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This work is devoted to experimental (X-ray photoelectron) and theoretical investigations of electron 

density distribution in Pd(II) -diketonate complexes. Data about the electronic structure (effective charges, 

core level energies) of the compounds are compared with their thermodynamic parameters (thermal 

stability, vaporization enthalpy). In molecular crystals of Pd(II) -diketonates, the volatility of the 

complexes and vaporization enthalpy 0
TH  depend not only on van der Waals interactions, but also on 

electrostatic interactions of molecules in crystal. 
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INTRODUCTION 

Volatile metal -diketonates of the general formula M(R1COCHCOR2)n (M is the metal, and R are the terminal 

substituents) are now widely used for solving various technological problems in isolation of pure metals by metal-organic 

chemical vapor deposition (MOCVD) processes. Volatility and its dependence on the electronic structure of complexes are 

very important properties of these compounds. As is known [1], the standard thermodynamic parameters such as vaporization 

enthalpy 0
TH  and entropy 0

TS  are determined by the nature of the terminal substituents R1 and R2 in the ligand. The 

thermal stability of Pd(II) complexes of -diketonates with different terminal substituents was investigated in [2, 3]. It was 

shown that the thermodynamic parameters of the crystal vapor phase transition depend on the energy of van der Waals 

intermolecular interactions of -diketonate complexes in crystals. The energy of intermolecular interactions, in turn, depends 

on the character of electron density distribution in the molecule [4-6]. 

X-ray photoelectron spectra (XPS) provide information about the charged states of atoms in the molecule and about 

the distribution of electron density over the atoms of the compound in relation to the nature of the terminal groups of ligands

[7-9]. The aim of the present work is to study experimentally and theoretically the peculiarities of electron density 

distribution in Pd(II) -diketonates and to compare data about the electron structure (effective charge, core level energy) and 

the thermodynamic parameters (vaporization enthalpy 0 ,TH  thermal stability) of the compounds. For terminal radical 
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groups R1 and R2, we considered the following substituents: hfac (R1 = R2 = CF3); ptfac (R1 = C(CH3)3, R2 = CH3); btfac 

(R1 = C6H5, R
2 = CH3); dmp (R1 = R2 = C(CH3)3; dbm (R1 = R2 = C6H5); bac (R1 = C6H5, R

2 = CH3); acac (R1 = R2 = CH3).

EXPERIMENTAL CONDITIONS AND THEORETICAL CALCULATIONS 

To study electron density distribution on atoms of Pd(II) -diketonate complexes in this work we recorded X-ray 

photoelectron spectra of the Pd3d3/2,5/2, C1s, O1s, and F1s atoms of the compounds (Fig. 1). The spectra were studied on a 

VG-Microtech X-ray photoelectron spectrometer at room temperature and residual gas pressure of 10–7 Torr; transmission 

energy of the energy analyzer was 50 eV. For photoelectron excitation, we employed an X-ray tube with an aluminum anode 

(h  = 1486 eV) with U = 10 kV, I = 20 mA. The spectrometer was calibrated against the positions of the photoelectron peaks 

of the Au4f7/2 (84.0 eV) and Cu2p3/2 (932.7 eV) core levels. The background was taken into account by Shirley’s procedure 

[10]. The spectra were decomposed into components using the XPS PEAK 4.1 program. The line shape was approximated 

with Lorentz–Gaussian mixed functions (Fig. 1). The energy positions of the maxima of the spectral lines were determined to 

an accuracy of 0.2 eV. 

Electronic structure calculations were fulfilled for a series of Pd(II) -diketonate complexes (Fig. 2) with the Jaguar 

v.6.5 package of quantum chemical programs [11] at the level of density functional theory (DFT) using the B3LYP hybrid 

exchange correlation functional in the LACVP G** and 3-21G* basis sets. Geometry optimization was performed based on 

the crystal data of [12]; the interatomic distances and bond angles were obtained with an accuracy of 0.05-0.07 Å and 1.5 ,

Fig. 1. X-ray photoelectron spectra of Pd(II) -diketonates: C1s (a), O1s (b), Pd3d3/2,5/2 (c), F1s (d).
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Fig. 2. Structural scheme and atomic 
numbering in Pd(II) -diketonates.  

Fig. 3. Charge distribution in palladium(II) -diketonate molecules. 
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TABLE 1. Calculated Binding Energies of the Core Levels (E, eV) and Effective Charges on the Carbon, 
Oxygen, and Palladium Atoms 

C1s O1s Pd 3d F1s
Complex 

Group* E Charge q E Charge q E Charge q E Charge q

Pd(hfac)2 1 CH

2 CO

3 CF3

278.2 

280.8 

284.5 

–0.489 

0.411 

1.094 

522.8 –0.583 343.9 0.916 672.9 –0.35 

Pd(ptfa)2 1 CH

C(CH3)3

2 CO

3 CF3

277.2 

278.0 

286.7 

293.0 

–0.495 

–0.107 

0.386; 
0.549 

1.094 

521.8 

521.9 
–0.602 343.1 0.892 672.5 –0.35 

Pd(btfa)2 1 CH

C6H5

2 CO

3 CF3

277.3 

277.8 

280.0; 
279.9 

283.9 

–0.474 

–0.121 

0.381; 
0.515 

1.093 

521.8 
–0.606 

–0.609 
343.0 0.906 672.5 –0.35 

Pd(dpm)2 1 CH

C(CH3)3

2 CO

276.4 

277.5 

279.1 

–0.504 

–0.102 

0.530 

521.0 –0.629 342.3 0.878   

Pd(dbm)2 1 CH

C6H5

2 CO

276.6 

277.4 

279.3 

–0.472 

–0.107 

0.494 

521.1 
–0.622 

–0.623 
342.6 0.893   

Pd(bac)2 1 CH

C6H5

CH3

2 CO

276.6 

277.4 

277.0 

279.3 

–0.489 

–0.108 

–0.741 

0.498; 
0.508 

521.1 
–0.621 

–0.623 
342.3 0.884   

Pd(acac)2 1 CH

CH3

2 CO

276.6 

277.0 

279.3 

–0.506 

–0.742 

0.513 

521.1 –0.622 342.4 0.875   

*The number of the group corresponds to the number of the decomposition component of the carbon 1s spectra in 
Fig. 1. 

respectively. The core level energies and effective (NBO) charges on atoms of the complexes were calculated within the 

framework of theoretical calculations (Table 1). Charge distribution is shown in Fig. 3. 

X-RAY PHOTOELECTRON SPECTRA OF THE COMPLEXES 

The experimental X-ray photoelectron spectra were decomposed into components by taking into account the 

stoichiometric composition of the compounds and the results of theoretical model calculations of core level energies and 

effective charges on the atoms of the complexes. Structure analysis (Figs. 2 and 3) showed that in the case of symmetric -

diketonates Pd(acac)2, Pd(dpm)2, Pd(hfac)2, and Pd(dbm)2, the chelate complex has three groups of carbon atoms: 1) (C6, C9),

(C11, C14); 2) (C8), (C13); 3) (C7, C10), (C15, C12); and one group of oxygen atoms: 4) (O2, O3), (O4, O5) whose charged states 

can differ. Table 1 lists theoretical estimates of the energies of the C1s levels for the corresponding groups of carbon atoms in 

the complexes. In all cases under study, one can expect that the experimental C1s spectrum will contain at least three 

components corresponding to the appropriate carbon groups. 
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TABLE 2. Experimental Binding Energies of the Core Levels of the Carbon, Oxygen, and Palladium Atoms, eV 

Pd
Complex Terminal radical 

Group of 
complexes** 

C1s O1s
3d5/2 3d3/2

F1s

Pd(hfac)2 R1 = CF3;

R2 = CF3
III 

1*

2

3

285.0 

287.9 

290.0 

1*

2

3

532.8 

536.0 

538.9 

1*

2

3

337.6 

340.3 

341.3 

342.8 

345.5 

346.6 

688.7 

691.8 

Pd(ptfac)2 R1 = CF3;

R2 = C(CH3)3

1

2

3

285.0 

286.7 

293.0 

1

2

533.0 

536.3 

1

2

338.2 

339.4 

343.4 

344.6 

688.2 

689.9 

Pd(btfac)2 R1 = CF3;

R2 = C6H5

II
1

2

3

285.0 

287.0 

292.9 

1

2

532.8 

536.6 

1

2

338.3 

339.4 

343.5 

344.6 
688.6 

Pd(dpm)2 R1 = C(CH3)3;

R2 = C(CH3)3
1

2

285.0 

286.1 

1

2

532.5 

535.8 

1

2

3

336.3 

337.9 

339.1 

341.5 

343.2 

344.4 

Pd(dbm)2 R1 = C6H5;

R2 = C6H5

1

2

285.0 

286.6 

1

2

532.1 

535.3 

1

2

336.9 

338.3 

342.2 

343.6 

Pd(bac)2 R1 = CH3;

R2 = C6H5

1

2

285.0 

286.7 

1

2

532.4 

535.8 
1 338.7 344.0  

Pd(acac)2 R1 = CH3;

R2 = CH3

I

1

2

285.0 

286.9 

1

2

532.4 

535.9 
1 338.5 343.8  

Pd metal  1

2

335.6 

337.6 

340.8 

342.9 

*The number corresponds to the component of decomposition of the corresponding spectrum in Figs. 1 and 4. 
**The complexes are grouped according to the number of fluoromethyl groups in the terminal radicals. 

For asymmetric Pd(btfac)2, Pd(ptfac)2, and Pd(bac)2 complexes (Table 1), the energy of the C1s levels of the first 

group [(C6, C9); (C11, C14)] is almost insensitive to the asymmetry of substituents (R1, R2). The energy difference between the 

corresponding 1s levels of the carbon atom varies within the limits of a few hundredths of an electron volt. Variation of the 

number of spectral components in the carbon spectra under study may only be due to the difference between the C1s energies 

for the atoms [(C7, C10); (C15, C12)] of the R1 and R2 radical groups.  

Using theoretical predictions of the number of components in the carbon and oxygen spectra and taking into account 

that the intensity of the components is proportional to the number of the corresponding atoms we decomposed the 

experimental spectra into components (Fig. 1). The half-widths of the individual components of the carbon spectra were fixed 

(2 eV). Sample charging was taken into account using the most intense low-energy peak (285.0 eV) assigned to the CH, 

(CH3)3, CH3, and C6H5 hydrocarbon groups. The maxima with the binding energies in the range 286.0-287.0 eV in the 

carbon spectrum were assigned to the [(C6, C9); (C11, C14)] carbon atoms from the first group (Table 2). The maxima with the 

binding energies 292.9-293.0 eV correspond to the carbon of the CF3 group.  

Oxygen spectra. The most intense low-energy component with the binding energy 532.0-533.0 eV was assigned to 

the oxygen atoms bonded to the Pd atom (Table 2). The line in the range 535.3-536.5 eV was attributed to oxygen adsorbed 

on the surface of the sample. 

Fluorine spectra. The F1s spectra are singlets with a maximum at 688.0-689.0 eV (Fig. 1). Table 2 lists the 

experimental energies of the F1s spectral lines for complexes with CF3 groups. 

Quantitative analysis was performed using the integrated intensities of XPS lines corrected for atomic sensitivity 

(i.e., including atomic sensitivity factors, ASF) for a VG-Microtech spectrometer. The relative atomic concentrations and 
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TABLE 3. Quantitative Analysis of the Composition of Pd -Diketonate Complexes Based on X-ray Photoelectron Spectra 

C O 

Experimental XPS data 
Data of 
formula 

Experimental XPS data 
Data of 
formula Complex 

Atomic group 
Stoichi-
ometry 

Percent of 
atoms, % 

Stoichi-
ometry 

Atomic 
group 

Stoichi-
ometry 

Percent of 
atoms, % 

Stoichi-
ometry 

Pd(ptfac)2 CH, C(CH3)3

CO

CF3

8.9 

3.6 

1.8 

62.5 

25.0 

12.5 

10.0 

4.0 

2.0 

OC

Adsorb. O 

4.4 

2.0 

68.7 

31.0.3

4.0 

Pd(btfac)2 CH, C6H5

CO

CF3

15.0 

4.3 

2.1 

70.0 

20.0 

10.0 

14.0 

4.0 

2.0 

OC

Adsorb. O 

4.1 

2.0 

67.0 

33.0 

4.0 

Pd(dpm)2 CH, C(CH3)3

CO

18.2 

4.0 

81.8 

18.2 

18.0 

4.0 

OC

Adsorb. O 

3.9 

1.8 

69.3 

30.7 

4.0 

Pd(dbm)2 CH, C6H5

CO

31.7 

4.9 

86.7 

13.3 

26.0 

4.0 

OC

Adsorb. O 

4.0 

2.0 

66.2 

33.8 

4.0 

Pd(bac)2 CH, CH3, C6H5

CO

17.5 

4.4 

80.0 

20.0 

16.0 

4.0 

OC

Adsorb. O 

4.7 

1.8 

71.9 

28.1 

4.0 

Pd(acac)2 CH, CH3

CO

6.2 

4.1 

59.9 

40.1 

6.0 

4.0 

OC

Adsorb. O 

4.8 

2.2 

69.2 

30.8 

4.0 

percentage of components in the carbon and oxygen spectra have also been calculated. Table 3 gives atomic concentrations 

along with stoichiometric compositions for the compounds. Quantitative analysis of the Pd(hfac)2 complex could not be 

fulfilled because the compound decomposed under X-radiation during the experiment. 

Pd3d3/2, 5/2 spectra. As is known, vacuum sublimation of -diketonate complexes can lead to decomposition of the 

latter [13, 14]. Compounds with trifluoromethyl substituents in the ligand proved to be the least stable complexes from the 

series under study. Thus Pd(hfac)2 liberates free ligands as gaseous compounds already at 20 C, while Pd(acac)2 starts to 

decompose at 100 C. Mass spectrometric study of decomposition of the complexes in the gas phase showed that 

decomposition can follow several routes and form light gaseous molecular products and radicals, as well as solid products 

containing metal atoms [14, 15]. Decomposition processes result in unstable metal-containing particles. These particles, in 

turn, can decompose, liberating the metal atom or other stable metal-containing forms. 

Therefore the experimental spectra were analyzed from the viewpoint of the presence of different chemical forms of 

the palladium atom. The spectra were decomposed into potential components, whose energy positions were compared with 

the energies of the corresponding lines of known palladium compounds [7, 16]. 

Metallic Pd. To evaluate the energy positions of the individual components in the Pd3d3/2, 5/2 spectra of the 

complexes we recorded the Pd3d3/2, 5/2 spectrum of low-disperse metallic palladium. According to our measurements, the 

fundamental peak (Fig. 4h, 1) of metallic palladium had a binding energy of 335.5 eV (Table 2), which agrees well with the 

literature data (335.7-335.8 eV) [7, 16]. The spectrum of metallic palladium also showed an unintense short-wave component 

(2) with an energy of ~337.6 eV, which was attributed (based on the data of [16]) to the oxide forms of palladium, PdO and 

PdO2, for which E ~ 337.0 eV. The experimental width of the components of the observed doublet is E = 1.8 eV, the 

interdoublet distance is ~5.3 eV, and the intensity ratio within the doublet is I3/2/I5/2 = 1.45. 

Pd(acac)2. The Pd3d3/2, 5/2 X-ray spectrum of the complex is shown in Fig. 4g. The spectrum has two components of 

spin doublet with an interdoublet distance of 5.2 eV and with a width of 1.8 eV; intensity ratio within the doublet is 

I3/2/I5/2 = 1.25. The energy of the highly intense component 1 is E(Pd3d5/2) = 338.5 eV. Comparison with the spectrum of 

metallic palladium indicates that the binding energy of the Pd3d5/2 level for Pd(acac)2 is shifted ~3.0 eV toward high binding 
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Fig. 4. Pd3d3/2,5/2 X-ray photoelectron spectra for Pd(hfac)2 (a), Pd(ptfac)2 (b), Pd(btfac)2 (c), Pd(dpm) (d), 
Pd(dbm)2 (e), Pd(bac)2 (f), Pd(acac)2 (g), Pd(metal) (h).

energies. The experimental spectrum has no line at ~335.6 eV corresponding to metallic palladium, which may be indicative 

of the compound not decomposed by X-radiation. 

Pd(bac)2. The Pd3d3/2, 5/2 X-ray spectrum of the compound is shown in Fig. 4f; in this case, E = 1.8 eV; 

interdoublet distance is ~5.2 eV; intensity ratio within the doublet is 3/2 5/2/ 1.19.I I

Pd(hfac)2, Pd(ptfac)2, and Pd(btfac)2. For complexes with CF3 groups, both components of the 3d3/2, 5/2 spin 

doublet are much wider, ~2.3 eV. Therefore the experimental spectra were decomposed into several components. For 

decomposition we used the parameters of the spectrum of pure metal. As can be seen, in the spectra of Pd(ptfac)2 and 

Pd(btfac)2 one can isolate two components (Fig. 4b, c; lines 1 and 2). The energy position of the long-wave component (1)

(338.2, 338.3 eV) is close to the positions of the corresponding lines in the spectra of the complexes containing no CF3

groups (Table 2). The short-wave component (2) has a higher energy (339.4 eV, Table 2) for complexes with one 

trifluoromethyl group. Spectrum analysis of Pd(hfac)2 (Fig. 4 ) shows three components with gradually increasing binding 

energies. The first two components (1, 2) have binding energies (337.6, 340.3 eV) close to those of complexes from groups I 

and II (Table 2). 

Thus analysis of X-ray photoelectron spectra of Pd(II) -diketonate complexes has revealed destruction of 

complexes in the course of spectrum recording. Pd(acac)2 and Pd(bac)2 showed the least changes in composition. Complexes 

with CF3 groups decompose; the spectrum contains elements corresponding to metal-containing particles with a structure 

similar to that of complexes from the first group and with binding energies of ~338.0-337.0 eV, and to particles containing 

CF3 radicals and having binding energies of ~341.0-339.0 eV.  

According to the data of X-ray photoelectron spectroscopy, complexes with hfac and dpm ligands are most liable to 

destruction; their spectra contain three types of component corresponding to different metal-containing particles of the 

compounds. 

The experimental data on the chemical shifts of the core levels and the calculated data about the character of electron 

density distribution (effective charges) on the atoms of the complexes point to substantial differentiation of the charged states

of atoms in the chelate ring. For different R1 and R2 radical groups, one can observe changes in the charged states of atoms 

and hence in the core level energies of atoms in the complex. Thus the energy position of certain lines in X-ray photoelectron 

spectra may be directly related to the charged state of the corresponding atoms. 

From the theoretical (Table 1) and experimental (Table 2) data it can be seen that the presence of highly 

electronegative CF3 radicals in the complex leads to increased binding energy of the 3d level of palladium, as indicated by the 
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Fig. 5. Relationship between the binding energies of 
the 3d5,2 core level of palladium in the complexes 
and sublimation enthalpies.  

increased positive charge on the metal atom. Accordingly, the absolute energy of the O1s levels increases, which is also 

indicated by the decreased electron density on the oxygen atoms from the first coordination sphere of the central atom. Thus 

the presence of a CF3 group in the chelate ligand leads to increased ionicity of the (M–O) bond. 

Figure 5 illustrates the correlation between the binding energy of the 3d5/2 level of palladium (which is the central 

atom) and the sublimation heat 0
TH  of the appropriate complexes according to the data of [1]. Analysis of the core level 

energies shows correlation between E(Pd3d5/2) and 0 :TH  the volatility of the complexes increases with the absolute energy 

of the level when the resulting electron density on palladium decreases (positive charge increases). Our previous XPS studies 

of copper and aluminum -diketonates showed similar correlations [17]. 

X-RAY PHOTOELECTRON SPECTRA AND INTERMOLECULAR INTERACTIONS 

The crystals of -diketonate complexes of transition metals are commonly regarded as molecular crystals, in which 

the molecules are bound by van der Waals forces. The structural units (complexes) of the crystal are considered electrically 

neutral. Coulomb interaction is neglected [2]; still it is possible in the case of short contacts between complexes in molecular

crystals. Therefore for different R1 or R2 substituents, changes in the charged state of atoms in the individual planar 

molecules of the crystal will affect the electrostatic component of the intermolecular interaction energy in crystal. 

Consequently, changes in the volatility of the complexes and hence in the sublimation enthalpy 0
TH  in the series of Pd(II) 

-diketonate complexes under study will depend not only on van der Waals but also on electrostatic interactions of molecules 

in crystal. 

The energy position of a core level of an atom in a complex depends on the electron density on the atom and on the 

nature of surrounding atoms and molecules, as well as on the spatial arrangement of the latter [7]. For isolated molecules, this

dependence is generally defined by the relation  

bnd.mol. A
A

( / ),i i
i

E kq q R            (1) 

where k is a constant that depends on the Coulomb interaction between the core and valence electrons; q  is an effective 

charge on atom ; and Ri is the distance between the ith atom and atom .

For Pd(II) -diketonates under study (Fig. 3), the binding energies of the core levels of atoms from the complexes 

depend not only on charges on the atoms from the nearest surroundings (chelate ligands), but also on charges on other 

complex molecules that form the crystal lattice of the compound. Therefore relation (1) should take into account both 
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Coulomb and multipole interactions of the core electrons of the atom with surrounding molecules: 

Ebnd = Ebnd.mol. + Ecryst,      (2) 

where Ebnd.mol. is the energy defined by relation (1), and Ecryst is the electrostatic interaction energy between the core electron 

of atom  and the charges and multipoles localized on the surrounding molecules in the crystal lattice. Thus the binding energies 

of the core electrons of atoms in the complexes and crystal substances will depend both on charge distribution in the individual

molecules and on interactions between these molecules in crystals. Therefore one would expect certain correlations between the 

binding energies of the core levels of atoms and the interaction energies of complex molecules in the crystal lattice. 

One possible correlation is shown in Fig. 5. It can be seen that the largest binding energy is observed for the 

Pd(hfac)2 complex, whose ligands contain highly electronegative radical groups R1 = R2 = CF3. As these radicals are replaced 

with more electronegative ones, R = CH3, C(CH3)3, the core level energy of palladium decreases, while the enthalpy 

increases. Based on experimental data one can suggest the following. In the series of palladium -diketonate complexes, 

increased binding energy of the core level of the metal indicates that charge density in the complex becomes substantially 

differentiated on passing to electronegative substituents; this will lead to greater electrostatic repulsion between adjacent 

molecules stacked in crystal and hence to lower vaporization enthalpy and greater volatility of the complexes. Thus increased 

net electron density (decreased energy of the Pd3d5/2 level) correlates with the increased vaporization enthalpy. 

Substitution of alkyl by phenyl radicals in chelate ligands lowers the volatility of the compounds [13, 14] and hence 

leads to lower binding energies of the core levels of the metal atom and higher enthalpies (Fig. 5). The presence of the phenyl

rings and formation of the corresponding type of molecular packing in crystals (stacks, nets) [2] give rise to additional 

intermolecular interactions in Pd(II) -diketonate crystals, which involve the  system of the R1 and R2 radicals and are 

evidently responsible for the decreased volatility of the complexes. 

This work was supported by RFBR grant No. 03-03-32115. 
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