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Abstract The thermomagnetic convection of air in a two-
dimensional porous square enclosure under a magnetic
quadrupole field is numerically investigated. The Scalar
Magnetic Potential Method is used to calculate the mag-
netic field. A generalized model, which includes a Brinkman
term, a Forcheimmer term, and a nonlinear convective term,
is used to solve the momentum. The flow and temperature
fields for the air thermomagnetic convection are presented
and the local and average Nusselt numbers on the walls are
calculated and compared. The results show that the magnetic
field intensity, the Darcy number and the Rayleigh number
have a significant effect on the flow field and heat transfer in
a porous square enclosure.

Keywords Thermomagnetic convection · Numerical
simulation · Porous media · Magnetic quadrupole field ·
Magnetic force

1 Introduction

Enhancements or suppressions of the convection phenom-
ena and improvement of heat and mass transfer continue to
be an active research area, due to their significance for both
fundamental interests and engineering applications, such as
solar receivers, cooling of electronic devices, solidification
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of materials and so on. There are many methods of enhance-
ments or suppressions of the convection phenomena, for ex-
ample by placing fins on the heated wall, exerting electric
and magnetic fields, etc. [1, 2].

Recently, magnetic force has received more attention in
the field of metallic materials, and less in the field of non-
metallic materials. With the development of a superconduct-
ing magnet providing strong magnetic induction of 10 Tesla
or more in recent years, the suppression or enhancement
of the natural convection of the paramagnetic fluids like
oxygen gas and air by a magnetic field has become an in-
teresting research topic investigated by many researchers.
Many research works about magnetically induced natural
convection have followed [3]. The effect of the magnetic
buoyancy force on the convection of the paramagnetic flu-
ids was first reported by Braithwaite et al. [4]. They used the
magnetic field both to enhance and suppress the Rayleigh–
Benard convection in a solution of gadolinium-nitrate in a
shallow layer heated from below and cooled from above and
showed that the effect depends on the relative orientation
of the magnetic force and the temperature gradient. Car-
ruthers and Wolfe [5] studied the thermomagnetic convec-
tion of oxygen gas in a rectangular container with thermal
and magnetic field gradients theoretically and experimen-
tally, and found that magnetic buoyancy force canceled out
the influence of gravitational buoyancy force when the rect-
angular enclosure heated from one vertical wall and cooled
from opposing wall was located in horizontal magnetic field
with vertical magnetic field gradient, and horizontal mag-
netic field could enhance and suppress the Rayleigh–Benard
convection when the rectangular enclosure heated from be-
low and cooled from above was located with the same mode.
Shigemitsu’s group [6] derived a model equation for mag-
netic convection using a method similar to the Boussinesq
approximation and studied natural convection of paramag-
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netic, diamagnetic and electrically conducting fluids in a
cubic enclosure with thermal and magnetic field gradients
at different thermal boundaries numerically and experimen-
tally. Tagawa and co-workers [7] studied natural convection
of paramagnetic and diamagnetic fluids in a cylinder under
gradient magnetic field at different thermal boundaries nu-
merically and experimentally and found that the magnetic
body due to gradient magnetic field could be used to con-
trol heat transfer rate of paramagnetic and diamagnetic flu-
ids. Bednarz and co-workers [8] studied natural convection
of paramagnetic fluids in a cubic enclosure under magnetic
field by an electric coil numerically and experimentally and
analyzed the effect of inclined angle of electric coil, location
of electric coil, Ra number, γ number on heat transfer rate
of paramagnetic fluids.

The above studies are concerned with the effect of mag-
netic force on natural convection of paramagnetic fluids.
However, almost no attention has been paid to the combined
effects of magnetic and gravitational forces on the natural
convection of paramagnetic fluids in porous medium. Nat-
ural convection in an enclosure filled with a paramagnetic
or diamagnetic fluid-saturated porous medium under strong
magnetic field was numerically investigated by Wang et al.
[9, 10]. Considering the effect of Darcy number, Rayleigh
number and γ number, the results of numerical investiga-
tion showed that the magnetic force has a significant effect
on the flow field and heat transfer in a paramagnetic or dia-
magnetic fluid-saturated porous medium. The application of
strong magnetic field on porous medium may be found in
the field of medical treatment, metallurgy, materials process-
ing, combustion. There may be plenty of applications in the
near future in the field of engineering operations. Thus, the
study of the effect of magnetic force on natural convection
in porous media is important for both scientific research and
engineering application.

2 Physical Model

The schematic of the system under consideration is shown
in Fig. 1. The system consists of a porous cubic enclosure
which is kept in a horizontal position and four permanent
magnets which generate a magnetic field. The porous cubic
enclosure filled with air is heated isothermally from the left-
hand side vertical wall and cooled isothermally from oppos-
ing wall while the other four walls are thermally insulated.
The gravitational force acts in the minus Y direction. In the
present study, the length of the enclosure L, the length of the
permanent magnet L1 and the distance of permanent mag-
nets L2 are 0.024, 0.02 and 0.03 m, respectively.

Fig. 1 Physical model and coordinate system

3 Mathematical Formulation

3.1 Governing Equations

The assumptions in the model are the following. The fluid
is considered to be steady, incompressible, Newtonian. Both
the viscous heat dissipation and magnetic dissipation are as-
sumed to be negligible.

According to Braithwaite et al. [4], the magnetic force
can be given as

fm = χm

2μm

∇b2 = ρχ

2μm

∇b2 (1)

where fm is the magnetic force; χm is the volumetric
magnetic susceptibility; μm is the magnetic permeability,
H m−1; b is the magnetic flux density, T; ρ is the fluid den-
sity, kg m−3; χ is the mass magnetic susceptibility, m3 kg−1.

The Navier–Stokes equation which includes the magnetic
force can be presented as

ρ

ε2
U · ∇U = −∇p − μ

κ
U + μ

ε
∇2U − ρ

ε3/2

1.75√
150

|U|U√
κ

+ ρχ

2μm

∇b2 + ρg (2)

in which U is the velocity vector; p is the pressure, Pa; μ is
the fluid kinematic viscosity, kg m−1 s−1;g is the gravita-
tional acceleration, m s−2; ε is the porosity; κ is the perme-
ability, m2.

At the reference state of the isothermal state, there will
be no convection. Therefore Eq. (2) becomes

0 = −∇p0 + ρ0χ0

2μm

∇b2 + ρ0g (3)

where p0 is the pressure at reference temperature, Pa; ρ0

is the fluid density at reference temperature, kg m−3;χ0 is
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the mass magnetic susceptibility at reference temperature,
m3 kg−1. Subtracting (3) from (2) gives

ρ

ε2
U · ∇U = −∇p′ − μ

κ
U + μ

ε
∇2U − ρ

ε3/2

1.75√
150

|U|U√
κ

+ (ρχ − ρ0χ0)

2μm

∇b2 + (ρ − ρ0)g (4)

where p = p0 + p′, p′ is the pressure difference due to the
perturbed state, Pa. Since ρ and χ are functions of temper-
ature, according to Taylor expansion method, ρχ and ρ can
be respectively indicated as

ρχ = (ρχ)0 +
(

∂(ρχ)

∂T

)
0
(T − T0) + · · · (5)

ρ = ρ0 +
(

∂ρ

∂T

)
0
(T − T0) + · · · (6)

For air as a paramagnetic fluid, mass magnetic suscep-
tibility is in inverse proportion to absolute temperature; ac-
cording to the Curie law:

χ = m

T
(7)

where m is the constant value; T is the fluid temperature,
K; T0 = (Th + Tc)/2, K; subscripts 0, h, c represent the ref-
erence value, hot and cold, respectively. So Eq. (5) can be
written as

ρχ − (ρχ)0 =
(

∂ρ

∂T
χ − ρ

χ

T

)
0
(T − T0) + · · ·

=
(

−ρβχ − ρ
χ

T

)
0
(T − T0) + · · ·

= −ρ0χ0β

(
1 + 1

T0β

)
(T − T0) + · · · (8)

The higher order small amount in Eq. (8) is omitted and gen-
erated into Eq. (4), which becomes

1
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− 1
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+ β(T − T0)g (9)

where β is the thermal expansion coefficient, K−1.

For simplicity, subscripts of physical parameters and the
superscript of pressure are omitted, so the governing equa-
tions can be written as:

Continuity equation:

∂u

∂x
+ ∂v

∂y
= 0 (10)

Momentum equation:
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Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
(13)

where: x, y are Cartesian coordinates; u, v are velocity com-
ponents, m s−1;α is the fluid thermal diffusivity, m s−1;ν is
the fluid dynamic viscosity, m2 s−1.

The above Eqs. (10)–(13) can be non-dimensionalized as
follows:

Continuity equation:

∂U

∂X
+ ∂V

∂Y
= 0 (14)

Momentum equation:
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Energy equation:
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The dimensionless variables and parameters in the above
equations are defined as

X = x

L
Y = y

L
U = u

α/L
V = v

α/L

θ = T − T0

Th − Tc
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3
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2
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where: X, Y are dimensionless Cartesian coordinates; U , V

are dimensionless velocity components; P is the dimension-
less pressure; θ is the dimensionless temperature; Th is the
temperature of the hot wall, K; Tc is the temperature of the
cold wall, K; Pr is the Prandtl number; b0 is the reference
magnetic flux density, T; L is the length of the enclosure,
m; L1 is the length of the permanent magnet, m; L2 is the
distance of permanent magnets, m; Ra is the Rayleigh num-
ber; γ is the dimensionless magnetic strength parameter; B
is the dimensionless magnetic flux density; and Da is the
Darcy number.

3.2 Mathematical Formulation of Magnetic Field
Calculation

Maxwell’s equations are applied to describe the magnetic
quadrupole field:

∇ · B = 0 (18)

∇ × H = 0 (19)

where B is the magnetic flux density and H is the magnetic
field intensity.

The constitutive relation that describes the behavior of
the magnetic material is

B = μH (20)

The scalar magnetic potential ϕm is commonly used to cal-
culate the magnetic field and it satisfies

H = −∇ϕm (21)

In homogeneous magnetic medium, the permeability is as-
sumed to be constant. Combining Eqs. (20), (21) and (18),
the scalar magnetic potential satisfies the Laplace’s equa-
tion

∇ϕm = 0 (22)

3.3 Boundary Conditions

Non-slip condition is imposed for the two velocity compo-
nents on the solid walls. The temperature boundary condi-
tions are: (1) Wall of the enclosure (U = V = 0); (2) Left
vertical wall (X = 0) : θ = 0.5; (3) Right vertical wall (X =
1) : θ = −0.5; (4) Top and bottom horizontal adiabatic walls
(Y = 0,1) : ∂θ/∂Y = 0.

3.4 Nusselt Number Calculation

In order to compare total heat transfer rate, Nusselt num-
ber is used. The average Nusselt number at the hot wall is
defined as

Num = −
∫ 1

0

∂θ

∂X X=0
dY (23)

3.5 Numerical Procedure and Code Verification

The governing Eqs. (14)–(17) are discretized by the finite-
volume method (FVM) based on a non-uniform grid system.
The third-order Quick scheme and the second-order central
difference scheme are implemented for the convection and
diffusion terms. The set of discretized equations for each
variable is solved by a line-by-line procedure, combining the
tridiagonal matrix algorithm (TDMA) with the successive
over-relaxation (SOR) iteration method. The coupling be-
tween velocity and pressure is solved by the SIMPLE algo-
rithm. The convergence criterion is that the maximal resid-
ual of all the governing equations is less than 10−6.

The reliability and accuracy of the mathematical model
and code must be checked before calculation. Three grid

Table 1 Comparison of present results with Lijun Yang et al. [11]

T (K) Num

Lijun Yang et al. [11] Present Relative error (%)

1 1.003 1.003 0

10 1.214 1.244 2.47

50 2.120 2.166 2.17
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Fig. 2 Effect of γ Ra on the
streamlines (left) and isotherms
(right) at Da = 10−3 and
ε = 0.5
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sizes 50 × 50, 60 × 60 and 70 × 70 are selected for analysis.
The average Nusselt number for all three grid sizes is mon-
itored at ε = 0.5, Pr = 0.71, Ra = 1 × 105, Da = 1 × 10−3,
γ = 10. The results showed insignificant differences for
the 60 × 60 grids to the above. Therefore, for all com-
putations in this article, a 60 × 60 uniform grid was em-
ployed.

In order to validate the numerical methods and codes of
the present work, a recent, similar work by Lijun Yang et al.
[11] was selected as the benchmark solution for compari-
son. Lijun Yang considered the thermomagnetic convection
in an air-filled 2-D square enclosure confined to a mag-
netic quadrupole field under zero-gravity. Table 1 presents
comparisons between the present results for Da = 107, ε =
0.9999, g = 0 and those of Lijun Yang for the average Nus-
selt number, temperature field and velocity field [11]. It is
seen that the present results are in very good agreement
with those obtained by previous authors, which validates the
present numerical code.

4 Results and Discussion

Ra becomes zero and γ becomes infinity when g = 0, so that
finite product γ Ra has to be used to describe non-gravity
cases.

Figure 2 shows the streamlines and isotherms at vari-
ous magnetic force numbers when Da = 10−3 and ε = 0.5.
In each graphic shown, the porous enclosure was heated
isothermally from left-hand side vertical wall and cooled
isothermally from opposing wall. Obviously, the convection
in the porous enclosure is strengthened with the increase of
γ Ra. The distribution of streamlines suggests that the mag-
netic buoyancy force drives the air moving from the left hot
wall to the right cold wall along the horizontal middle line
of the porous enclosure; then the air is moving downwards
and upwards to the top and bottom walls and returns to the
middle of the hot wall, so that the flow in the enclosure is
of two cellular structures with horizontal symmetry about
the middle of the enclosure. The distribution of isotherms
suggests that the isotherms in the porous enclosure are hor-
izontally symmetric about the middle of the porous enclo-
sure; isotherms are dense at the top and bottom of the hot
wall and the middle of the cold wall. When γ Ra is relatively
small, such as γ Ra = 1 × 105, the convection of air in the
porous enclosure is very weak so that the heat transfer is
dominated by the conduction mechanism, when isotherms
approximately exhibit a linear trend from the hot wall to the
cold wall. With the increase of γ Ra, the convection in the
porous enclosure is strengthened and the isotherms show se-
vere deformation.

Figure 3 illustrates the variations of the local Nusselt
numbers along the left hot wall and the right cold wall at var-
ious γ Ra when Da = 10−3, ε = 0.5. It can be seen that the

Fig. 3 Effect of γ Ra on the local Nusselt numbers of the left (top) and
right (bottom) side walls at Da = 10−3 and ε = 0.5

local Nusselt numbers are increased as the γ Ra increases;
the local Nusselt numbers are symmetric about the horizon-
tal centerline, which is consistent with the isotherms. For the
hot wall, the minimum local Nusselt number appears in the
middle position and the maximum appears in the top and
bottom of the hot wall. For the cold wall, the local Nus-
selt number is maximal in the middle position and gradually
presents monotonic decrease from the middle of the cold
wall to its ends.

5 Conclusion

The thermomagnetic convection of air in a two-dimensional
porous square enclosure under a magnetic quadrupole field
is numerically investigated under non-gravitational condi-
tions. The results show that the flow of the air in the enclo-
sure is of two cellular structures with horizontal symmetry
about the middle of the enclosure. The local Nusselt num-
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bers along the left hot wall and the right cold wall are in-
creased as the magnetic force number increases and are sym-
metric about the horizontal centerline. The magnetic field
intensity, the Darcy number and the Rayleigh number have
a significant effect on the flow field and heat transfer in a
porous square enclosure.
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