Skip to main content
Log in

A Weak Galerkin Method for the Reissner–Mindlin Plate in Primary Form

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new finite element method is developed for the Reissner–Mindlin equations in its primary form by using the weak Galerkin approach. Like other weak Galerkin finite element methods, this one is highly flexible and robust by allowing the use of discontinuous approximating functions on arbitrary shape of polygons and, at the same time, is parameter independent on its stability and convergence. Error estimates of optimal order in mesh size h are established for the corresponding weak Galerkin approximations. Numerical experiments are conducted for verifying the convergence theory, as well as suggesting some superconvergence and a uniform convergence of the method with respect to the plate thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold, D., Brezzi, F., Marini, D.: A family of discontinuous Galerkin finite elements for the Reissner–Mindlin plate. J. Sci. Comput. 22, 25–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D., Brezzi, F., Falk, R., Marini, D.: Locking-free Reissner–Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Eng. 96, 3660–3671 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Falk, R.S.: A Uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26, 1276–1290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Liu, X.: Interior estimates for a low order finite element method for the Reissner–Mindlin plate model. Adv. Comput. Math. 7, 337–360 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.: Korns inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73, 1067–1087 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Fortin, M.: Numerical approximation of Mindlin–Reissner plates. Math. Comput. 47, 151–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Bathe, K., Fortin, M.: Mixed interpolated elements for Reissner–Mindlin plates. Int. J. Numer. Methods Eng. 28, 1787–1801 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, G., Fortin, M., Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner–Mindlin plates. Math. Models Methods Appl. Sci. 1, 125–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chapelle, D., Stenberg, R.: An optimal low-order locking-free finite element method for Reissner–Mindlin plates. Math. Models Methods Appl. Sci. 8, 407–430 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duran, R., Liberman, E.: On mixed nite element methods for the Reissner–Mindlin plate model. Math. Comput. 58, 561–573 (1992)

    Article  MATH  Google Scholar 

  11. Falk, R., Tu, T.: Locking-free nite elements for the Reissner–Mindlin plate. Math. Comput. 69, 911–928 (2000)

    Article  MATH  Google Scholar 

  12. Hansbo, P., Heintz, D., Larson, M.: A finite element method with discontinuous rotations for the Mindlin–Reissner plate model. Comput. Methods Appl. Mech. Eng. 200, 638–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lovadina, C., Marini, D.: Nonconforming locking-free nite elements for Reissner–Mindlin plates. Comput. Methods Appl. Mech. Eng. 195, 3448–3460 (2006)

    Article  MATH  Google Scholar 

  14. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes. Int. J. Numer. Anal. Model. 12, 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285, 45–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mu, L., Wang, J., Ye, X.: A hybridized Weak Galerkin mixed finite element method. J. Comput. Appl. Math. 307, 335–345 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pierre, R.: Convergence properties and numerical approximation of the solution of the Mindlin plate bending problem. Math. Comput. 51, 15–25 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, J., Ye, X.: A superconvergent finite element scheme for the Reissner–Mindlin plate by projection methods. Int. J. Numer. Anal. Model. 1, 99–110 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Wang, C., Wang, J.: A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form. Math. Comput. (2017). doi:10.1090/mcom/3220

  20. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013). arXiv:1104.2897v1

  21. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83, 2101–2126 (2014). arXiv:1202.3655v1

  22. Ye, X.: Stabilized finite element approximations for the Reissner–Mindlin plate. Adv. Comput. Math. 13, 375–386 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ye, X.: A rectangular element for the Reissner–Mindlin plate. Numer. Method PDE 16, 184–193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Mu.

Additional information

Lin Mu’s research is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under award number ERKJE45; and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. Junping Wang was supported by the NSF IR/D program, while working at National Science Foundation. However, any opinion, finding, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. Xiu Ye was supported in part by National Science Foundation Grant DMS-1620016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, L., Wang, J. & Ye, X. A Weak Galerkin Method for the Reissner–Mindlin Plate in Primary Form. J Sci Comput 75, 782–802 (2018). https://doi.org/10.1007/s10915-017-0564-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0564-y

Keywords

Mathematics Subject Classification

Navigation