

)2

+ R2
eo

24

(∇m

2

)2]

+ 18
∫

d3r
R3

eo

d3r′

R3
eo

m(r)
2

ReoG(r − r′)
m(r′)

2
(30)

where the integral kernel obeys the relation ΔG(r) = −δ(r). For an incompressible system,
one obtains for the chemical potential difference (exchange potential), which is thermody-
namically conjugated to the order parameter, m

μA(r) − μB(r) ≡ −T
δS

δφA(r)
+ T

δS
δφB(r)

= −2T
δS

δm(r)
(31)

where the variation δφA(r) does not fulfill the incompressibility constraint, i.e., δφA(r) and
δφB(r) are independent. The RPA, (23), results in

μA(q) − μB(q) = −2
T

V

∂S
∂m(−q)

(32)

[μA(q) − μB(q)]R3
eo

kBT
√

N̄
≈ 1

2

m(q)

S(q)/N
(RPA) (33)

For a variation of the composition with a single wave vector, qx , e.g., m(r) = A cos(qxx)

or m(q) = A
2 (δq,qx + δq,−qx ), the chemical potential takes the particularly simple form

[μA(r) − μB(r)]R3
eo

kBT
√

N̄
≈ 1

2

m(r)
S(qx)/N

= N

2S(qx)
[φA(r) − φB(r)] (34)

and contributions with different wave vectors superpose linearly within the RPA.
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More complex molecular architectures, e.g., branched polymers, multiblock, random or
comb copolymers [102–110], give rise to more complex entropy functionals, S , and it is
of interest to determine those functionals without approximation by computer simulation of
particle-based models.

2.4 Bottom-Up Construction of a Soft Coarse-Grained Model: Constraint Partition
Function

In principle, one can derive a coarse-grained model from an underlying microscopic model.
For the coarse-grained model to reproduce the same macroscopic equilibrium properties as
the microscopic model, one must enforce that the partition functions of the two representa-
tions are identical. In the following, we require the stronger condition that the free energy
of a given coarse-grained density distribution, φA(r) and φB(r), which is defined via the
constraint partition function (see (37) below), is the same in the two representation (consis-
tency).

In such a bottom-up approach, one starts out with a more microscopic model, which
could be an atomistic representation or a less coarse-grained model of the system under
investigation. Let {xα} denote these microscopic degrees of freedom and E[{xα}] the energy
associated with a microscopic configuration. The index α runs over all microscopic degrees
of freedom. Then, one defines the projection r̃i,s ({xα}) from the microscopic degrees of
freedom {xα} onto the coarse-grained ones {ri,s}.

Formally, one can derive the coarse-grained model from the underlying microscopic
model by performing a partial trace over all microscopic degrees of freedom compatible
with a fixed density distribution.

Z =
∫

D[φA,φB ] exp

(
− Fnb[φA,φB ]

kBT

)
exp

(
S[φA,φB ]

kB

)
(35)

=
∫

D[φA,φB ]D[{xα}]e− E({xα })
kBT

× δ(φA(r) − φ̂A(r|{r̃i,s ({xα})}))δ(φB(r) − φ̂B(r|{r̃i,s ({xα})})) (36)

We fulfill the requirement that the microscopic and the coarse-grained system have the same
constraint partition function by defining the non-bonded interactions according to

Fnb[φA,φB ] = T S[φA,φB ]
− kBT ln

∫
D[{xα}]e− E({xα })

kBT δ(φA(r) − φ̂A(r|{r̃i,s ({xα})}))

× δ(φB(r) − φ̂B(r|{r̃i,s ({xα})})) (37)

i.e., the constraint partition function of the more microscopic model with a fixed coarse-
grained density distribution, φA(r) and φB(r), has to be evaluated to obtain the second term
of (37). This calculation yields the free-energy functional, F = Fnb − T S , of the field-
theoretic description of the model, and the consistency requirement ensures that this free-
energy functional of the coarse-grained and of the more microscopic model are the same.
Then, one has to compute the constraint partition function of the coarse-grained model in
the absence of non-bonded interactions, (8), to obtain S , and the difference yields the excess
free-energy functional, Fnb, of the non-bonded interaction of the coarse-grained model.
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Thus the evaluation of constraint partition functions, e.g. (8) or (37), serves either to sys-
tematically derive Fnb[φA,φB ] for a coarse-grained model or to bridge between a particle-
based description and a field-theoretic one, where the collective fields, φA(r) and φB(r) are
the fundamental degrees of freedom.

There are several strategies for calculating the constraint partition functions, defined in
(8) and (37), from particle-based simulations. The first method is based on force matching
techniques that have originally been developed in the context of systematic coarse-graining
of particle-based models [90, 91]. Recently, this approach has been formulated by Villet
and Fredrickson for field-theoretic simulations [111], connecting two field-theoretic repre-
sentation of a fluid with different spatial resolutions. Here we formulate this technique to
bridge from a particle-based description to a continuum one, where one describes the sys-
tem configuration by a free-energy functional that depends on the coarse-grained density
fields, φA(r) and φB(r). The second method is a generalization of umbrella sampling from a
single degree of freedom to a continuum field [21]. Both methods have in common that the
free energy is not calculated directly but rather its derivative with respect to the continuum
fields, φA and φB .

2.4.1 Field-Theoretic Force Matching Technique

To simplify notation, we restrict ourselves to the calculation of the excess entropy, (11)
but the techniques can be applied to (37) by replacing −T S by F = Fnb − T S and Hb by
H = Hnb + Hb.

The functional derivative of (11) with respect to the local density φA is given by:

δSb[φA,φB ]
δφA(r)

= kB

∫
D̄[{ri,s}]e− Hb({ri,s })

kBT [ δ
δφA(r) δ(φA − φ̂A)]δ(φB − φ̂B)

∫
D̄[{ri,s}]e− Hb({ri,s })

kBT δ(φA − φ̂A)δ(φB − φ̂B)

(38)

Let ri,s,α be the α-coordinate of the s th segment on polymer i. The segment is chosen
such that a movement of that segment in the Cartesian direction, α ∈ {x, y, z}, alters the
microscopic A density at position r, i.e.

∣∣∣∣∂φ̂A(r|{ri,s})
∂ri,s,α

∣∣∣∣ > 0 (39)

In the following, we omit the dependence of φ̂A(r|{ri,s}) on the set of segment coordinates,
{ri,s} and note that the derivative, ∂φ̂A(r|{ri,s})/∂ri,s,α , does not depend on the coordinates
of the other segments. From the definition of the microscopic densities, (4), we obtain

ΔL3 δ

δφA(r)
δ(φA − φ̂A) = −δ(φA − φ̂A)

1
∂φ̂A(r)
∂ri,s,α

∂

∂ri,s,α

ln δ(φA(r) − φ̂A(r)) (40)

where ΔL3 is a microscopic volume element, and

−T
δSb[φA,φB ]

δφA(r)
= kBT

ΔL3

〈
1

∂φ̂A(r)
∂ri,s,α

∂

∂ri,s,α

ln δ(φA(r) − φ̂A(r))
〉
φA,φB

(41)

where the brackets denote the constraint average

〈· · ·〉φA,φB
≡ e

− Sb [φA,φB ]
kBT

∫
D̄[{ri,s}]e− Hb({ri,s })

kB T · · · δ(φA − φ̂A)δ(φB − φ̂B) (42)
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Using integration by parts, one can show that

∫
d3r
ΔL3

〈
∂

∂ri,s,α

ln δ
(
φA(r) − φ̂A(r)

)〉
φA,φB

= 1

kBT

〈
∂Hb({ri,s})

∂ri,s,α

〉
φA,φB

(43)

In conjunction with (41), this relation yields

〈
∂Hb({ri,s})

∂ri,s,α

〉
φA,φB

=
∫

d3r
∂φ̂A(r)
∂ri,s,α

δ

δφA(r)

(−T Sb[φA,φB ]) (44)

The above equation relates the average force,

〈KA,α(ri,s )〉φA,φB
≡ −〈∂Hb({ri,s})/∂ri,s,α〉φA,φB

,

which acts on a segment of type A at position ri,s in the constraint system, to the local excess
of the chemical potential, μbA(r) ≡ −T δSb/δφA(r). Using the functional inverse define by

∫
d3ri,s

∂φ̂A(r)
∂ri,s,α

[
∂φ̂A(r′)
∂ri,s,α

]−1

= δ(r − r′) (45)

we can invert this relation and obtain

−T
δSb[φA,φB ]

δφA(r′)
=

∫
d3ri,s

[
∂φ̂A(r′)
∂ri,s,α

]−1〈
∂Hb({ri,s})

∂ri,s,α

〉
φA,φB

(46)

μbA(r′) = −
∫

d3ri,s

[
∂φ̂A(r′)
∂ri,s,α

]−1

〈KA,α(ri,s )〉φA,φB
(47)

Since the segment (i, s) is chosen to contribute to the local A density, γi,s = 1 and the
functional inverse takes the form

[
∂φ̂A(r′)
∂ri,s,α

]−1

= −ρoΘ(r′
α − ri,s,α)

∏
β �=α

δ(r′
β − ri,s,β) (48)

where Θ is the Heaviside step function. This relation yields

μbA(r′) = ρo

∫ ∞

r′
x

dx〈KA,x(x, r′
y, r′

z)〉φA,φB
(49)

and, after differentiation, we obtain the final result

∇μbA(r) = ∇[μA(r) − ρokBT lnφA(r)] = −ρo〈KA(r)〉φA,φB
(50)

This relation is the analog of the lowest-order Born-Green-Yvon relation [44, 112, 113]
for the constraint system. Equation (50) has the simple interpretation that, in the constraint
system, the excess chemical force density, ∇μbA(r), due to the constraint, and the density
of internal forces ρoKA(r) balance. Hence this strategy, which equates the force of the field-
theoretic model to the force of the corresponding particle-based model, is termed force-
matching.
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Using (10) we obtain for the gradient of the total chemical potential

Reo∇ μA(r)R3
eo

kBT
√

N̄
= NReo∇ lnφA(r) − N

Reo

kBT
〈KA(r)〉φA,φB

(51)

An alternative derivation of this relation within the field-theoretic formalism is given in the
Appendix.

In the typical case, the left hand side of (51) is of order unity, while both terms on the
right hand side are O(N). Thus the gradient of the chemical potential is obtained from the
difference of two large numbers, and the situation is similar to the cancellation between
bonded and non-bonded contributions that occurs when one calculates the pressure via the
virial of all forces.

2.4.2 Field-Theoretic Umbrella Sampling

In general, however, it is difficult to strictly constrain the microscopic densities, φ̂A and φ̂B ,
because it gives rise to sampling problems of the underlying particle-based model. In most
computational schemes,1 the update of the system configurations does involve a change of
the microscopic density but such a change will violate the constraint and, consequently,
those configuration updates will be rejected.

In these cases, it is computationally convenient to restrain the fluctuations of the micro-
scopic densities around φA and φB rather than to strictly constrain them [21]. To this end,
one can soften the δ-function constraint in (8) via [21, 115]

δ(φA − φ̂A) ∼ lim
λN→∞

exp

(
−

√
N̄ λN

2

∫
d3r
R3

eo

[φA(r) − φ̂A(r|{ri,s})]2

)
(52)

which is equivalent to an additional contribution to the non-bonded free-energy functional
of the form

FλN

kBT
√

N̄
= λN

2

∫
d3r
R3

eo

([φA − φ̂A]2 + [φB − φ̂B ]2
)

(53)

Using this representation of the δ-function and defining the restraint average according
to

〈· · ·〉λN ∝ lim
λN→∞

∫
D[{ri,s}]e− Hb({ri,s })

kBT · · · e−
√

N̄ λN
2

∫ d3r
R3

eo
([φA−φ̂A]2+[φB−φ̂B ]2)

(54)

where the constant of proportionality is chosen such that 〈1〉λN = 1, we can calculate the
thermodynamic force [21]

μA(r)R3
eo

kBT
√

N̄
= − R3

eo

kB

√
N̄

δSb[φA,φB ]
δφA(r)

= λN
〈
φA(r) − φ̂A(r|{ri,s})

〉
λN

(55)

This strategy resembles umbrella sampling, where one restrains the fluctuations of “a” vari-
able φ̂A by a harmonic umbrella potential and estimates the thermodynamic constraint force
by the “displacement” φA − 〈φ̂A〉λN of the restraint system from the reference value φA. In

1Connectivity altering moves, which have been devised by Theodorou and co-workers [114], are a notable
exception.
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order to obtain an accurate estimate of μ, the coupling parameter λN must be chosen large.
In this limit, the technique relies on measuring the small difference between the imposed
density φA(r) and the thermal average, 〈φ̂A(r)〉, that the restraint system adopts.

The field-theoretic umbrella sampling, (55), or the force-matching relation, (51), pro-
vide a computational strategy for estimating the chemical potential (or its gradient) from
the restrained (or constraint) average. These techniques yield an unbiased estimate of the
underlying free-energy functional that can be employed in conjunction with equation-free
multiscale computations [116] or heterogeneous multiscale techniques [117–119] provided
that the free-energy functional can be efficiently estimated.

To this end, one can make an Ansatz, Ftrial[φA,φB |{pi}], for the free-energy functional of
the continuum description [21]. The functional form of this Ansatz shall be guided by sym-
metry considerations, and it will contain a small set of parameters, {pi}, that characterize the
microscopic model system. From such an Ansatz, one can calculate the chemical potential,
μA,trial[φA,φB |{pi}], or its gradient and, by comparing this expression to (55) or (51), one
can estimate the parameters, {pi}, of the free-energy functional, i.e., like in force-matching
[90, 91] one minimizes

χ2
φA,φB

= R3
eo

kBT
√

N̄

∫
d3r

[
μA,trial[φA(r),φB(r)|{pi}] − μA(r)

]2
(56)

=
∫

d3r
[

μA,trial[φA(r),φB(r)|{pi}]R3
eo

kBT
√

N̄
− λN(φA(r) − 〈φ̂A(r)〉λN )

]2

(57)

with respect to the set of parameters, {pi}. This strategy allows for gauging the quality of the
Ansatz by monitoring how χ2

φA,φB
and the parameters {pi} depend on the field configuration,

φA and φB , and for systematically improving the Ansatz.

2.4.3 Numerical Examples

First, we consider a homopolymer system with chain discretizations N = 32, κoN = 0,
and χoN = 0. Using λN = 100 we restrain the system to a density distribution φ(r) =
1 + ε cos(qxx) with ε = 0.2 and qxReo = π and 2π , respectively. In Fig. 1(a) we present
the one-dimensional density profile, 〈φ̂(x)〉, observed in the restraint simulations and the
imposed density profile, φ(r). Since λN is large, the two profiles are almost identical; the
spatial variation of 〈φ̂(x)〉 has a slightly smaller amplitude than that of φ(r). The reduction
of the amplitude is 1.4% and 4% for qxReo = π and 2π , respectively.

From the difference of both profiles, one can estimate the chemical potential of the spa-
tially inhomogeneous system according to (55), which is presented in Fig. 1(b). The simu-
lation results are compared with the prediction of the RPA

μ(r)R3
eo

kBT
√

N̄
= N

2S(qx)
[φ(r) − 1] (RPA) (58)

for a spatial variation with a single Fourier mode, where S denotes the single-chain structure
factor. This expression is valid for density variations of small amplitude. Alternatively, the
simulation data can be compared to the expression

μ(r)R3
eo

kBT
√

N̄
= lnφ(r) − R2

eo

18
Δφ(r) (59)
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Fig. 1 Restraint simulation of a homopolymer system with N = 32, κoN = 0, χoN = 0, N̄ = 1282,
λN = 100, and first-order assignment (cf. (69)) using ΔL = Reo/6. (a) One-dimensional density profile,
〈φ̂(x)〉, and reference density, φ(r) = 1 + ε cos(qxx) with ε = 0.2 and qxReo = π and 2π , respectively.

(b) Reduced chemical potential, μ∗ ≡ μR3
eo

kBT
√

N̄
of the restraint homopolymer system according to (55). The

analytic approximations, (58) and (59), are presented for comparison as solid and dashed lines, respectively.
(c) Force density 〈Kx(x)〉Reo/kBT and gradient of the chemical potential of a gas of segments as indicated
by solid lines. (d) Gradient of the reduced chemical potential of the restraint homopolymer system according
to (51). The analytic prediction, (58), is plotted as a solid line

which restores non-linear terms that correspond to the combinatorial entropy of the macro-
molecules but retains the linear approximation in the Laplace term and additionally requires
(qReo)

2 → 0.
In panel (c) of Fig. 1 we present the density of bonded forces, 〈Kx〉, and compare the

simulation results with the gradient of the combinatorial entropy of the gas of non-bonded
segments, kBT ∇ lnφ. The difference between the two data sets is proportional to ∇μ ac-
cording to (51).

The resulting ∇μ is presented in panel (d), which also depicts the analytic prediction,
(58). For qxReo = π the data are consistent with the results from panel (b) and the RPA
prediction. For the variation with the larger wave vector, qxReo = 2π , some of the deviations
between the simulation results and the RPA prediction as well as some of the discrepancies
between the results obtained by field-theoretic umbrella sampling and the force-matching
technique are related to coarse spatial resolution, ΔL = Reo/6 or qxΔL ≈ 1.05, with which
the density profiles are resolved.

Second, we consider a symmetric copolymer system with chain discretizations N = 32,
κoN = 0, χoN = 0, and λN = 100. We again restrain the system to a spatial variation of the



982 M. Müller

Fig. 2 Restraint simulation of a symmetric copolymer system with N = 32, κoN = 0, χoN = 0, N̄ = 1282,
λN = 100, and zeroth-order assignment (cf. (68)) using ΔL = Reo/6. (a) One-dimensional composition pro-
file, 〈φ̂A(x)〉 − 〈φ̂B (x)〉, and reference order parameter, m(r) = φA(r) − φB(r) = ε cos(qxx) with ε = 0.1

and 0.4, and qxReo = π . (b) Reduced chemical potential, μ∗ ≡ [μA−μB ]R3
eo

kBT
√

N̄
of the restraint copoly-

mer system according to (55). The analytic approximation, (34), is presented for comparison as solid
line. A fit of the simulation results is indicated by the dashed line. (c) x-component of the force density
〈KA(x) − KB(x)〉Reo/kBT and gradient of the chemical potential of an ideal mixture of segments as in-
dicated by solid lines. (d) Reduced chemical potential of the restraint copolymer system according to (51).
The analytic prediction, (34), is plotted as a solid line and the gradient of the fit from panel (b) is shown as a
dashed line

composition that is characterized by a single wave vector

φA(r) = 1 − φB(r) = 1

2

[
1 + ε cos

(
πx

Reo

)]
(60)

Two amplitudes are employed ε = 0.1 and 0.4. The composition profile of the constraint
copolymer system is depicted in Fig. 2(a). Since composition fluctuations in an ideal gas of
copolymers cost more free energy than density fluctuations in homopolymers at small and
intermediate wave vectors, the same strength of the restraining potential has a weaker effect
in the copolymer system than in a homopolymer system, i.e., the difference between the
imposed order-parameter variation, φA − φB , and the observed composition, 〈φ̂A〉 − 〈φ̂B〉,
remains larger than in Fig. 1(a).

In Fig. 2(b) we present the chemical exchange potential, μA(r) − μB(r), and compare
it with the prediction of the RPA, (34). In agreement with the RPA, the simulation data
linearly depend on the amplitude, ε, of the order-parameter variation. The magnitude of
the chemical potential variation is slightly overestimated by the RPA. Panel (c) depicts the
difference of the forces that act on A segments and B segments and compares the results
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with the combinatorial contribution, kBT ∇ lnφA/φB , that corresponds to an ideal mixture
of non-bonded segments. From these simulation data we estimate the chemical potential
via (51). The RPA prediction also slightly overestimates the variation of the gradient of the
chemical potential and the simulation data obtained with the force-matching technique are
compatible with the results obtained from field-theoretic umbrella sampling (cf. panel (b)).

2.5 Top-Down Approach and Universality

While the two strategies of extracting the excess free-energy functional from a microscopic
description are of fundamental interest and, additionally, may become useful for relating
a coarse-grained particle-based model to a continuum description in a concurrent coupling
scheme [21], a systematic Ansatz-free derivation of the excess free-energy functional from
a chemically realistic model on the atomistic scale remains a formidable task. The reason
for this difficulty can be traced back to the scale separation between the monomeric repeat
units on the atomistic scale and the coarse-grained segments that are comprised of many
monomeric repeat units. As mentioned before, the typical energy scale on the atomistic
scale is electron Volts ≈ 40kBT , while the relevant free-energy scale associated with a bond
between coarse-grained segments or their non-bonded interaction is on the order of kBT or
10−2kBT , respectively. It is the latter scale that dictates the self-assembly. Neither are the
interactions on the microscopic scale know with a sufficient accuracy nor exist sufficiently
accurate systematic coarse-graining procedures that can preserve the subtle free-energy dif-
ferences across the scales.

Fortunately, the same separation between the time, length and energy scales of the
monomeric repeat units and the coarse-grained segments imparts a great degree of uni-
versality onto the structure and thermodynamics of dense multicomponent polymer sys-
tems. Therefore, a physically motivated top-down approach, where we construct a minimal
model that only incorporates the relevant interactions that are necessary to bring about the
physics of self-assembly in amphiphilic systems, is an alternative to systematic bottom-up
approaches in particular for dense polymer systems [4, 6]. From the very definition, a model
of amphiphiles has to include the connectivity of the two opposing building blocks and
their mutual repulsion. In the following, we use the bead-spring Hamiltonian, (2), to model
the connectivity along the molecular backbone. The experimentally accessible value of the
end-to-end distance, Reo, can be used to relate the model to a specific experimental system.

The non-bonded interactions, Hnb, describe the repulsion between unlike species, which
gives rise to self-assembly. Moreover, the effect of the harsh excluded volume interaction
that operate between the monomeric repeat units is to limit local fluctuations of the density.
Since the typical length scale of our coarse-grained model is set by a fraction of Reo, it is
not necessary to enforce incompressibility on the atomistic length scale but it suffices to
suppress density fluctuations down to a small fraction of Reo. These two relevant properties
of the non-bonded interactions can be modeled by a minimal excess free-energy functional
of the form:

Fnb = Fmelt + Ford with (61)

Fmelt[φA,φB ]
kBT

√
N̄

= κoN

2

∫
d3r
R3

eo

[φA(r) + φB(r) − 1]2 (62)

Ford[φA,φB ]
kBT

√
N̄

= −χoN

4

∫
d3r
R3

eo

[φA(r) − φB(r)]2 (63)
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The first contribution can be conceived as the expansion of the equation of state of the
polymer material around the reference segment density, ρo, and it has been introduced by
Helfand [120]. The second contribution describes the regular mixing of a two-component
system and it has first been employed to model the thermodynamics of polymer mixtures
by Huggins and Flory [79, 80]. This minimal description of the non-bonded interactions
is characterized by the coarse-grained parameters, χoN , κoN , and N̄ . Note that these pa-
rameters will remain invariant, if we choose a different discretization, N , of the molecular
contour. N̄ quantifies the number of neighbors with which a reference molecule interacts.
χoN describes the strength of the repulsion between the block of the copolymer molecule,
which can be measured, e.g., by scattering experiments. κoN is related to the inverse com-
pressibility of the dense polymer liquid.

The strength of these interactions and the entropic cost of a spatially inhomogeneous den-
sity distribution result in characteristic length scales. Within the mean-field approximation,
one obtains for long flexible polymers (ground state approximation) [120, 121]:

w

Reo
≈ 1√

6χoN
and

ξ

Reo
≈ 1√

12κoN
(GSA) (64)

w characterizes the intrinsic width of an interface between A and B domains, while ξ quan-
tifies the correlation length of density fluctuations. These are the two smallest length scales
of the model. The contour discretization b = Reo/

√
N and any spatial discretization (see

below) must be smaller than these two length scales in order to observe universal prop-
erties that do not depend on these discretization parameters. This minimal model for the
non-bonded interaction is also the standard model of a field-theoretic description [120, 122]
(e.g., the self-consistent field theory), and it has been fruitfully applied to a large variety of
phenomena in dense multi-component polymer systems.

One particular advantage of this top-down approach consists in the simple physical inter-
pretation that the coarse-grained parameters adopt in limiting cases (e.g., within the mean-
field approximation). Moreover, the functional form of the excess free-energy functional of
non-bonded interactions can benefit from the vast knowledge accumulated by studies of flu-
ids within classical density functional theory [11, 22]. Many sophisticated density functional
approaches have been devised to describe the structure and thermodynamics of simple and
complex fluids as well as crystals [123, 124]. Even if we disregard the molecular connectiv-
ity for a moment, however, there is a fundamental difference between the excess free-energy
functional, Fnb defined by (7), and a classical density functional, FDFT[φA,φB ] for the liq-
uid of non-bonded coarse-grained segments. In our soft coarse-grained model, the partition
function is obtained from (7) via integrating over the fluctuations of the densities, φA and
φB , while, in classical density functional theory, the partition function is obtained by the
saddle point of the classical density functional.

Z = min
φA,φB

FDFT[φA,φB ] (65)

Nevertheless, one can expect that the functional forms of the excess free-energy functional
and the classical density functional for the liquid of non-bonded segments is similar, and
short-ranged fluctuations merely lead to a renormalization of the coarse-grained parameters
[60, 62, 63].

Inspired by this relation to classical density functional theory, various generalizations of
this minimal model have been explored to describe more complex situations. For instance, a
third-order virial expansion has been employed to describe the competition between liquid-
vapor and liquid-liquid separation. This excess free-energy functional has found application



Studying Amphiphilic Self-assembly 985

to model bubble nucleation in polymer-solvent mixtures [94], to devise a solvent-free de-
scription of lipid membranes [11], and to study the structure of mixed brushes and copoly-
mer brushes [95, 125, 126]. Instead of a local excess free-energy functional, one can use a
weighted density functional [127] in order to incorporate some liquid-like packing into the
fluid of coarse-grained segments. This approach has been followed to construct a solvent-
free model for lipid membranes that exhibits a liquid-gel transition [22].

2.6 Non-bonded Interactions: Collocation Grid Versus Weighting Function

The schematic definition of the microscopic density, (4), does not lend itself to particle-based
computer simulations and different models can be distinguished by the way the δ-function
is regularized. Two different strategies have been devised—grid-based descriptions [15, 25]
and weighting functions [29, 97]—and we discuss them in turn.

Grid-based methods have attracted abiding interesting for calculating electrostatic in-
teractions [128] or in form of particle-in-cell techniques in plasma physics [129]. In the
grid-based scheme, one discretizes space in cubic cells of linear dimension, ΔL. Each cell
is identified by its index, c. We define the local microscopic densities, φA(c) and φB(c), for
each cell c of this collocation grid by assigning particle positions to the grid cells according
to [15]

φ̂A(c) =
∫

d3r
ΔL3

Π(c, r)φ̂A(r) = 1

ρoΔL3

n∑
i=1

N∑
s=1

γi,sΠ(c, ri,s ) (66)

The assignment function is normalized

∑
c

Π(c, r) = 1 ∀r and
∫

d3rΠ(c, r) = ΔL3 ∀c (67)

i.e., the contribution of a particle to all cell adds up to unity irrespectively of its position
and the volume assigned to each grid cell is ΔL3. ΔL plays a similar role as the range of
non-bonded interactions in an off-lattice description. ΔL must be smaller than all physical
length scales for the model properties be independent from the spatial discretization. The
discretization of the molecular architecture gives rise to another microscopic length scale,
the statistical segment length b = Reo/

√
N . Typically, one chooses both length scales to be

of the same order, i.e. ΔL ≈ Reo/
√

N .
The zeroth-order assignment function, Π(0), associates a particle at position r with the

nearest grid point c, i.e.,

Π(0)(c, r) =
{

1 if |rα − cα| < ΔL
2 ∀α ∈ {x, y, z}

0 otherwise
(68)

where rα and cα denote the Cartesian coordinates of the particle and the grid point.
The advantage of this assignment function is its computational simplicity and the ir-

relevance of self-interactions (see below). The disadvantage consists in the discontinuous
change of the grid-based density when a particle straddles a cell boundary. For instance, this
choice gives rise to a discontinuous non-bonded force, −∂Hnb({ri,s})/∂rj,t that acts on the
t th segment of polymer j .

The first-order assignment function, which is defined by [17, 130]

Π(1)(c, r) =
∏

α∈{x,y,z}
π(|rα − cα|) with π(d) =

{
1 − |d|

ΔL
for |d| ≤ ΔL

0 otherwise
(69)
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can overcome this disadvantage.
Using this grid-based assignment, we can rewrite the excess free energy of non-bonded

interactions in terms of particle interactions. Typical terms in Hnb are quadratic in the mi-
croscopic densities, and we can rewritten them in the following grid-based form [25]:

√
N̄

∫
d3r
R3

eo

φ̂A(r)φ̂B(r)

≡
√

N̄
ΔL3

R3
eo

∑
c

(
1

ρoΔL3

∑
i,s

γi,sΠ(c, ri,s )

)(
1

ρoΔL3

∑
j,t

(1 − γj,t )Π(c, rj,t )

)

= N

ρoΔL3

1

N2

∑
(i,s)(j,t)

γi,s(1 − γj,t )
∑

c

Π(c, ri,s )Π(c, rj,t )

= 1

N2

∑
(i,s)(j,t)

γi,s(1 − γj,t )v(ri,s , rj,t ) (70)

Thus a quadratic excess free energy in conjunction with evaluating the local densities via a
collocation grid corresponds to pairwise interactions [25]

v(ri,s , rj,t ) = 1√
N̄

R3
eo

ΔL3

∑
c

Π(c, ri,s )Π(c, rj,t ) (71)

Higher powers of the densities (e.g., cubic terms) in the excess free-energy functional result
in higher-order interactions (e.g., three-body interactions). The dependence of this pairwise
interaction on density, 1√

N̄
∼ 1

ρo
, guarantees that the high-density limit, N̄ → ∞, is well

defined.
While the molecular conformations live in continuum space, the interactions make refer-

ence to the underlying collocation grid; the interactions do not only depend on the difference
between the segment positions but also on their relative position to the collocation grid.
Therefore, they are not translationally invariant and not isotropic. As a consequence, one
cannot use the virial expression to compute the contribution of the non-bonded interactions
to the pressure but special simulation techniques for lattice models have to be employed [83,
131, 132].

We also point out that the so-defined excess free energy contains the interaction of a
coarse-grained segment with itself because the quadratic term proportional to 1

2 φ̂2
A can be

split into interactions between pairs of A segments and an additional self-interaction term.

√
N̄
2

∫
d3r
R3

eo

φ̂A(r)φ̂A(r)

= 1

2N2

∑
(i,s)(j,t)

γi,sγj,t v(ri,s , rj,t )

= 1

N2

∑
[(i,s)(j,t)]AA

v(ri,s , rj,t ) + 1

2N2

∑
i,s

γi,sv(ri,s , ri,s ) (72)

where [(i, s)(j, t)]AA denotes all pairs of A segments. With these considerations the grid-
based non-bonded interactions take the form
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Hnb({ri,s})
kBT

= + 1

N2

∑
[(i,s)(j,t)]AA

(
κoN − χoN

2

)
v(ri,s , rj,t )

+ 1

N2

∑
[(i,s)(j,t)]BB

(
κoN − χoN

2

)
v(ri,s , rj,t )

+ 1

N2

∑
[(i,s)(j,t)]AB

(
κoN + χoN

2

)
v(ri,s , rj,t )

+ Hself({ri,s})
kBT

with (73)

Hself({ri,s})
kBT

= κoNV
√

N̄
2R3

eo

+ 1

2N2

∑
i,s

(
κoN − χoN

2

)
v(ri,s , ri,s ) (74)

If one employs the zeroth-order assignment, Π(0), the self-interactions will be immaterial
because v(ri,s , ri,s ) = N

ρoΔL3 is independent from the segment position ri,s . Thus the self-
energy is merely a constant energy off-set that does not alter the statistical weight of the
different configurations. This is no longer true for higher-order assignment functions. For
instance, for the first-order assignment function, (69), one obtains:

v(1)(ri,s , ri,s ) = N

ρoΔL3

∑
c

∏
α

π2(|rα − cα|) (75)

Thus the self-interaction takes the explicit form

H(1)self({ri,s})
kBT

= κoNV
√

N̄
2R3

eo

+ κo − χo
2

2ρoΔL3

∑
i,s

∑
c∈C(ri,s )

∏
α

(
1 − |rα − cα|

ΔL

)2

(76)

where the sum over grid points is extended over the eight corners of the cube C(ri,s), which
contains the position of the segment. If one does not compensate for these self-interactions,
the segment density will exhibit spurious oscillations within a cell of the collocation grid.
These effects have previously been observed [17]. If one subtracts the self-interactions ex-
plicitly from the non-bonded interactions, the density variation within a grid cell can be
significantly reduced as shown in Fig. 3. Correcting for the self-interactions, however, we
cannot expect to eliminate density variations within a grid cell completely because the pair-
wise interactions remain not translationally invariant.

Instead of assigning the microscopic densities to a collocation grid, one can represent the
δ-function in (4) as a limit of a weighting function, ω. This strategy has been introduced by
Zuckermann and co-workers [97, 133]. We define a weighted density according to

φ̂A,ω(r) =
∫

d3r′

ΔL3
ω(|r − r′|)φ̂A(r′) = 1

ρoΔL3

∑
i,s

γi,sω(|r − ri,s |) (77)

The function ω(|r|) is normalized as follows
∫

d3rω(|r|) = ΔL3 (78)

i.e., ΔL3 characterizes the volume, over which the original δ-function in (4) is smeared out.
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Fig. 3 Effect of self-interactions on the density profiles for a polymer melt with invariant degree of polymer-
ization N̄ = 1282, systems size L = 4Reo, and interaction parameters κoN = 50 and χoN = 0. The contour
of the molecules is discretized into N = 32 segments and the spatial discretization is ΔL = Reo/6. The fig-
ure presents one-dimensional profiles of the total segment density, φ(x), using the zeroth-order assignment
(0) (cf. (68)), the first-order assignment (1) (cf. (69)) with and without the self-interaction correction, (76),
respectively. There is no effect of self-interactions on the zeroth-order assignment. For the first-order assign-
ment without self-energy corrections, spurious density oscillations with a relative amplitude of 5 · 10−3 are
observed on the length scale below the grid spacing. Subtracting the self-interactions, we can reduce the
influence of the underlying grid and the density is smoother than for the zeroth-order assignment

In this case, quadratic terms in the excess free energy also correspond to density-
dependent pairwise potentials

√
N̄

∫
d3r
R3

eo

φ̂A(r)φ̂B(r)

≡
√

N̄
∫

d3r
R3

eo

(
1

ρoΔL3

∑
i,s

γi,sω(|r − ri,s |)
)(

1

ρoΔL3

∑
j,t

(1 − γj,t )ω(|r − rj,t |)
)

= N

ρoΔL3

1

N2

∑
(i,s)(j,t)

γi,s(1 − γj,t )

∫
d3r
ΔL3

ω(|r − ri,s |)ω(|r − rj,t |)

= 1

N2

∑
(i,s)(j,t)

γi,s(1 − γj,t )v(|ri,s − rj,t |) (79)

which are, however, translationally invariant and isotropic

v(|ri,s − rj,t |) = N

ρoΔL3

∫
d3r
ΔL3

ω(|r − ri,s |)ω(|r − rj,t |) (80)

The normalization of the weighting function determines the integrated strength of the pair-
wise interactions ∫

d3r
R3

eo

v(|r|) = 1√
N̄

(81)

where the N̄ -dependence guarantees that the limit of high density remains well defined.
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Zuckermann el al. [97, 133] used a Gaussian weighting function

ω(|r|) =
(

3

2π

)3/2(
ΔL

σ

)3

exp

(
− 3r2

2σ 2

)
(82)

and this expression also results in a Gaussian form of the pairwise interactions

√
N̄ v(|r|) =

(
3

4π

)3/2(
Reo

σ

)3

exp

(
− 3r2

4σ 2

)
(83)

Computationally it is more convenient to use a weighting function of finite support be-
cause it results in pairwise interactions with a finite range. A zeroth-order weighting function
is the characteristic function of a sphere with radius σ = (3/4π)1/3ΔL.

ω(|r|) =
{

1 for |r| ≤ σ = 3
√

3
4π

ΔL

0 otherwise
(84)

In this case, the pairwise potential stems from the lens-shaped overlap of the two spheres
around each segment,

√
N̄ v(|r|) =

{
3

8π
(Reo

σ
)3(2 + |r|

2σ
)(1 − |r|

2σ
)2 for |r| ≤ 2σ

0 otherwise
(85)

The choice of the weighting function is largely dictated by computational convenience.
In the case of large N̄ , however, an inappropriate choice of the weighting function may lead
to the formation of cluster crystals [134]. These are periodic lattices formed by particles
with a soft potential that allows the particles to overlap. The lattice spacing is independent
of density and, upon increasing the density, one observes that one unit cell of the lattice
is occupied by multiple particles. Within the mean-spherical-approximation (MSA), Likos
et al. [134] demonstrate that a homogeneous liquid will become unstable with respect to
the formation of these cluster crystal at high density, if the Fourier transform, V (q), of the
pair-potential becomes negative for some wave vectors. The wave vector of the minimum of
V (q) dictates the lattice spacing.

If we consider a one-component system of non-bonded segments, the energy of the
coarse-grained model can be written in the form

Hnb({ri,s}) = kBT
√

N̄
κoN

2

∫
d3r
R3

eo

φ̂2
A =

∑
[(i,s)(j,t)]AA

V (|ri,s − rj,t |) (86)

with V (r) = kBT κoN

N2
√

N̄

(
Reo

σ

)3

Φ

(
r

σ

)
= kBT κo

ρoσ 3
Φ

(
r

σ

)
(87)

where Φ(r/σ) ≡
√

N̄ (σ/Reo)
3v(r) characterizes the shape of the pairwise potential. The

stability condition within MSA requires [134]

0 < 1 + ρo

kBT
V (q) = 1 + κoΦ(qσ) (MSA) (88)

where V (q) and Φ(qσ) are the Fourier transforms of the pairwise interaction and the shape
function, respectively.
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Due to the translational invariance and isotropy of the pairwise potentials, the weighting-
function approach allows us to easily compute the pressure without resorting to special simu-
lation techniques for lattice systems. This ability is advantageous, e.g., in order to determine
the equilibrium periodicity of a self-assembled structure. It also allows for simulations at
constant pressure or in the Gibbs ensemble [18, 29]. Higher-order interactions, that arise
from higher powers of the density in the excess free-energy functional, can be efficiently
investigated by multi-particle dissipative particle dynamics [22, 135, 136]. Moreover, a con-
nection between the excess free-energy functional and weighted density functional theory of
liquids can be established [22], which allows us to tune the liquid-like packing of the fluid
of segments.

The major disadvantage of the weighting-function technique consists in the computa-
tional expense of calculating the pairwise interactions. In the grid-based approach, the en-
ergy of a segment with its surrounding can be computed from the knowledge of the grid-
based density. In case of the zeroth-order assignment the densities at the nearest grid point
are required; in case of the first-order assignment one needs the information about the eight
corners of the cube that contains the segment. In the case of a weighting function, however,
the energy involves the explicit computation of the pairwise interactions between the seg-
ment with its neighbors. This calculation can be efficiently performed via a cell list, where
the cell’s linear dimension is the range of the pairwise interaction, O(ΔL). All interactions
in the 27 cells around the one that contains the segment have to be considered. Each cell,
in turn, is comprised of ρoΔL3 segments. Altogether 27ρoΔL3 = 27N

√
N̄ (ΔL/Reo)

3 pair-
wise interactions have to be considered. For a typical choice of parameters (cf. Sect. 2.2),
N = 31, N̄ = 104, ΔL/Reo = 1/6 this amounts to 3 · 102 interaction pairs. Thus the grid-
based technique offers a significant computational advantage for dense polymer systems.

2.7 Other Soft Coarse-Grained Models

The minimal excess free-energy functional, (62) and (63), is quadratic in the densities and,
in conjunction with a weighting function, gives rise to a soft coarse-grained model with
isotropic and translationally invariant pairwise interactions. In typical simulations we use
N̄ = 16 384, which is characteristic for experimental polymer systems, N = 32, ΔL =
Reo/6, and κoN = 50. Using the weighting function (84) the repulsive energy of two per-

fectly overlapping segments is V (0) = 3
4π

kBT κoN

N2
√

N̄
R3

eo
σ 3 < 0.1kBT , i.e., the interaction between

the coarse-grained segments is very soft. Therefore, the fluid of coarse-grained segments
does not exhibit significant liquid-like packing and the bare parameters of the model, χo and
κo, are only weakly renormalized by short-ranged fluctuations or liquid-like packing effects.

Our off-lattice models shares many qualitative similarities to the coarse-grained model
introduced by Groot and Warren in 1997 [12–14], which has been employed to study in-
terfaces in homopolymer blends and the self-assembly of block copolymers. In this model,
segments of type α and β interact via a pairwise repulsion of the form

Vα,β(r) =
{

aα,βkBT

2 (1 − |r|
σ

)2 for |r| < σ

0 otherwise
(89)

where σ sets the length scale of pairwise interactions. 2aAB > aAA + aBB in order to de-
scribe the repulsion between A and B segments. This potential also fulfills the condition
(88). Groot and Warren typically used a segment number density of ρoσ

3 = 3, a repulsive
strength of the order aα,β = 25, and N = 10 segments per polymer. Reo ≈ 3σ yields an in-
variant degree of polymerization of N̄ ≈ 66 and the energy of two perfectly overlapping
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particles is V (0) = 12.5kBT . Both, the small value of N̄ as well as the rather large penalty
for particle overlap, place the Groot-Warren model between coarse-grained models with ex-
cluded volume, e.g., a Lennard-Jones bead-spring model [84], and the soft coarse-grained
model described above.

In 2009, Wittmer and co-workers have proposed a generalization of the bond fluctua-
tion model where the overlap of segments is subjected to a finite energy penalty [76]. The
authors carefully and systematically studied the influence of the soft segment-segment re-
pulsion on the compressibility, the structure factor of density fluctuations, and the crossover
from self-avoiding walk behavior to the melt behavior as the soft repulsive interactions be-
come screened at high densities. In this work the parameters ρo = 1/16 and N ≤ 8192 were
employed. The statistical segment length of the bond fluctuation model is b ≈ 3.1 resulting
in large values of N̄ = (ρob

3)2N ≤ 28 400.
The computational advantages of soft coarse-grained models have also been highlighted

by Wang in the same year [19]. In one work this author used basically the same model as
described in the previous section. In a second paper [20], he employed the Hamiltonian (62)
but, instead of describing the molecular conformations by an off-lattice bead-spring Hamil-
tonian (2), the author used random walks on a simple cubic lattice. The latter strategy speeds
up the calculation of the non-bonded interactions but a finer chain discretization, N , is re-
quired to mimic the Gaussian chain architecture. More recently, Wang has also extended this
class of models to study rod-coil block copolymer systems where orientational interactions
are important [137].

2.8 Limitations of Soft Coarse-Grained Models

The advantages of soft coarse-grained models for dense multi-component polymer systems
are chiefly based on the aggressive coarse-graining procedure—lumping a large number of
monomeric repeat units of a chemically realistic representation into an effective coarse-
grained segment—and the concomitant reduction of the number of degrees of freedom
and the softer interactions of the coarse-grained segments. These beneficial features, how-
ever, also impart limitations. In this subsection we briefly discuss two of such limitations—
missing spatial resolution at the narrow interface between a polymer melt [138, 139] and a
solid substrate and violation of the topological non-crossability constraint [140–147]—and
indicate strategies to overcome them.

2.8.1 Interference Between Chain Contour and Spatial Discretization and Narrow
Interfaces

Some caution will be required if the smallest discretization length scale, b = Reo/
√

N or
ΔL, becomes comparable to the smallest physical length scale [17, 25, 138, 139]. The nar-
row interfaces between a polymer melt and a solid substrate or the narrow liquid-vapor
interface are prototypical examples. The intrinsic width of these interfaces is of the order of
a few nanometers (or smaller) in an experimental system. In our soft coarse-grained model
the intrinsic width is set by the screening length of excluded volume interaction (cf. (64)).
Using typical values, Reo = 50 nm, κoN = 50, N = 31 and ΔL = Reo/6, one obtains ξ ≈ 2
nm, b = Reo/

√
N ≈ 9 nm, and ΔL = Reo/6 ≈ 8 nm. Both, b and ΔL, are larger than the

physical length scale, ξ . Thus the description of the narrow interface will be affected by
the discretization of the model. Choosing a finer discretization of the chain contour, N , and
a finer discretization of space, ΔL, one could, of course, overcome this limitation. This
strategy, however, would also sacrifice much of the advantages of the coarse-grained model.
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Alternatively, one can ask the question, which property of the narrow polymer-solid con-
tact is relevant for a description of the behavior on large time and length scales [139]. One
important characteristics of the narrow polymer-solid contact is the surface tension. This
quantity controls the stability of the polymer film with respect to de-wetting [67, 148] and, in
a multi-component system, the difference between the surface tension of coexisting A-rich
and B-rich domains controls the angle of AB interfaces with the substrate, which inter alia
influences the orientation of the self-assembled morphology with respect to the confining
boundaries [68]. We suggest that the surface tension represents a coarse-grained parameter,
i.e., it is the key characteristics of the surface that a coarse-grained model shall reproduce.
Even if the discretization of the coarse-grained model is insufficient to resolve the structure
of the narrow polymer-solid contact, one can adjust the surface tension by modifying the
interaction between the liquid of coarse-grained segments and the solid. For a model with a
local excess free-energy functional, Fnb, it has been shown within mean-field approximation
that it is even possible to choose the polymer-solid interaction to simultaneously adjust the
surface tension and the density profile to the values of a description based upon continuous
Gaussian threads, N → ∞ [139].

2.8.2 Crossability of Polymers

Another feature of soft coarse-grained models is the violation of the non-crossability of
polymers [140, 141]. In models with excluded volume interactions, e.g., the Lennard-Jones
bead-spring model [84], non-crossability of bonds is guaranteed by a combination of finite
length of a bond and hard core diameter of a segment. Thus the crossing of bonds is automat-
ically forbidden (or penalized by an energy that exceeds kBT by far). For linear polymers,
non-crossability does not affect the equilibrium properties but for ring polymers is alters
the scaling behavior of the chain extension with the molecular weight in a melt [150–153].
Non-crossability has, however, a rather dramatic influence on the single-chain dynamics. In
experiments [154, 155] as well as in simulations [156, 157], long macromolecules in a dense
melt reptate along their contour, and they can escape the tube that is formed around them
by the topological interactions with neighboring polymers only at the chain ends [87]. This
reptation motion leads to a self-diffusion coefficient that scales like D ∼ N−2 with chain
length.

The violation of the non-crossability constraint leads to Rouse-like dynamics [158] even
in a dense melt of long polymers with D ∼ N−1. The concomitant speed-up of the single
chain dynamics is beneficial for equilibrating the system in computer simulation [159]. It
is, however, a disadvantage for studying the kinetics of structure formation. In particular,
inhomogeneous systems exhibit a coupling between the single-chain dynamics and the self-
assembled morphology, because interfaces have a pronounced influence on the conformation
and, in turn, the motion of individual chains [160–163].

We note, additionally, that the intermolecular correlations, which manifest themselves
as the correlation hole in the intermolecular pair correlation function and corrections to
the Gaussian chain statistics [69–77], also impart forces on the center of mass of a polymer.
These forces result in corrections to the strictly linear time dependence of the center-of-mass
mean-square displacement, g3(t), predicted by the Rouse model [158]. A recent analysis by
Wittmer and co-workers yields the prediction [77, 78]

g3(t) = 6Dt

(
1 + c√

N̄

[
t

τdis

]−1/4)
(90)

where c is a numerical constant and τdis ≡ R2
eo/D stands for the single-chain relaxation time.



Studying Amphiphilic Self-assembly 993

If the single-chain motion were described by the Rouse model, the dynamics of diblock
copolymer molecules parallel and perpendicular to a planar interface of the lamellar mor-
phology would perfectly decouple [164]. The dynamics parallel to the interfaces would be
identical to the behavior in the disordered phase. In a dense melt of long polymers the
molecular motion, however, is not Rouse-like but chains in a dense melt reptate along their
contour. The tube-like constraint of lateral motion due to the presence of neighboring macro-
molecules slows down their motion in a disordered system, but it has even more pronounced
effects for diblock copolymers at an interface [163]. Typically, a diblock copolymer in a
lamellar phase extends its two blocks in the corresponding domains and the junction point is
localized at the AB interface. The slithering-snake like motion of a chain in the disordered
bulk will displace the junction point away from the interface and entails a large enthalpic
free-energy cost. Alternatively, one chain end has to retract to the AB interface to disentan-
gle from its original tube. This block retraction is hampered by a large entropic free-energy
cost. Therefore, the motion in the lamellar phase is dramatically slowed down compared to
the disordered phase and the molecular motions parallel and perpendicular to the interfaces
are strongly coupled.

There are several strategies to incorporate entanglement effects into soft coarse-grained
models. One approach consist in explicitly checking for bond crossing during the motion of
the coarse-grained segments. This technique has been championed by Briels and co-workers
[140, 141] and an efficient implementation has been devised by Ramanathan and Morse
[165]. For very dense systems, however, this technique becomes computationally expensive,
and one cannot vary the entanglement density independently from the other static properties.

An alternative approach that has been devised for polymer networks and melts by Pa-
nyukov and Rubinstein [166, 167], Schieber [142–145], and Likhtman [146, 147], respec-
tively. It consists in mimicking the effect of entanglements by “tethering” the molecular
contour to its tube by slip-links. The slip-links are harmonic springs—one end of the j th

slip-link is anchored at a fixed position, aj in space while the other end is located on a poly-
mer segment rij ,sj . The polymer can reptate through the slip-link and the end of the slip-link
hops from one segment to a neighboring one along the contour of a polymer. The partition
function of the system of coarse-grained segments and slip-links takes the form

Z =
∫

D[{ri,s}]D[{aj , ij , sj }]e− Hb+Hnb
kBT exp

(
− 3

2a2

nSL∑
j=1

[aj − rij ,sj ]2

)
(91)

where nSL denotes the number of slip-links and a2 is the mean-square extension of the slip-
link tether, which is proportional to the tube diameter. In our simulation the average distance
between slip-links is 4 coarse-grained segments, i.e., nSL = nN/4 [149]. If we decreased the
number of slip-links further or decreased a, the tube would become “tight” and the Rouse-
like motion inside the tube could not be observed. In this limit, the dynamics approaches the
slithering-snake dynamics. In the opposite limit, the chains would be only weakly entangled
and the dynamics would resemble the local unconstraint dynamics in the absence of slip-
links.

Since the integral over the degrees of freedom of the slip-links only yields a factor that
does not depend on the particle coordinates, {ri,s}, the equilibrium properties are not affected
by the presence of the slip-links. In order to sample the configuration space of the degrees
of freedom associated with the slip-links the following two types of Monte Carlo moves
can be introduced: (i) Slip-links may hop along the chain contour, i.e., sj → sj ± 1. This
move mimics the slithering of the molecular contour through the slip links. Since this Monte
Carlo move only alters sj it does not sample the whole configuration space of slip-links and
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Fig. 4 (Color online) (a) Comparison of the mean-square displacements in the simulations to the predictions
of Rouse-model (grey dashed lines) and tube model (blue solid lines). The mobility, W , and the entanglement
length, Ne are identified by matching the center-of-mass diffusion coefficient to the predictions of the Rouse
and the tube model, respectively. The symbols mark the simulation data at 1,2, . . . ,9 Monte Carlo steps
(MCS). Arrows on top mark the entanglement time, Wτe = πN2

e /108, the Rouse time, WτR = N2/(3π2),
and the disengagement time, Wτd = N3/(π2Ne) using the value Ne = 3.5 extracted from the self-diffu-
sion coefficients. The inset compares the mean-square displacements of our single-chain implementation of
constraint release and the model by Likhtman [146]. (b) Mean-square displacements of segments, g1(t),
and mean-square displacements of the center of mass, g3(t), as a function of time in the lamellar phase
(χoN = 80) for local, unconstraint dynamics (main panel) and slip-link dynamics (inset). Parallel and per-
pendicular displacements are shown as well as the results in the disordered phase. “Time” is measured in
units of the diffusion time, τdis, in the disordered morphology. The thick solid line in the main panel indicates
the diffusive motion of molecules hopping between lamellae. Reprinted with permission from Ref. [149],
Copyright 2008, American Institute of Physics

it does not allow the macromolecules to diffuse over long distances. (ii) In order to sample
the full configurational integral, slip-links have to be created and destroyed. Since a physical
entanglement between two chains corresponds to two slip-links, slip-links are grouped in
pairs and their creation/deletion is a pairwise operation. If a slip-link attempts to “hop-off”
a chain molecule at one end, i.e., sj = N → sj = N + 1 or sj = 1 → sj = 0, this slip-link
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and the its partner in the pair are deleted, and a new pair of slip-links is created according
to the Boltzmann weight of (91). This Monte Carlo move mimics the physical processes of
tube renewal at the chain ends and the concomitant constraint release by the deletion of the
pair partner.

In Fig. 4(a) and (b) we compare the dynamics with and without slip-links in the disor-
dered phase and a lamellar phase of a symmetric diblock copolymer [149]. We use Smart
Monte Carlo (SMC) moves [168] to update the positions of the coarse-grained segments. To
this end, we use the force, K, that acts on a segment to propose a trial displacement like in
an Euler scheme for Brownian dynamics.

Δr = K
Δt

ζo
+ ΔR (92)

where ζo denotes the segmental friction coefficient and ΔR is Gaussian distributed with zero
mean and variance 〈ΔR2〉 = 6kBT Δt

ζo
. The moves are then accepted or rejected according

to a Monte Carlo lottery, which guarantees that the Monte Carlo algorithm reproduces the
exact thermodynamic equilibrium distribution independent from the “time step”, Δt , of the
Euler scheme. If the time step, Δt , is chosen very small, almost every Monte Carlo move
will be accepted and the realization of the stochastic process will closely resemble Brow-
nian dynamics. Since every SMC-step leads only to a tiny displacement, the mean-square
displacement of a segment per CPU-time is very small. If, on the contrary, the “time step”
is chosen excessively large, the algorithm will propose large segmental displacements but
most of them will be rejected. In this case, the mean-square displacement will also be small
per unit of CPU-time because of the low acceptance rate of the SMC moves. For our soft
coarse-grained model, the optimal value is reached for τSMC = Δtopt = 0.17ζoR

2
eo/(NkBT ).

Under these conditions, the mean-square displacement per CPU-time is maximal, the ac-
ceptance rate of the SMC moves is about 60%–70%, and the segmental motion without
slip-links resembles the prediction of the Rouse model (cf. Fig. 4(a)) except for the first 10
SMC steps and subtle correlation-hole effects described by (90) [77, 78].

Panel (a) of Fig. 4 depicts the dynamics in the disordered phase. Without slip-links,
the mean-square displacement of segments, g1(t), and the mean-square displacement of
the center-of-mass, g3(t), approximately follow the predictions of the Rouse-model. For
the choice of parameters, correlation hole effects, which result in the anomalous diffusion
described by (90), are rather small: (i) The effect, g3(t) ∼ t3/4, is most important at early
times where our simulations exhibit deviations due to the discreteness of the SMC moves.
(ii) The amplitude of the corrections is small compared to other simulation studies because
the invariant degree of polymerization, N̄ is large. Including slip-links, we significantly slow
down the dynamics, and we can observe the different power-laws for g1 and g3, which have
been predicted by the tube model [87, 169]. With a moderate computational effort, we can
follow the time evolution of the system for 107 SMC steps. In order to relate the SMC-steps
to an experimental time, we can map the longest relaxation time of the single-chain motion,
τdis = R2

eo/D = 141 000τSMC for N = 128 without slip-links, where D denotes the self-
diffusion coefficient. Using Reo = 50 nm and a typical experimental value of D = 10 nm2/s,
one SMC-step corresponds to 1.8 ms, and we can reach time scales on the order of hours
simulating for up to 107τSMC. Therefore, the typical experimental time scales pertinent to
the self-assembly and ordering kinetics of block copolymers can be addressed by our soft
coarse-grained model.

Panel (b) of Fig. 4 shows the mean-square displacements in the lamellar phase at
χoN = 20. Without slip-links (cf. main panel), the single-chain motions parallel and per-
pendicular to the lamellae decouple. The motion parallel to the lamellae is unaltered by the
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presence of the interfaces. At very early times, also the motion in the perpendicular direction
follows the bulk behavior, but the molecules quickly realize that they are confined into the
lamellae. This confinement gives rise to a plateau in the mean-square displacements, g1,⊥
and g3,⊥, at intermediate times. On long time scales, the molecules can hop from one lamella
to a neighboring one, and diffusive behavior perpendicular to the lamellae is restored. Since
this hopping process involves the tunneling of an A block through a B-rich domain or vice
versa, it is associated with a large free-energy barrier, and we can only observe the onset of
diffusion in the perpendicular direction.

When we use slip-links (cf. inset of Fig. 4(b)), the motion is dramatically slowed-down
both in parallel and in perpendicular direction, and the motion in the two directions is
coupled. Thus the slip-link model is an efficient strategy to mimic the effect of topolog-
ical constraints on the single-chain motion [149]. It also captures the effect of entangle-
ments on the stress relaxation. In the soft coarse-grained model the largest contribution
to the stress arises from the strong bonded forces; the contribution of the non-bonded in-
teraction is rather small. Therefore the soft coarse-grained model captures one important
characteristics of polymer materials with a large invariant degree of polymerization. From
the autocorrelation function of the intramolecular stress, which can be computed via the
virial of the bonded forces, we can obtain viscoelastic properties of the polymer liquid.
The simulation data of the stress autocorrelation for the model without slip-links nicely
agree with the prediction of the Rouse-model. In the case of slip-links, one can clearly ob-
serve a plateau in an intermediate time regime, which characterizes the elastic properties of
the entangled macromolecular fluid in this time window [146, 149]. In the simulations, we
used Nsl = nSL/n = 32 slip-links per chain, and we observe a plateau value of the stress
G∗ = 0.14(5)Go with Go/N = kBT

√
N̄ /R3

eo. For long flexible polymers, there exists a cor-
relation between the experimentally observed plateau modulus and the packing length [154,
155, 157], G∗/Go = 0.00226N̄ /N , which leads to a purely dynamic relation between the
invariant degree of polymerization and the chain discretization or number of slip-links per
chain. For our model we obtain N̄ ≈ 62N for NSL/N = 1/4.

In Fig. 5 we illustrate the interplay between the single-chain dynamics and the order-
ing kinetics by investigating the directed assembly of a symmetric block copolymer on a
patterned substrate. These simulations are motivated by experiments that have studied the
ordering of nearly symmetric PS-PMMA diblock copolymers on a stripe pattern with a pe-
riodicity of Lo = 48 nm [92]. Defect-free order and registration with the substrate pattern
is established in 6 hours [92]. At 3 hours, however, one observes a pattern of spots on the
top surface of the film that align with the stripe pattern of the substrate. Earlier simulations
have revealed that the morphology at intermediate times signals the breaking up of the ini-
tial ordering, during which the stripe morphology is rapidly established at the chemically
patterned bottom surface and the negative pattern is created at the non-preferential top sur-
face (checkerboard morphology), i.e., the stripe pattern at the top surface is displaced by
half a period with respect to the bottom morphology. This intermediate structure at the top
of the film is eliminated not by lateral motion of defects but, rather, by “pushing out” the
misaligned domains at the top surface. The breaking-up of the misaligned stripes at the top
surface gives rise to the lines of spots in the experiment [92].

The different columns of Fig. 5 illustrate the morphologies at different stages in the
course of the ordering process. The left column corresponds to local unconstraint dynamics
that is described by the Rouse model. The middle column depicts morphologies obtained
with the slip-link model, and the right column shows the result of simulations that use
slithering-snake moves to update the molecular conformations. The latter scheme mimics
a very tightly entangled system. Each row shows the morphology at the same time when
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Fig. 5 Structure formation of a symmetric diblock copolymer (χoN = 80) on a stripe-patterned surface. The
three columns correspond to local SMC-moves (a, left), slip-link simulations (b, middle), and the slither-
ing-snake algorithm. N = 128 and N̄ = 1282. The three images depict morphologies at tord/3, 2tord/3 and
the time, tord, at which defect-free ordering is observed. The ordering time, t , is given in units of the bulk
relaxation time, τdis, in the disordered phase and the number of attempted displacements per segment

measured in units of the time, tord, that it takes to establish the final defect-free ordering.
Statistically, the morphologies in each row are similar: The first row depicts an early stage,
where the order and registration has been established at the patterned substrate but the do-
mains on the top are unaligned. The middle row illustrates the stage, where the misaligned
top structure is breaking up. Some parts of the registered lamellae propagate to the top
surface but there still remain some defects at the top. The last row shows the first instance,
where the topology of defect-free and registered domains has been established, and this stage
defines tord. The independence of the sequence of morphologies suggests that the qualitative
structure formation is dictated by the underlying free-energy functional, F [φA,φB ], which
describes the cost of a specific density distribution.

If one compares the time that is required to achieve ordering, tord, to the bulk relaxation
time, τdis, in the disordered phase, however, the different single-chain dynamics will yield
greatly different ordering times. The local unconstraint dynamics, which mimics the Rouse-
like dynamics of short unentangled polymers, is the fastest; the ordering takes 0.85τdis, i.e.,
the molecules have merely diffused their spatial extension. The slowing down of the single-
chain motion by the combination of interfaces and slip-links increases the ordering time by
30%. Mimicking a tightly entangled copolymer melt via the slithering-snake algorithm [170,
171], we observe an increase of the ordering time by a factor of almost 9. Thus, while the
sequence of morphologies remains unaltered by the single-chain dynamics in this example,
the time scale of ordering is strongly affected.

These examples illustrate that slip-links are able to mimic different aspects of entangle-
ments in polymer fluids without explicitly checking for the topological constraints. They
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introduce the effect of entanglements “by hand”. By the number of slip-links one can adjust
the degree of entanglement. The concept of a packing length yields a simple and purely dy-
namic relation between the invariant degree of polymerization and the chain lengths. Using
this correlation, which has been verified by experiments [154, 155] and simulations [157],
one can choose the number of slip-links or chain discretization in order to achieve an exper-
imentally relevant degree of entanglement.

While this strategy has be successfully applied to the disordered bulk morphology, the
application of the slip-link model to spatially inhomogeneous systems remains a challenge.
First, the use of fixed anchor points breaks the translational invariance. Second, choosing a
fixed number of slip-links per chain, one does not account for the correlation between the
chain conformations and the degree of entanglements [172], e.g., there are indications that
the effect of entanglement is reduced in thin films [173] or in strongly stretched polymer
brushes [174]. Such correlations have been explored by analyzing static properties of in-
homogeneous melts in thin films or brushes via a primitive path analysis [157, 175–180].
Conceptually, one could apply these primitive path analysis techniques to configurations of
the soft coarse-grained model in order to investigate the coupling between molecular con-
formations and entanglements.

3 Free-Energy Calculations

For controlling the self-assembled structures and improve the material characteristics for
applications in nanoscale device manufacturing, one would like to understand the proper-
ties of defects and the structure and thermodynamics of grain boundaries [181–186], where
domains with different orientations of the periodic structure meet, or interfaces between
coexisting morphologies.

Qualitatively similar questions have attracted abiding interest in crystalline solids and a
wide spectrum of computer simulation techniques have successfully been devised to predict
the structure and thermodynamics of hard condensed matter. In the following we illustrate
some similarities and differences between computational studies of hard crystals and soft
self-assembled structures and discuss to what extent simulation strategies for hard crystals
can fruitfully be applied to soft self-assembled systems, which are illustrated by the proto-
typical example of diblock copolymer materials.

3.1 Crystallization of Hard Matter Versus Self-assembly of Soft Matter

The phenomenology of crystallization of hard condensed matter, e.g., the transition from a
liquid to a crystal in a hard-sphere system [187], and the self-assembly of block copolymers
share many common characteristics [26]. First, the order-parameter of the transition is the
amplitude of the Fourier modes of the density or the composition, respectively. The dom-
inant wave vectors characterize the periodic morphology. Moreover, the crystal adopts its
ideal ordered state at zero temperatures, where the particles are localized at the ideal lattice
positions. Upon increasing the temperature, one observes that the particles fluctuate around
these ideal position and the behavior can be described by the model of the Einstein crystal.
The ideal ordered state of the diblock copolymer material corresponds to the solution of
the self-consistent field theory. In this mean-field theory, fluctuations of the composition are
ignored, i.e., there are no fluctuations of the local composition inside the A-rich and B-rich
domains, and there are no fluctuations of the positions of the internal AB interfaces, i.e.,
capillary waves.
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One major difference between a hard-matter crystal and a self-assembled soft mate-
rial is that in the self-assembled material the constituent particles are not localized around
ideal crystal positions but that they can diffuse inside the domains of the structured liquid
(cf. Fig. 4(b)). Thus the ideal ordered state of the self-assembled material is not a suitable
reference state, whose free energy can be easily computed.

The ideal disordered state of a hard-matter crystal is the ideal gas, where the particles do
not interact. The analog of this ideal disordered state of a block copolymer melt is the corre-
sponding homopolymer melt, where the two blocks are indistinguishable and, hence, there
is no driving force for structure formation. Like in the case of the ideal ordered state, the free
energy of an ideal disordered crystal, i.e. an ideal gas, is readily available, but the calculation
of the free energy of the ideal disordered block copolymer melt, i.e., a homopolymer melt,
is a formidable task.

3.2 The Fluid Analog of the Einstein Model

Wilding and Bruce [188] devised a strategy to overcome this difficulty. The idea consists in
“tethering” particles of the fluid to an arbitrary but fixed reference configuration of the liq-
uid, {Ri,s}, where the index runs over all nN particles. In the liquid self-assembled material
the particles diffuse far from the reference position, with which they are initially associ-
ated and the concomitant original “tether” would be pulled long. This effect can be avoided
by an “association swap”, where the particle initially tethered to reference position i, s is
subsequently associated with reference position j, t and vice versa. This association-swap
Monte Carlo move permits the particles to sample all positions and the tethers to respond ac-
cordingly. Wilding and Bruce employed this technique to study the freezing of hard spheres
[188]. Schilling and Schmid [189] used this idea to compute the absolute free energy of
the liquid. To this end, they defined the system of non-interacting particles, which are as-
sociated with an arbitrary but fixed configuration of the liquid as reference system. This
reference system is the analog of the Einstein model of hard crystals except that (i) the ideal
positions are now given by a representative fixed liquid configuration (instead of the ideal
crystal sites) and that (ii) the association of a particle with a reference position can be altered
by association swaps. The Hamiltonian of this reference system is

HEC({ri,s}) = εkBT
∑
i,s

Φo(ri,s − Ri,s) (93)

where εkBT Φo(r) denotes the tether potential. The free energy of this system of non-
interacting particles is readily obtained

FEC = kBT nN

[
ln

(
nNΛ3

T

V

)
− 1 − ln

(
1

V

∫
d3re−λΦo(r)

)]
(94)

One can relate this reference system to the original system via thermodynamic integration
using the intermediate Hamiltonian

Hλ({ri,s}) = λH({ri,s}) + (1 − λ)HEC({ri,s}) (95)

λ = 0 corresponds to the reference system with known free energy, and λ = 1 corresponds
to the original system. Thus the free energy of the original system is given by

F = FEC +
∫ 1

0
dλ

〈
H({ri,s}) − HEC({ri,s})

〉
λ

(96)

where the average 〈· · ·〉λ is performed using the intermediate Hamiltonian, Hλ.



1000 M. Müller

3.3 The Field-Theoretic Einstein Crystal

An alternative way to estimate the free energy of a self-assembled system consists in first
converting the particle-based description into a field-theoretic continuum one, where not
the coordinates, {ri,s}, of the coarse-grained segments but the composition fields, φA(r) and
φB(r), are considered to be the fundamental degrees of freedom (see (7) and (8)). For simple
model systems—like the standard model of an incompressible melt of Gaussian diblock
copolymers with zero-ranged pairwise interactions [122]—one can analytically achieve such
a reformulation of the particle-based partition function into a field-theoretic description by
a Hubbard-Stratanovich transformation [96, 190, 191].

Since this mapping guarantees that the partition function of the particle-based and
the field-theoretic description are identical, one can compute the free energy of the self-
assembled morphology in the field-theoretic framework. Lennon, Katsov and Fredrickson
[34] realized that the local density, φA(r), in a field-theoretic description fluctuates around
the solution of the mean-field theory, φ∗

A(r), like a particle in a hard-matter crystal fluctuates
around its ideal lattice position. In order to exploit this analogy, they discretize space into
cells of finite volume, ΔL3 (cf. Sect. 2.6). The field-theoretic analog of the Einstein crystal
is the reference system described by

FEC[φA,φB ]
kBT

√
N̄

= εN

2

ΔL3

R3
eo

∑
c

([φA(c) − φ∗
A(c)]2 + [φB(c) − φ∗

B(c)]2
)

(97)

The strengths of the fluctuations around the mean-field solution is controlled by the param-
eter, εN , which can be chosen such that the density fluctuations in the reference system
match those of the original system.2 The free energy of the reference system is given by3

FEC ≡ −kBT ln
∫

D[φA,φB ]e− FEC[φA,φB ]
kBT (98)

= −2kBT
V

ΔL3
ln

∫
dϕ exp

(
−εN

2

ΔL3

R3
eo

√
N̄ ϕ2

)
(99)

= kBT
V

ΔL3
ln

εNΔL3
√

N̄
2πR3

eo

(100)

Using a parameter, λ, one relates the original system to the reference system. To this end,
one studies a system with an intermediate free-energy functional

Fλ[φA,φB ] = λF [φA,φB ] + (1 − λ)FEC[φA,φB ] (101)

and obtains the free energy via thermodynamic integration

F = FEC +
∫ 1

0
dλ

〈
F [φA,φB ] − FEC[φA,φB ]〉

λ
(102)

2The derivation allows to choose a different value of εN in each grid cell, c.
3The free energy becomes singular in the limit ΔL → 0. This UV-divergence prevents the calculation of
absolute free energies [192], but free-energy differences between different morphologies with the same spatial
resolution, ΔL, are well defined.
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Lennon, Katsov and Fredrickson [34] used this technique to explore fluctuation effects
on the order-disorder transition of diblock copolymer melts described by the Edwards-
Hamiltonian of Gaussian chains with zero-ranged interactions. For this specific model,
a free-energy functional G[wA,wB ] in terms of the fields, wA(r) and wB(r), that are con-
jugated to the densities, φA(r) and φB(r), has been analytically derived by a Hubbard-
Stratanovich transformation [193, 194]. Unfortunately, G is complex-valued and the con-
comitant statistical weight, exp(−G/kBT ), is not positive definite. Thus special simulation
techniques—complex Langevin simulations—have to be employed to sample the field con-
figurations and cope with the sign-problem due to the non-positive statistical weights [195].

In Sect. 2.4 we have outlined a computational strategy of deriving a free-energy func-
tional, F [φA,φB ], from an arbitrary particle-based description by computer simulation (e.g.,
the interactions may also include hard excluded volume interactions like the Lennard-Jones
potential). The technique of the field-theoretic Einstein crystal can be applied to the so-
derived real free-energy functional in order to map out the phase diagram or the free energy
of defects.

3.4 Reversible Transformation of Self-assembled Morphologies

The free-energy differences that dictate the relative stability of two competing morphologies
typically are much smaller than the absolute free energies of the morphologies. In order to
estimate phase boundaries one needs an accuracy of 10−2kBT per macromolecule. The main
contribution to this free energy stems from the liquid structure of the coarse-grained polymer
melt, i.e., even in a soft coarse-grained model it is on the order of kBT per segment. Hence,
given that N ∼ O(102), we need to know the absolute free energy with a relative accuracy of
the order 10−4. This is a formidable challenge. In order to omit the large contribution of the
fluid structure, it is advantageous that we directly compare the free energy of two competing
morphologies rather than relating the free energy of a self-assembled morphology to that of
a reference state and computing the free-energy difference by the subtraction of two large
numbers.

In the parameter space of physical variables, e.g., χoN or temperature, the transition
between different morphologies is of first order. Even the order-disorder transition in a sym-
metric diblock copolymer, which the mean-field theory predicts to be of second-order [100],
is a fluctuation-induced transition of first order [64]. Thus, in the parameter space of physi-
cal variables, one cannot construct a reversible path that relates different morphologies of a
self-assembled system. Likewise there is no simple physical order-parameter (like the global
composition in a binary mixture undergoing macroscopic phase separation [196]) that pa-
rameterizes a reversible path of phase transformation from one state to another coexisting
state in a finite system.4

For hard-matter crystals, Sheu, Lou, and Lovett devised a method how a solid can be
turned into a gas without passing through a first-order phase transformation [198]. This
reversible thermodynamic path between the solid and a liquid state has been rediscovered
and successfully applied to various hard-matter systems by Grochola and coworkers [199].
This strategy can also be transferred to soft self-assembled systems [26, 28, 30].

The reversible transformation of one self-assembled morphology into another one is
based on the application of a specifically designed, spatially inhomogeneous, external field.
To illustrate the method (see Fig. 6), let us consider the free-energy difference between an

4Progress towards this goal has recently been achieved in the framework of self-consistent field theory [197].
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Fig. 6 Sketch of the reversible path that connects the homogeneous disordered state, the externally ordered
and the self-assembled state. Configurational snapshots of a symmetric AB diblock melt illustrate the differ-
ent states. In the snapshots three-dimensional contour plots of the composition are shown. The B-rich com-
ponent is removed for clarity, and the interface between the different components is colored blue. χoN = 0,
χ∗N = 20, and the maximal strength of the ordering field is λ∗N = 10. The SCMF simulations correspond to
N̄ = 14 884 and use a chain discretization, N = 32. The linear extension of the simulation cell is L = 4.77Reo
and the spacing of the lamellar structure is Lo = L/(2

√
2) = 1.686Reo. Reprinted with permission from

Ref. [26], Copyright 2008, American Institute of Physics

ideal disordered phase, i.e. a homopolymer melt with χoN = 0, and a self-assembled mor-
phology at χoN = χ∗N . As we change the incompatibility, χoN , between A and B segments
there is a first-order transition from the disordered morphology to a spatially modulated mor-
phology, e.g., a lamellar structure for a symmetric diblock copolymer. Thus, increasing χoN

from 0 to χ∗N , we do not reversibly transform a disordered into a spatially modulated mor-
phology. In the extended parameter space of incompatibility, χoN , and strength, λN , of an
external field, however, such a reversible path can be constructed as follows:

First, we use the external ordering field to structure the homopolymer melt with χoN = 0
into the spatially modulated morphology. To this end, we add to the bonded and non-bonded
Hamiltonian of the soft coarse-grained model an external ordering field

Hext({ri,s}) = Fext[φ̂A(r|{ri,s}), φ̂B(r|{ri,s})] with (103)

Fext[φA,φB ]
kBT

√
N̄

= −λN

∫
d3r
R3

eo

h(r)[φA(r) − φB(r)] (104)

λN quantifies the strength of the external field, and h(r) characterizes its spatial modulation.
Positive values, h > 0, correspond to regions that attract A segments while negative values
characterize spatial domains, in which B segments are enriched. The external field should
be chosen such that the structure at χoN = 0 and λN = λ∗N closely resembles the structure
of the spatially modulated phase of interest at χoN = χ∗N in the absence of the external
ordering field, λN = 0.

The system at χoN = 0 and λN = λ∗N , i.e., the end of the first branch of the transfor-
mation path, mimics the system considered in the self-consistent field theory, where the AB

interaction of a macromolecule with its neighbors is approximated by a static, external field.
Thus we can use the mean-field theory to obtain a first approximation for the external field
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that generates the spatially modulated structure in the system without AB repulsion

2λ∗Nh(r) ≈ − R3
eo

kBT
√

N̄

(
δFnb

δφA(r)
− δFnb

δφB(r)

)
(105)

= χ∗N
〈
φ̂A(r|{ri,s}) − φ̂B(r|{ri,s})

〉
χoN=χ∗N,λN=0

(106)

where we have used the specific form of the non-bonded interactions, (63). For polymer
systems with a large value of N̄ , the mean-field approximations is rather accurate, and this
estimate can readily be used in the simulations. For lipid systems, however, fluctuations
of the density and liquid-like packing effects are more important and give rise to devia-
tions from the mean-field predictions [30]. In this case, the mean-field estimate provides
an initial guess, but to determine the external ordering field that accurately reproduces the
self-assembled morphology one iteratively adjusts λ∗Nh(r).

Since the structuring of the polymer liquid occurs in response to an external field, λN =
0 → λ∗N , the structure formation is not a collective phenomena—each molecule arranges
into the modulated structure due to the external field rather than in response to the non-
bonded interaction with its neighbors.5 Thus the assembly by the external field is reversible,
and one can obtain the free-energy difference along this first branch of the transformation
path by thermodynamic integration.

ΔF1

kBT
√

N̄
= −

∫ λ∗N

0
dλN

∫
d3r
R3

eo

h(r)
〈
φ̂A(r|{ri,s}) − φ̂B(r|{ri,s})

〉
λN

(107)

Along the second branch, the external ordering field is switched off and the repulsion
between A and B segments is increased in turn. Thus the effect of the external ordering
field is replaced by the driving force for self-assembly. Optimally, this is done in such a way
that the structure of the system does not change. This requires that the structure at the ends
of the second branch—the system assembled by the external field, χoN = 0, λN = λ∗N ,
and the self-assembled system in the absence of the field, χoN = χ∗N,λN = 0—are very
similar. This requirement is fulfilled by (106) for dense polymer systems. In fact, one can use
mean-field theory to estimate how the optimal path, χoN(λN), in the plane of AB repulsion
and external field strength should be chosen. The condition that the structure of the system
within mean-field approximation does not change, is equivalent to the molecular field of the
self-consistent field theory be independent from λN , i.e.,

χoN
〈
φ̂A(r|{ri,s}) − φ̂B(r|{ri,s})

〉
λN

+ 2λNh(r) = const (108)

In conjunction with (106), the mean-field theory suggests to use h(r) = 〈φ̂A(r|{ri,s}) −
φ̂B(r|{ri,s})

〉
, where the average is performed in the self-assembled system, and the simple

linear path, χoN(λN) = χ∗N − 2λN with 0 ≤ λN ≤ χ∗N/2 as depicted in Fig. 6.
Since the structure does not abruptly change along the second branch, this transformation

from a modulated structure assembled by the external ordering field to the self-assembled
structure formed by the amphiphilicity of the constituents is reversible. The concomitant

5In contrast to the fluid analog of the Einstein crystal in Sect. 3.2, the external ordering field localizes A

segments in spatial domains, which are defined by h(r), rather than tethering them to specific reference
positions in space.
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free-energy change can also be obtained by thermodynamic integration. Thus, in the ex-
tended parameter space of incompatibility of the amphiphilic units and strength of the ex-
ternal ordering field, the two branches form a reversible path that connects the disordered
morphology to a spatially modulated one.

The same strategy can also be employed to reversibly transform one spatially modulated
structure into another [28, 30]. To this end, one employs two external ordering fields, h1

and h2, that correspond to the two self-assembled morphology. First, starting with morphol-
ogy (1), one replaces the AB repulsion by the external ordering field, h1, and reversibly
transforms the self-assembled morphology (1) into a very similar structure that is assembled
by the external ordering field, h1. Second, one gradually switches the external ordering field
from h1 to h2. This transformation of the structure is reversible because the structural change
occurs in response to the external ordering field and does not involve collective behavior.
After completion of this reversible second branch, the system has adopted the structure (2).
Third, the external ordering field that assembles structure (2) is reduced and the amphiphilic
repulsion is switched on. Thereby we reversibly transform the externally assembled system
into a self-assembled system.

Instead of thermodynamic integration, one can perform the free-energy calculation by
a combination of expanded-ensemble and replica-exchange simulation techniques [28]. To
this end, one discretizes the integration path into a set of intervals, {Ip} with p = 1, . . . ,M

and chooses sampling points λp,qN with q = 1, . . . ,mp in each interval. The end points of
the transformation path, where the external ordering field vanishes, are included in the set of
sampling points, i.e. λ1,1N = λM,mM

, and neighboring intervals share a common boundary,
i.e., λp,mpN = λp+1,1N .

Each interval is associated with one replica of the system, and there are replica-exchange
Monte Carlo moves that swap configurations between neighboring replicas [200–202].
Within each interval, λp,qN is a stochastic variable, and we perform expanded-ensemble
Monte Carlo moves [203] that alter the value of λp,qN . The different values of λp,qN are
weighted by a pre-weighting factor, wp,q . These pre-weighting factors are chosen as to en-
sure that each sampling point within an interval is visited with roughly equal probability. The
acceptance criterion of the expanded-ensemble Monte Carlo moves from sampling point q

to q ′ in interval p only involves the difference, wp,q − wp,q ′ . Thus we can choose w1,1 = 0
and match the pre-weighting factors at the interval boundaries, wp,mp = wp+1,1. The parti-
tion function of the simulation is given by [130]

ZMC ∼
M∏

p=1

mp∑
q=1

e
wp,q
kBT

∫
D[{r(p)

i,s }] exp

(
− Hb + Hnb(χoN(λp,qN)) + Hext(λp,qN)

kBT

)
(109)

where the arguments of Hnb and Hext indicate the interaction strengths of the amphiphilic
repulsion and the external ordering field, respectively. This hierarchical simulation technique
is very well suited for massive parallel computer systems.

The probability, Pp,q , of finding a replica at sampling point p,q is proportional to

Pp,q ∝ e
wp,q
kBT e

− F(χoN(λp,qN),λp,qN)

kBT (110)

where F(χoN(λp,qN),λp,qN) denotes the free energy of the system with incompatibil-
ity χoN(λp,qN) subjected to an external ordering field of strength λp,qN . Thus, in or-
der to visit all sampling points with roughly equal probability, one should choose wp,q ≈
F(χoN(λp,qN),λp,qN).
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Fig. 7 Changes of the free
energy along the two branches of
the transformation path (thick
lines). The system parameters are
identical to Fig. 6. The
approximate expressions based
on the
Random-Phase-Approximation
(RPA) and the
Strong-Segregation Limit (SSL)
are also shown. Reprinted with
permission from Ref. [26],
Copyright 2008, American
Institute of Physics

Since the free energy, F , is extensive, it varies over many kBT along the transformation
path (e.g., ΔF ∼ O(104kBT ) in Fig. 7) and systematic and automated methods to iteratively
obtain wp,q are required. The replica-exchange guarantees that there is one system in each
interval. Thus one can sample the integrand of (107), or its generalization for the case that
χoN is also varied along the path, and use thermodynamic integration to obtain wp,q . Alter-
natively, one can use Wang-Landau techniques [204] or successive umbrella sampling [205]
to estimate the pre-weighting factors. Additional information about the free energy of the
disordered phase structured by an external field can be obtained from the RPA (at the begin-
ning of the first branch) or the approximation of strong segregation (at the beginning of the
second branch) as illustrated in Fig. 7.

Once the pre-weighting factors have been adjusted, the free-energy difference between
the end-points of the transformation path is given by:

ΔF ≡ F(χoN(λM,mM
N),λM,mM

) − F(χoN(λ1,1N),λ1,1) (111)

= wM,mM
− w1,1 − kBT ln

PM,mM

P1,1
(112)

The use of the expanded-ensemble simulations has two advantages: (i) From the obser-
vation that the system samples all values {λp,qN} along the reversible path with roughly
equal probability (see Fig. 8) we conclude that the accuracy of the pre-weighting factors and
therefore also the accuracy of the estimate of the free-energy difference, ΔF , is on the order
kBT . Since the total free-energy difference ΔF is on the order 104kBT we achieve a relative
accuracy of 10−4, which is sufficient for estimating the free energy of a bulk morphology
and the free energy of grain boundaries or defects of self-assembled morphologies in thin
films [28]. (ii) From the observation that the system freely diffuses along the transformation
path and that the time evolution of λp,qN does not exhibit a banded structure, we conclude
that there are no barriers along the path and that the gradual replacement of the external
ordering field by the amphiphilic repulsion indeed is reversible.

3.5 Measuring the Chemical Potential in the nPT -Ensemble

The previous methods have adopted simulation techniques from hard-matter systems. One
strategy that exploits the softness of the segmental interactions consists in measuring the
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Fig. 8 Evolution of the ordering field, λN , in the course of the expanded-ensemble simulation along both
branches. The system parameters are identical to Fig. 6. Smart Monte Carlo moves are used to update the
molecular conformations. The local segment motion gives rise to Rouse-like dynamics. “Time” is measured
in units of the bulk relaxation time of the macromolecules in the disordered state. The inset presents the
probability, P(λN), with which the different states, (λN,χo(λN)), of the expanded ensemble are visited. No
replica-exchange Monte Carlo moves are performed for this simulation run, and the figure presents the data
for a single configuration. Reprinted with permission from Ref. [26], Copyright 2008, American Institute of
Physics

chemical potential, μ, of the amphiphilic molecules at constant pressure. Basic thermody-
namics states that the Gibbs free energy, G, takes the form

G(n,P,T ) =
∑

α

μαnα (113)

where the index, α, runs over all molecular species. The measurement of the chemical po-
tential in a crystalline solid via Widom particle insertion [206] is impossible, but the soft
interactions significantly facilitate the insertion of entire molecules, and thereby the accu-
rate measurement of the thermodynamic potential. This strategy has been exploited by Es-
cobedo and co-workers [32, 33, 207]. For a one-component system, the Gibbs free energy,
G, is related to the partition function in the isothermal-isobaric ensemble

e
− G(n,P,T )

kBT = P

kBT

∫
dV e

− PV
kBT

V n

n!Λ3nN
T

n∏
i=1

∫
D̃i[{ri,s}]e− H({ri,s })

kBT (114)

where the coordinates of the first segment of a molecule is scaled with the system size, i.e.,
r̃i,1 = ri,1/

3
√

V and Δri,s ≡ ri,s − ri,1 denote the internal coordinates with respect to the first
segment of a molecule. D̃i[{ri,s}] ≡ d3r̃i,1

∏n

s=2 d3Δri,s is the integral over the scale position
and all internal coordinates of the i th molecule.

The chemical potential, μ, in the nPT -ensemble can be obtained by sampling the energy,
ΔE, of virtually adding one molecule, i = n+1, to a system comprised of n molecules [206,
208]

e
− μ

kBT ≡ exp(−G(n+1,P ,T )

kBT
)

exp(−G(n,P,T )

kBT
)

(115)
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=
〈

V

(n + 1)Λ3N
T

∫
D̃n+1[{rn+1,s}] exp

(
− ΔE

kBT

)〉
n,P,T

(116)

Defining the single-chain partition function of a non-interacting molecule, n+ 1, and the
average of non-interacting single-chain conformations according to

Q(T ) ≡ 1

Λ
3(N−1)
T

∫
D̃n+1[{rn+1,s}] exp

(
− Hb,n+1

kBT

)
(117)

[· · ·]n+1 ≡ 1

Q(T )Λ
3(N−1)
T

∫
D̃n+1[{rn+1,s}] exp

(
− Hb,n+1

kBT

)
· · · (118)

we can split the chemical potential into an ideal contribution, μid, and an excess part, μex.

μ ≡ μid + μex with (119)

μid(P,T )

kBT
= − ln

Q(T )kBT

PΛ3
T

= ln
nΛ3

T

Vid Q(T )
with PVid = nkBT (120)

μex

kBT
= − ln

[〈
PV

(n + 1)kBT
exp

(
−ΔE − Hb,n+1

kBT

)〉
n,P,T

]
n+1

(121)

The argument of the exponential, ΔEnb = ΔE − Hb,n+1, only comprises the change of the
non-bonded interactions upon insertion of the (n + 1)th molecule. Since these interactions
are very soft, the fluctuations of ΔEnb are much smaller than in models with harsh excluded
volume interactions and there are significantly less sampling problems. Moreover, the in-
sertion can be combined with configurational-bias Monte Carlo techniques [209–211] or
histogram analysis methods [212] in order to generate more suitable configurations of the
(n + 1)th ghost particle or to assess the quality of the insertion statistics, respectively. Since
the ideal part of the chemical potential, μid(P,T ), is the same in coexisting phases, one can
map out the phase diagram by comparing the excess chemicals of competing structures.

Figure 9 illustrates this strategy for the fluctuation-induced first-order transition from a
disordered to an ordered state of a symmetric diblock copolymer [29]. The different lines
present the excess chemical potential in the isothermal-isobaric ensemble in the disordered
state (low χoN ) and the ordered lamellar morphology (high χoN ), respectively. The figure
depicts data sets for different values of the invariant degree of polymerization, N̄ . The curve,
μex(χoN), of the excess chemical potential that corresponds to the disordered state intersects
the curve of the ordered lamellar morphology at a finite angle indicating that the transition
is indeed of first order. From the intersection point one can accurately read-off the transition
point. One particular advantage of the nPT -ensemble is that simulation cell will adjust
its dimension to the stress-free self-assembled morphology if one allows the different linear
dimensions to fluctuate independently. This is particularly important in this example because
the equilibrium lamellar spacing strongly depends on the incompatibility, χoN in the vicinity
of the phase transition.

Alternatively, one can use the relation between the grandcanonical potential, Ω , and the
pressure, P ,

Ω(μ,V,T ) = −PV (122)

and measure the pressure in grandcanonical simulations [32]. Using the weighting function
approach, the pressure can be determined from the virial of bonded and non-bonded forces.
By the same token, the soft interactions between the coarse-grained segments allow for an
efficient simulation in the μV T -ensemble.
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Fig. 9 Order-disorder-transition (ODT) of a symmetric diblock copolymer studied by a soft coarse-grained
model. Monte Carlo simulations are performed in the nPT ensemble and the pressure, P kept constant at
Pb3/kBT = 18 (with b = Reo/

√
N − 1). κo = 1.5625. The invariant degree of polymerization, N̄ , and the

chain discretization are indicated in the key. The figure presents the excess thermodynamic potential, μex,
per particle as a function of χoN . The curves have been shifted for clarity. Empty and filled symbols denote
the disordered and lamellar phases, respectively. Lines are linear fits to the data. The crossing points identify
the locations of the order-disorder transition. Errors are comparable to the symbol size. Snapshots illustrate
the structure before and after the order-disorder transition (i.e., at χoN = 16 and 17), respectively. Reprinted
with permission from Ref. [29], Copyright 2009, American Institute of Physics

4 Summary and Outlook

In this contribution we have discussed the use of soft coarse-grained models for studying
structure formation in amphiphilic systems by computer simulation. Soft potentials between
coarse-grained segments that represent many monomeric repeat units of a chemically real-
istic model naturally arise in the course of systematically deriving a coarse-grained force
field from a chemically realistic one. The main benefits of models for dense multicompo-
nent polymer systems with soft potentials are (i) the description of experimentally relevant
large values of the invariant degree of polymerization, N̄ , and the concomitant description
of fluctuation effects, (ii) the accessibility of large time and length scales (e.g., hours and µm
for dense polymer melts), and (iii) the ease with which the Gibbs free energy or chemical
potential can be measured.

One can capture the universal properties of amphiphilic self-assembly by minimal mod-
els that only incorporate the relevant interactions: molecular connectivity, repulsion between
amphiphilic units, and near incompressibility of the liquid. Particularly, we have used a
model where the molecular architecture is described by a bead-spring model and the non-
bonded interactions are described by an excess free-energy functional, which depends on
the explicit coordinates of the segments via the local microscopic densities. Advantages and
disadvantages of different definitions of the local microscopic densities, based on a col-
location grid or a weighting function, have been discussed with regard to computational
speed, incorporation of short-ranged fluid structure and packing as well as the measure-
ment of pressure. The model of the molecular architecture can be generalized to incorporate
more complex chain architectures (i.e., polymer brushes, star or comb polymers) or include
supramolecular associations [213, 214]. The molecular model can also be augmented e.g.,
by a bond-stiffness potential for a better description of the local conformational statistics.
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We have derived two techniques—field-theoretic umbrella sampling [21] and force-
matching—to construct the excess free-energy functional from a particle-based model. Since
on the large time and length scale of interest, the relevant free-energy scale is comparable
to or smaller than the thermal energy scale, kBT , a bottom-up construction of the coarse-
grained interactions from an atomistic description remains a formidable challenge. Never-
theless we expect that these technique will be useful for relating a particle-based model to a
continuum field-theoretic description, where the collective densities are the relevant degrees
of freedom.

Then we have discussed computational strategies for calculating the free energy of self-
assembled structures by computer simulations. The relation between simulation techniques
for hard crystalline matter and soft self-assembled structures has been illustrated and strate-
gies to transfer methods from hard crystals to soft self-assembled structures have been dis-
cussed. Alternatively, one can exploit the ability of accurately and simultaneously measuring
the chemical potential and pressure to assess the thermodynamic stability of self-assembled
morphologies [32]. These techniques are important because the free-energy difference be-
tween self-assembled morphologies is small on a per molecule basis and metastable struc-
tures may persist for a very long time. Accurate and computational efficient strategies are
required for establishing equilibrium properties in the bulk, of defects and of interfaces
or grain boundaries. Given the multitude of molecular architectures and equilibrium mor-
phologies in block copolymer materials in the bulk (e.g., that are formed by ABC triblock
copolymers [215]) and the even larger number of defect and interfacial structures, the explo-
ration of the thermodynamic properties of self-assembled systems remains a computational
challenge.

By virtue of the small free-energy difference of competing bulk morphologies or defects,
the thermodynamic driving forces in soft matter are weak and metastable structures have a
protracted lifetime. Thus it is important to understand and control the kinetics of structure
formation, e.g., in order to avoid the formation of defects or in order to purposely generate
a metastable morphology. To make progress, one needs to know the underlying free-energy
landscape of the metastable morphologies and their transition states as well as the rela-
tion between the molecular motion and the kinetics of the collective composition or density
fields. Advances have been achieved in various aspects, e.g., transition-path sampling for
self-assembled systems within the self-consistent field theory [197], but many challenges,
e.g., relaxation of molecular stress/break-down of the assumption that the molecular confor-
mations are in equilibrium with the instantaneous density [216], remain.
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Appendix: Field-Theoretic Derivation of the Force-Matching Relation, (50)

Using the Fourier representation of the δ-function constraint, we can rewrite (8) in the form

S = kB ln
∫

D[{ri,s}]e− Hb({ri,s })
kBT δ(φA − φ̂A)δ(φB − φ̂B) (123)
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= kB ln
∫

D[wA,wB ]D[{ri,s}]e− Hb({ri,s })
kB T e

ρo
kBT

∫
d3r[wA(φA−φ̂A)+wB(φB−φ̂B )] (124)

where wA and wB are complex auxiliary fields. In this framework the chemical potentials
are given by averages of these complex-valued fluctuating fields

μA(r) = −T
δS

δφA(r)
= −ρo〈wA(r)〉φA,φB

(125)

The constraint average 〈· · ·〉φA,φB
is defined by

〈· · ·〉φA,φB

=
∫

D[wA,wB ]D[{ri,s}]e
ρo

kBT

∫
d3r[wAφA+wBφB ]− Hb({ri,s })+∑

i,s [γi,swA(ri,s )+(1−γi,s )wB (ri,s )]
kBT · · ·

∫
D[wA,wB ]D[{ri,s}]e

ρo
kBT

∫
d3r[wAφA+wBφB ]− Hb({ri,s })+∑

i,s [γi,swA(ri,s )+(1−γi,s )wB (ri,s )]
kBT

=
∫

D[wA,wB ]e ρo
kBT

∫
d3r[wAφA+wBφB ]+ln Z[wA,wB ]〈· · ·〉wA,wB∫

D[wA,wB ]e ρo
kBT

∫
d3r[wAφA+wBφB ]+ln Z[wA,wB ] (126)

= e−S/kB

∫
D[wA,wB ]e ρo

kBT

∫
d3r[wAφA+wBφB ]+ln Z[wA,wB ]〈· · ·〉wA,wB

(127)

≡ [〈· · ·〉wA,wB
]φA,φB

(128)

where 〈· · ·〉wA,wB
denotes the average of the unconstraint system subjected to the external

fields, wA and wB , and Z[wA,wB ] is the canonical partition function of the unconstraint
particle system in the auxiliary fields.

Z[wA,wB ] =
∫

D[{ri,s}]e− Hb({ri,s })+∑
i,s [γi,swA(ri,s )+(1−γi,s )wB (ri,s )]

kBT (129)

In order to derive a force-balance relation, we first consider the unconstraint system in
the external fields, wA and wB . The density of the A segment with index j, t is given by6

ρo〈φ̂Aj,t (r)〉wA,wB
≡ 〈δ(r − ri,t )〉wA,wB

(131)

= 1

Z[wA,wB ]
∫

D′[{ri,s}]e− Hb({ri,s })+∑
i,s [γi,swA(ri,s )+(1−γi,s )wB (ri,s )]

kBT (132)

where the prime indicates that the configurational integral is only taken over the nN − 1
other segments but not the A segment j, t . The differentiation of this relation with respect
to the segment position, r yields

6The force balance for the unconstraint system in the fixed external fields, wA and wB , is described by the
lowest-order equation of the Born-Green-Yvon hierarchy [44, 112, 113].

∇[kBT ln〈φ̂A(r)〉wA,wB
+ wA(r)] − 〈KA(r)〉wA,wB

= 0 (130)

where the spatial variation of the local density of states, kBT ln〈φ̂A〉wA,wB
, is balanced by the force of

the external field and the average force, 〈KA(r)〉wA,wB
, with the neighboring particles [217, 218]. In the

following we generalize the derivation of this force-balance relation for a constraint system.
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ρo∇〈φ̂Aj,t (r)〉wA,wB
= 1

Z[wA,wB ]
∫

D′[{ri,s}]e− Hb({ri,s })+∑
i,s [γi,swA(ri,s )+(1−γi,s )wB (ri,s )]

kBT

× −∇j,t Hb({ri,s})|r=rj,t
− ∇wA(r)

kBT
(133)

= − ρo

kBT

(〈
φ̂Aj,t (r)∇j,t Hb({ri,s})|r=rj,t

〉
wA,wB

+ 〈φ̂Aj,t (r)〉wA,wB
∇wA(r)

)
(134)

Averaging both sides of the equation with respect to the fluctuating fields, wA and wB , and
summing over all A segments, one obtains

ρo∇
[〈φ̂A(r)〉wA,wB

]
φA,φB

= ρo∇〈φ̂A(r)〉φA,φB
= ρo∇φA(r) (135)

= − ρo

kBT

∑
j,t

γj,t

〈
φ̂Aj,t (r)∇j,t Hb({ri,s})|r=rj,t

〉
φA,φB

− ρo

kBT

∑
j,t

γj,t 〈φ̂Aj,t (r)∇wA(r)〉φA,φB
(136)

= +ρoφA(r)
kBT

〈KA(r)〉φA,φB

− ρo

kBT

[〈φ̂A(r)〉wA,wB
∇wA(r)

]
φA,φB

(137)

where

〈KA(r)〉φA,φB
= −

∑
j,t γj,t 〈φ̂Aj,t (r)∇j,t Hb({ri,s})|r=rj,t

〉φA,φB∑
j,t γj,t 〈φ̂Aj,t (r)〉φA,φB

(138)

is the force acting on A segments at position r in the constraint system.
Using

〈φ̂A(r)〉wA,wB
= −kBT

ρo

δ

δwA(r)
ln Z[wA,wB ] (139)

we can rewrite the last term of (137) in the form

[〈φ̂A(r)〉wA,wB
∇wA(r)

]
φA,φB

= e−S/kB

∫
D[wA,wB ]e ρo

kBT

∫
dr[wAφA+wBφB ]+ln Z

(
−kBT

ρo

δ ln Z
δwA(r)

)
∇wA(r)

= e−S/kB

∫
D[wA,wB ]e ρo

kBT

∫
dr[wAφA+wBφB ]

(
−kBT

ρo

δZ
δwA(r)

)
∇wA(r)

= e−S/kB
kBT

ρo

∫
D[wA,wB ]Z

δ

δwA(r)
(e

ρo
kBT

∫
dr[wAφA+wBφB ]∇wA(r))

= +e−S/kB

∫
D[wA,wB ]ZφA(r)e

ρo
kBT

∫
dr[wAφA+wBφB ]∇wA(r)
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+ e−S/kB
kBT

ρo

∫
D[wA,wB ]Ze

ρo
kBT

∫
dr[wAφA+wBφB ] δ∇wA(r)

δwA(r)︸ ︷︷ ︸
=0

= φA(r)∇e−S/kB

∫
D[wA,wB ]e ρo

kBT

∫
dr[wAφA+wBφB ]+ln Z

wA(r)

= φA(r)∇[wA(r)]φA,φB
= φA(r)∇〈wA(r)〉φA,φB

Inserting this result in (137), we find

∇[kBT lnφA(r) + 〈wA(r)〉φA,φB
] − 〈KA(r)〉φA,φB

= 0 (140)

which, in conjunction with (125), yields the force-balance relation, (50).
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