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Abstract We present the calculation of the coherent spectral functions and density
of states (DOS) for excitonic systems in the frame of the three-dimensional extended
Falicov—Kimball model. Using gage-invariant U(1) transformation to the usual fermi-
ons, we represent the electron operator as a fermion attached to the U(1) phase-flux
tube. The emergent bosonic gage field, related to the phase variables, is crucial for
the Bose—Einstein condensation (BEC) of excitons. Employing the path-integral for-
malism, we manipulate the bosonic and fermionic degrees of freedom to obtain the
effective actions related to fermionic and bosonic sectors. Considering the normal
and anomalous excitonic Green functions, we calculate the spectral functions, which
have the forms of convolutions in the reciprocal space between bosonic and fermionic
counterparts. For the fermionic incoherent part of the DOS, we have found the strong
evidence of the hybridization gap in DOS spectra. Furthermore, considering Bogoli-
ubov coherence mechanism, we calculate the coherent DOS spectra. For the coherent
normal fermionic DOS, there is no hybridization gap found in the system due to strong
coherence effects and phase stiffness. The similar behavior is observed also for the
condensate part of the anomalous excitonic DOS spectra. We show that for small values
of the Coulomb interaction the fermionic DOS exhibits a Bardeen—Cooper—Schrieffer
(BCS)-like double-peak structure. In the BEC region of the BCS-BEC crossover,
the double-peak structure disappears totally for both: coherent and incoherent DOS
spectra. We discuss also the temperature dependence of DOS functions.
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1 Introduction

The attractive Coulomb interaction between conduction band electrons and valence
band holes plays a crucial role in forming the bosonic electron—hole (e-h) bound pairs
[1] (excitons). The Bose—FEinstein condensation (BEC) of the excitons represents a
very interesting subject in solid-state physics. Mostly, the e-h systems are realized in
photoexcited semiconducting materials, and the properties of such systems strongly
depend on the e-h density, temperature of the system, pressure, and other important
physical quantities. There is a number of works, both experimental and theoretical,
where all those effects are investigated intensively [1-6]. A low density system of
excitons behaves like the usual Bose gas, and, at cryogenic temperatures, the BEC
transition can be expected [4,5]. On the other hand, the high density system of bound
e—h pairs behaves like the system of usual Cooper pairs in superconductors [7]. In
this limit, we have the Bardeen—Cooper—Schrieffer (BCS) state of e-h pairs [8,9].
Despite many experimental investigations to observe the coherent exciton conden-
sates [6,10-14], there is not yet definitive evidence for such states. Therefore, an
expected BCS—BEC crossover represents actually a fascinating problem typical to
the excitonic systems [15-20]. Especially, it is interesting from the viewpoint of the
difference from the similar crossover in superconductors or trapped atomic Fermi
gases [21-24]. The transition to the e-h pair condensed phase, in the limit of weak
coupling, is related to the relative motion between electrons and holes [15], implying
the BCS regime and is in contrast to the case of strong coupling regime, when the
BEC state is related to the motion of the center of mass of excitons [15]. In the whole
BCS-BEC transition region, the e-h mass difference leads to a large suppression of
the BEC transition temperature, which is proved to not be same as the temperature
of excitonic pair (EP) formation, and hence the excitonic insulator (EI) phase [15].
Recently, it has been shown theoretically that the excitonic insulator and the excitonic
condensate are not exactly the same states of the matter [15,25,26]. The author in
Refs. [25] and [26] shows from general considerations that in the low density limit
of the excitonic pairs, the critical temperature of excitonic condensation should be
much smaller than the temperature of EP formation, in contrast to the previous treat-
ments, [16-20] where the EI state is ad hoc associated with the BEC state of excitons
as the same. Similarly, in Ref. [15], it is shown that the EI state is an excitonium
state, where incoherent e-h bound pairs are formed and, furthermore, at the lower
temperatures, the BEC of excitons appears in consequence of the reconfiguration and
coherent condensation of the preformed excitonic pairs. Obviously, in the low den-
sity limit, the gas of free excitons undergoes the BEC phase transition at very low
temperatures, and in general, the BEC temperature transition line is not coinciding
with that of EP formation. The Bose condensation of excitonic pairs is possible only
when the macroscopic phase coherence is attended by the system [25]. However, the
experimental evidence of the existence of two distinct transition temperatures, for the
general case of a three-dimensional (3D) bulk system, is yet lacking in the literature.
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In fact, the question, whether a true “coherent” BEC transition is present in the sys-
tem of excitons (in the case of high exciton density limit), is still ambiguous. The
experimental proof of it is a very cumbersome problem, because of the dominant role
of quantum fluctuations at low temperatures kg7 < Eﬁl;, (with Eﬁ}; being the bind-
ing energy of a Mott-Wannier exciton), when very large zero-point oscillations are
present.

The continuing growing interest, to the problem of the coherent excitonic con-
densates, motivates us to calculate excitonic spectral functions and density of states
(DOS), as a direct probe mechanism, to compare the results with the high-resolution
studies of angle-resolved photoemission spectroscopy (ARPES) [27-30], and with
spectral weight measurements on the excitonic materials at the very low temperatures.

The general strategy of our calculations is based on the effective actions method.
First, we transform the initial total action of the system to a gage-invariant form,
by applying the U(1) gage transformation to the fermion operators. As a result, the
electron appears in the theory like a composite object of that of the fermion with the
attached U(1) phase “flux-tube.” The electron factorization in terms of two variables
has an unprecedented impact on the whole theory. Then we integrate out the phase
variables and we get the effective fermionic action in the theory, and we derive a
set of self-consistent equations for the EI state. Furthermore, we discuss shortly the
results of the quantum rotor model obtained after the integration of fermionic degrees
of freedom.

The path-integral formalism elaborated here permits to calculate the correlation
functions in the system and, as a result, we obtain the expressions of normal (both
incoherent and coherent) and anomalous excitonic spectral functions, and shapes of
DOS corresponding. A special attention is paid, when calculating the bosonic phase-
stiffness DOS function, which is negative. Furthermore, it is crucial for calculation of
the coherent normal and anomalous excitonic DOS functions. Namely, considering the
expressions of the bosonic and fermionic DOS functions, we calculate the total, phase-
coherent DOS functions, as convolutions from bosonic and fermionic counterparts.

For the incoherent partial normal fermionic DOS functions at 7 = 0, we obtain
a hybridization gap in the excitation spectra as a direct consequence of the presence
of the Hartree-type gap in the single-particle energy scales. For the case of coherent
normal and anomalous excitonic DOS functions, this hybridization gap is absent totally
for all frequency modes and for all values of the Coulomb interaction. This is due to
strong coherence effects in the strongly correlated fermion system at low temperatures
and at low densities. For the anomalous excitonic DOS function, we found that the
hybridization gap is absent for the case of small and intermediate values of the Coulomb
interaction parameter, but there is a finite constant small gap that is opening in the
strong coupling regime, signaling the passage to the SC (BEC) side of the SC-SM
phase transition (the BCS-BEC crossover).

The paper is organized as follows: in Sect. 2, we introduce the model Hamiltonian
and we discuss the main calculation schemes. In Sect. 3, we describe the EI state, with
a short discussion about important energy scales in the system. In Sect. 4, we present
the analytical calculation of spectral functions and DOS functions of the system in
consideration. At the end of Sect. 4, we show the results of numerical evaluations for
calculated DOS functions.
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2 The Method
2.1 The EFKM Hamiltonian

As the model for study the excitonic condensation at low temperatures, we have chosen
the two-band extended Falicov—Kimball model (EFKM) [16,31-34], due to its large
applicability for treatment of the electronic correlations [37,38]. The Hamiltonian of
the EFKM model is

H=—t > [e@c®)+hec]—i> n)

(r.r)

—tp X 0 +he] + 2L S
(r,r’) r

JFUZ“;1 [nz(r) —ﬁz(r)]. (1

Here, f (r) (c(r)) is the f (c) electron creation operator at the lattice position r,
the summation (r, r’ ) is over nearest neighbors (n.n) sites on the 3D cubic lattice. The
short- hand notations are introduced n(r) = n.(r) +n s (r) and 7i(r) = n.(r) —nz(r)
in order to simplify the calculations. Next, . is the hopping amplitude for c-electrons
and e, is the corresponding on-site energy level parameter. Similarly, ¢ ¢ is the hopping
amplitude for f-electrons and € is the on-site energy level parameter for f-orbital.
For t.ty < 0 (t.ty > 0), we have a direct (indirect) band gap semiconductor. The on-
site (local) Coulomb interaction U in the last term of the Hamiltonian in Eq. (1) plays
the coupling role between two bands. As we will see later on, the strength of the local
Coulomb interaction will tune the semi-metal (SM)—semiconductor (SC) transition
in the system. The chemical potential & is &t = w — €, where € = (ec +€ f) /2.
Naturally, we adjust the chemical potentials 4 r and . in order to maintain the number
of electrons in f and c orbitals separately. Then, the equilibrium value of the chemical
potential 4 = s = ¢ in Eq. (1) will be determined from the half-filling condition,
i.e., we suppose that (n.(r)) + (n 7 (r)) = 1. We will use 7. = 1 as the unit of energy,

and we fix the band parameter values €. = 0 and € y = —1. The Fermi energy level is
assumed to be situated at the level of the c-band, thus e = 0. For the f-band hopping
amplitude 7, we consider the values ty = —0.3 and ty = —0.1 corresponding to

the heavy hole and light hole f-bands. Throughout the paper, we setkg = 1,7 = 1,
and lattice constant a = 1. Also, we keep the frequency symbol v for fermions and
w for bosons, throughout the paper. In the case of degenerated f and c-bands, i.e.,
when €y = €. and 1y = 1., the EFKM model reduces to the standard Hubbard model
[35]. The principal advantage of the EFKM, in comparison with the genuine Falicov—
Kimball model (FKM) [36], is that it is taking into account the direct nearest neighbors
f electron hoppings [37,38] (¢ ) and it can be shown [35] that the EI state is unstable
when the pure FKM is approached.

In fact, the EFKM Hamiltonian in Eq. (1) is equivalent to the asymmetric Hubbard
model, if we associate to the orbitals ¢ and f the spin variables, by replacing the fermi-
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onic Hilbert space with the pseudo-fermionic one and then linearizing the interaction
term via the bosonic states (see in Ref. [17]).

2.1.1 The Partition Function

The Hamiltonian in Eq. (1) is containing two separate quadratic terms and is suitable for
decoupling by functional path integration method [39,40]. We employ the imaginary-
time, fermionic path-integral method, and we introduce the fermionic Grassmann
variables [39] f(r7) and c(rt) at each site r and each time 7 varying in the interval
0 <t < B,where B = 1/T with T being the thermodynamic temperature [41]. The
time-dependent variables f(r7) and c(rt) are satisfying the anti-periodic boundary
conditions x(rt) = —x(rt + ), where x = f orc.

The grand canonical partition function of system of fermions written as a functional
integral over the Grassmann fields is

Zaec = / [DeDe] [DfDf] e S/ 11, )

where the action in the exponent is given in the path-integral formulation in the
form

) B
Slé.e. f. f1= D SB[)E,x]—i-/ dtH (7). 3)

x=f,c 0

Here, Sg| f , fland Sg[¢, c] are fermionic Berry terms. They are defined as follows:
B
SplX, x] = Z/ drx(ro)x(ro), 4)
0
r

and x (rt) = d;x(rt) is the time derivative.

2.1.2 Decoupling of Term Proportional to n*

We will decouple the quadratic density terms in Eq. (1) using the Hubbard-
Stratonovich linearisation procedure [40] and by introducing new variables V (rt)
and o(rt), conjugated, respectively, to the density terms n(rt) and 7n(rt). For the

quadratic term, proportional to n%(rt) in the exponent of the partition function in Eq.
(2), we have

B
exp [_%Z/o drn? (I“L’):|
- s m—i ro)n(re
=/[DV]e = ao] S2-iveomen] 5)
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Furthermore, we combine the exponent in Eq. (5) with the effective chemical poten-
tial term, linear in total electron density n(r) (see the second term, in Eq. 1). Then, we
decompose the variables V (rt) into a static and the periodic part

V(rt) = Vo(r) + V(rr), (6)

where, from time-periodicity of V (rt), it follows the relation foﬂ drV(rt) = 0. As
a result, the integration over variables V (rt) becomes the integrgtion over the scalar
static variables Vp(r) and the integration over the periodic field V (r7):

/[DV]~~=/[DV0]/[D\7]~- )

For the periodic part in Eq. (6), we introduce U(1) phase-field variables ¢ (rt) using
a Faraday-type relation [42]

¢ (r7)
ot

V(rr) = = ¢(r7). ®)

Thus, for the dynamic part, we transform the integration over the gage variables
V(rt), into an integration over generic phase variables ¢ (rt)

/[pf/]...ﬁ/[pqg]... )

The periodicity of V (r7) implies that ¢ (rB) = ¢ (r0). The integration measure,
in Eq. (9), over the variables ¢ is defined as

Jwor-- = [ TTasnco

$r=¢(xp)
x/ [Td¢ao).... (10)
gi=po(r)

where the notations ¢; and ¢y mean the initial and final paths. The path integral
in Eq. (10) could be transformed into path integration over the compact U(1) group
manifold, since the electromagnetic group U(1), governing the phase field, is compact,
i.e., ¢ (rt) has the topology of a circle (S7); thus we have a non-homotopic mapping
of the configuration space onto the U(1) gage group S; — U (1). The paths, which
loop around a circle in different number of times, are in different homotopy classes,
and they cannot be continuously deformed into one another. All these paths can be
characterized by their proper winding numbers [43] m (r). Any two paths which have
different winding numbers cannot be continuously transformed one to another, and
in order to include all possible phase path contributions, we have to sum over all
topologically inequivalent phase configurations described by their winding numbers
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[43]. Accordingly, the path-integral in Eq. (10) is transformed as

/[D¢]~~~=/[D¢]-.-, (11

where the integration measure is now

/ Dyl = > / 2ﬂl_[dsao(r)

{m(r)}

@(xp)=po(r)+2mm(r)
x/ [Tdewr).... (12)
@(r0)=¢o(r) r

In performing the integration over the phase field, one should take into account that
the field configurations satisfy the boundary conditions [43]

@(rp) — ¢(r0) = 2m(r). (13)
Thus, integration over all phases ¢ (rt) amounts to the integration over the S-

periodic field ¢(rt) and the summation over a set of U(1) integer winding numbers
m(r). For the scalar static part Vi (r), we get the following functional integral:

D vy () [ne0-F]

/[DV el dr= (14)
The saddle-point value of Vj(r) is given by
U
VO:iTn—lﬁ, (15)

where n is total average particle density n = n. + n ¢ (furthermore, we will fix n as
equal to 1, corresponding to the case of half-filling).

Thereby, after decoupling of the quadratic term proportional to n? in the Hamil-
tonian in Eq. (1), we get a contribution to the partition function in Eq. (2) in the
form

B
exp [—S el =D /0 drunn(rr)} , (16)

where the emergent phase-only action S[¢] is given as

¢*(rr) 24 .
Slpl = Z / [ - 9 - zgo(rr)n(rr)} (17)
and the effective chemical potential u,, attached to the total density operator in Eq.
(16), is given in the form u, = @ — .
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2.1.3 Decoupling of Term Proportional to i*

The decoupling of the quadratic term proportional to 7i2(rt) in the exponent of the
partition function in Eq. (2) is also straightforward. We obtain

B
exp |:Z/0 dr%fzz(rt)i|
— B e uo ro)i(re
=/[Dg]e el ] -eien| (18)

After combining the expression in the exponent in Eq. (18) with the similar linear
term in the expression of the Hamiltonian in Eq. (1) (see the fourth term in Eq. 1), we
have

€c

o) = -2 sl ==54] "

The saddle-point evaluation for o gives

Un e —¢f
0= ">~ '

2 2 7 (20)

where n = (n(rt)) is the average of the particle density difference function. As a result
of the decoupling, we obtain a “Zeeman”-like contribution to the partition function

B
exp [_Z/o druﬁﬁ(rr)i| 20

with the attached effective chemical potential u; = % — %’7

2.1.4 Linearized Action with Phase-Field Contribution

To summarize, the grand canonical partition function of the system, after of both
procedures of decoupling, is

Zoe = / [DEDc][DFDf] [Dg)eS1E T F91, (22)

where the action S[¢, ¢, f, f, ¢] in the exponent is given by

Sté.c. f, f,91=Slol+ > Spl¥, x]

x=f,c

B
— 1 Z /0 dr [e(rr)e(’t) + h.c.]

(r.r)
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B _
—tf Z / dt [fro) f(x't) + h.c.]
(r,r’) 0
B
+ Z/ dt [pan(re) + pai(ro)] . (23)
r 0

After the Hubbard—Stratanovich linearisation, we got the total action of the system
that is linear in terms of fermion densities and contains in addition a phase-dependent
term S [¢], and also the terms, proportional to the effective chemical potentials p,,
and u;.

2.2 The U(1) Transformation

In the perspective to treat the local and non-local correlations in our excitonic system, it
is important to separate the U(1) gage degrees of freedom related to the phase sector.
To this end, we perform the local gage transformation to new fermion Grassmann
variables f (r7) and c(rr). Meanwhile, this procedure will automatically eliminate
also the last imaginary term, appearing in the expression of the phase action in Eq.
a7.

For the electrons of f and c-orbitals, the U(1) transformation is

B B i ©4)

x(r7) x(rr)

where LAI((p) is the U(1) transformation matrix L?(gp) = [ -cos @(r7) +i6; - sinp(rr)
with the unit matrix 7 and 0, being the Pauli matrix. The variables ¥ = f , ¢, and
we used the bosonic phase variables ¢ introduced in Eqs. (11) and (12). After trans-
formations given in Eq. (24), we obtain the total action of the system in the U(1)
gage-invariant form (for comparison, see the action in Eq. 23 before transformations)

SIE.e f. fool =Solgl+ Y. Sa[%. ]

x=f¢

ﬂ —_ . /
—t E / dr [E(rr)é(r’r)e"[‘p(”)_‘”(r ol ¢ h.c.]
0
(r,r’)

IB - ~ . /
—52/ dr [f(rr)f(r/r)e—’B"(”)—w(rf>]+h.c.]
( 0

r,r’)

B
+>] /O dt [pan(ro) + pai(ro)] . (25)

Now, 7 and ¢ in Eq. (25) are, respectively, f -band and c¢-band fermion transfer
integrals. We got in Eq. (25) also, a new, emergent, quadratic phase action Sp[¢]
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Fig. 1 Functional integration
procedure. The final actions are
obtained after phase (for the EI
state) and fermion averaging (for
the phase stiffness and excitonic
condensate) (Color figure
online)

Sle.c.f. 1]

| U(1) gauge transformation

S[c’c5f5f5¢]

Gap, El transition: Ty Exchange corr. J
= = Excitonic-condensate: 7"
C c

S ql¢.e.f.f] S o]

.
Sl =3 / [(’) o) _ l‘jc@(rr)] (26)

The partition function of the system in the new variables f and c is

Zee =/[DEDE] [Dfo] [Dg] e~ SEe.T .0l 27)

From this form of the partition function, we will generate the effective actions for
fermions and for bosonic phase sector (see the general procedure presented in Fig. 1).

3 Effective Action for Fermions

By following the left-lowest root, presented in Fig. 1, we will integrate out the phase

variables. We obtain

Z= / [DED&] [D D f] ~Senlé e [ 1T (28)

where the effective, phase-averaged fermionic action in the exponent is

Serlé. & f. fl=—In / [DoleSEe1 701, 29)

The Fourier transformation of fermionic variables f and ¢ is

x(rt) =

@ Springer
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where N is the number of lattice sites, and v, = w(2n + 1)/ are the Fermi—Matsubara
frequencies [41] withn =0, =1, £2, .. ..

Then, the effective phase-averaged fermionic action of the system in the Fourier
space takes the following form:

Seff [5» c, f f] = /SLN Z I:ék(vn)v f:k(vn)]
kv,

-1 {k(”n)
x G7(K, vy) |:fk(l)n):| . a3

Here, G~} (k, v,) is the inverse of the Green function matrix

_ EC(va) —A
kv = ¥ : , 32
Gk, vn) (_A E.{(vn)) (32)

where we have introduced the local excitonic order parameter A = <5(rr) f (rr)>.

The single-particle Bogoliubov quasienergies El{ (v,) and El‘;'(vn) are El{ (vy) =
€ —ivy — 1k and Ef;(vn) = & — iv, — tx. Next, 7 and f are band-renormalized
hopping amplitudes fix, = 27gpyk and fx = 2tgpYyk, wWhere gg is the 3D bandwidth
renormalization factor

op = <efi[w(rr>f<p<r’r>]> (33)

9
[r—r'|=d

and yx is the 3D lattice dispersion yx = cos(kydy) + cos(kydy) + cos(k.d;), with d,,
(¢ = x,y, 7), being the components of the lattice spacing vectord = r — r’ with r
and r’, being nearest neighbors site positions. For the simple cubic lattice, we have
dy =a=1.

The quasiparticle energies € 7 and €; are of Hartree type, and they are defined
in the theory by relation €; = €; — u + Unj + i (¢(rt)), where y means orbital,
opposite to x. The EI low-temperature phase is characterized by the local excitonic
order parameter A. Without any loss of generality, we can suppose the case of the
EI state, with uniform real gap parameter A = A. The EI state develops from local
on-site electron—hole correlations. The expectation value, given in the expression of
local EI order parameter, could be calculated in the frame of path-integral method, as

well as the fermion density averages of the respective band levels n; = <§ (ro)x (rr)).

We get a set of the coupled self-consistent equations for the EI order parameter A,
single-particle fermion densities nz, and EI chemical potential p

1
5 2L EO+FED] =1, (34)
k
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.1 FED) — f(EY)
n=—» §f —Fp——, (35)
N Zk: VEE+4A2
+ _ —
__UA SEY) f(Ek). (36)

NS JgEvan?

Here, f(€) = 1/ (ef€ + 1) is the Fermi-Dirac distribution function, £ = —fic + & +
Ik — € 7 is the quasiparticle dispersion, and the energy parameters E;’ and E, are
defined as

1 - /
E?:E(—tk—i-gg—tk—i-ejzi E§+4A2). 37

In fact, the difference between Eqs. (34)—(36) and the Hartree—Fock results [20] is
in the presence of bandwidth renormalization factor gg. The calculation of the factor
gB (r —r ) could be done effectively within the self-consistent harmonic approxima-
tion (SCHA) method [44—46]. In this approximation, the quantum rotor description is
reduced to classical Hamiltonian one by the Feynmann-Kleinert minimization proce-
dure [44,45]. Our results for SCHA show that the factor gp is equal identically to 1 at
T = 0 as in the two-dimensional (2D) case (see in Ref. [44] for details). For higher
temperatures, it differs from unity, but not much.

The difference between the energy parameters in Eq. (37) defines the charge transfer
gap in the system A, = El‘: —E =, /Elf + 4AZ (see in Ref. [47] for details).

The numerical solution of the system of equation Egs. (34)—(36) is discussed
in detail in Ref. [47], where finite-difference approximation method is used in
numerical evaluations. Different values of # hopping amplitude are considered there.
The results are coinciding well with the previous Hartree—Fock (HF), improved
slave boson, and 2D constrained path Monte Carlo investigations [15-20,32,33].
This good correspondence is ascribed to a rather weak band renormalization at
T = 0 (in our case gg = 1). At finite temperatures, the particle number fluc-
tuations are important and the band renormalization becomes necessary, especially
when approaching from the band insulator (BI) high-temperature side. Indeed, as
the numerical evaluations show, the transition temperature Tgy of the e-h pair for-
mation is not vanishing for the case of the vanishing narrow band hopping =
0.

The exact solutions for the chemical potential could be obtained from Egs. (34)—
(36), both at the boundary of EI transition (i.e., when A (Tgj, U) = 0) and in the EI
state region (A (T < Tgr, U) # 0). The results are discussed in Ref. [47].

Meanwhile, it is also shown in Ref. [47] that the excitonic BEC transition critical
temperature 7, is much smaller than the critical temperature 7g; of the excitonic pair
formation, in good agreement with previous theoretical predictions [15,23-26,44,48].
The self-consistent numerical solutions for Tg; and T, are shown in Fig. 2 for f =
—0.3. It is clear that, for the case of intermediate and strong interaction limits, the
coherent BEC transition critical temperature 7, is smaller of about two orders of
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Fig. 2 EI transition critical T ' T T '
temperature Tgy/t, (upper ~
curve) and excitonic BEC 1.0} ¢ =-0.3 T/t
transition critical temperature

T¢/t (lower curve) for the 0.8
f-band hopping 7 = —0.3.
Different phase separation
regions are shown in the figure.
The data for the lower curve
were taken from Ref. [47] 0.4
(Color figure online)

EI state

T/t x 1072
Condensa:e\‘\\\

0 2 4 6 8 10

BI state
0.6

T/t

0.2

0.0

magnitude than temperature 7gr. Contrary, in the very small interaction case, we have
the coincidence of both transition temperatures. This result is expected also from
general considerations, because at small U/t, we are in the BCS limit, which means
that the pairing and condensation occur simultaneously.

A similar effect is found recently in Ref. [44], considering 2D excitonic systems,
where the exciton-superfluid transition critical temperature is found much smaller
than the critical temperature Tgy of exciton pair formation. Such a reduction of the
transition temperature, due to the coherent pairing scheme, is given also in Ref. [48],
where the BCS—Bose crossover is studied in the 2D attractive Hubbard model. Espe-
cially, a HF pair formation temperature is estimated, which corresponds to the regime
of the incoherent or local pairs (for a comparison, see the correspondence to our
Tgr1, and order parameter A, which is also local), in difference with superconduct-
ing pairing temperature, at which the coherent Cooper pairs start to be formed. The
general idea used in Ref. [47] is based on the non-local n.n. excitonic exchange cor-
relation mechanism and Bogoliubov’s mean-field self-consistency assumption [49]
for the effective phase action obtained after fermion integration procedure in the
action in Eq. (27) (this is represented by the right-lowest root in Fig. 1, given in
Sect. 2.2). The obtained Hamiltonian for the phase sector is very similar to the clas-
sical Hamiltonian one, [44-47] with an effective phase-stiffness parameter J that
emerges after the fermion Wick averaging procedure [41]. The corresponding phase
action is [47]

B
Sy el = —2JgB -/0 dr Z cos [p(rt) — o(x'1)]. (38)

(r,r’)

It appears that the non-zero value of quantity J is directly related with the pairing gap
A, since it is shown [47] that J vanishes, when A = (. Here, we present only the final
analytical result for J (for details see in Ref. [47])

@ Springer



308 J Low Temp Phys (2015) 178:295-330

2.7 / +
j = 168 < e e (K) [Al(k,k’)tanh(%)

272
z“N kK /El%+4A2

Ak K) tanh(ﬁ%)} , (39)

where z is the number of n.n. sites on the 3D lattice. The parameters A (k, k") and
As(k, k) entering in Eq. (38) are given by Aj(k, k") = (E*(k) — E+(k’))_] .
(ET(k) — E~(K)) "', Ak, K) = (E-(K) — E~(K)) ™" - (E~(k) — E*(K)) .
Also, J is strictly positive for all the regions of the normalized Coulomb interac-
tion parameter U/¢. In addition, it follows from the analytical form of J that the
macroscopic phase coherence in the system is characterized by an energy scale
J ~ t, - ty/(t, + tp) for all values of the Coulomb interaction parameter U. This
is related to the motion of the center of mass of e-h composed of quasiparticle [15],
because t, - t,/(te + ty) ~ (m, + mp)~ L. For the strong interaction case, we are
converging with the hard core Boson model, with the kinetic energy scale Aft, - t;,/U
(with A being the local excitonic order parameter). Thereby, it is shown in Ref. [47]
that non-local correlations between the electrons and holes of different n.n. excitonic
pairs are related with the excitonic BEC condensation. Furthermore, in the frame of
the quantum rotor model, the excitonic BEC transition probability function is derived
and its temperature dependence is found [47].

As a systematic continuation of the theoretical study given in Ref. [47], we elaborate
here on the analytical forms of normal, f and c-band, Green functions (incoherent and
coherent) and coherent, anomalous excitonic Green function. Also, we will discuss
in detail the spectral functions and DOS corresponding, in the next. The numerical
evaluations of calculated DOS functions are shown in Sect. 4.4.

4 Single-Particle DOS

4.1 Normal and Excitonic DOS Functions

The spectral density functions of the system of interacting exciton gas will deter-
mine the excitonic center-of-mass distribution related to the condensation in the low-
temperature limit. Therefore, the calculation of these functions represents an important
task. Within our theoretical approach, we can access a variety of correlation functions
in the system. We will concentrate now on the c- and f-band normal spectral functions

and also the excitonic anomalous spectral function, represented in terms of the initial
operators. The c- and f-band normal excitonic Green functions are

Gyx(rt,r't') = —(x(r0)x(x'7)), (40)
and the anomalous excitonic Green function is defined as

Ger(re, v't') = (err) f(r'T)). (41)
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After introducing the U(1) transformations, defined in Eq. (24), we will have the
Green function’s decomposition as

Gyx(rt, r'7) = —<)z (r1)i (ﬁ’)) : <e*" [‘f’(”)*w(r/”]}, 42)
Gef(rr, r't)) = <E‘(rr) 7 (r'r’)> . <e—" [¢<">—<0(’/f’>]>. (43)

The phase factors, appearing in the definitions of Green functions, define in fact a
charge-bosonic propagator G, (rz, r't’) as follows:

G, (rr, r/r’) - <e—" [ﬂ"(”)—WT’)]). (44)

Then, we pass to the Fourier space representation for the U(1) - transformed Green
functions

~ 1 ~
Gas(rer'v) = 55 3 Gastiw)

k,v,
% ei[k(r—r’)—vn (T—'L’/):I’ (45)
Géf(l'l', r/t’) = ,BLN Z G&F(k, Vn)
k,v,
% ei[k(r—r’)—vn (T—'L’/):I (46)
and
G.(rt,r't) = ﬂLN > Gk, wn)e"["(“”)*w" ()] A7)

k,wn

Furthermore, the Fourier transformation of the functions in Eqgs. (42)—(43) will be
rewritten as a convolution in the reciprocal k-space

1 ~
Gxalkovn) = 2 > Go(q. ) - Gxx(k—q.va — o) (48)
q,wpn
and
1 -
Gerk,vy) = ﬂ_N qzw G; (q’ wn) ’ Gé,f(k —q,Vn — wn)' 49)

It is worth to mention that frequency summations in Eqgs. (48) and (49) are over
Bose—Matsubara frequencies w, = 2wn/f. The Fermionic Green functions will be
calculated using the formalism discussed in Sects. 2 and 3 and also, functional deriva-
tion techniques [39]. Particularly, for the f- and c-band Green functions ég,g(k, Vi),
we get
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Gz (k, ivy) = (% (K, v;) % (k, vy))
E) ()

- B . (50)
Ef (1) By, (v) — A2

In general, the experimental observation of hybridization between the valence band
and conduction band could be done by examining the ARPES spectra, which measure
the spectral intensities just above and below the temperature Tg; of excitonic pair for-
mation. In ARPES experiments, one observes the imaginary part of the real retarded
Green function; therefore, the calculation of it represents a remarkable importance.
Indeed, the single-particle DOS is related with the imaginary part of the retarded Green
functions, and thus we need to calculate real retarded function, which corresponds to
the normal Matsubara Green function Ggg (k, iv,). This could be done by the ana-
Iytical continuation into the upper-half complex semi-plane (v, > 0) of frequency
modes iv,

GFk,v) = Gy (K. iva)liv,—vrin- (51)
The single-particle DOS is defined then as
1 ~R _ - 2
rzx K, v) = - Im Gy (k,v) = (e; — 1t — v)
x8[<v2+Akv+Bk) . (é; —fk—v)], (52)
where
Ak=tk+l~k—€;—éy (53)
and

By = &xé5 + 41 [cos(ky) + cos(k,) + cos(k,) ]
— 27é; [cos(ky) + cos(ky) + cos(k.)]
—2t€5 [cos(kx) + cos(ky) + cos(kz)] — A% (54)

k-summed DOS will be

1
prs(v) =+ ; pzx (K, V). (55)

The summations over the wave vectors in Eq. (55) can be simplified by introducing
the appropriate DOS function for the 3D cubic lattice p3p(x) = % Dk — no).
Then, it is not difficult to show that
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+3.0 - =y 12
pis () = / . depsp (o [T V]

VE(x) +4A2

5[v— E* ()] 8[v—E~ ()]
, ) ! . 56
[|Ey —i — Er @l 1 — ) — E- (o) oY

Here, 7 (x) = 2fx and ¢ (x) = 2¢x, and the energy parameters £ (x) are continuous
versions of parameters defined in Eq. (37). The DOS p3p (x), for the simple cubic 3D
lattice, is given by

1 min(1,2—x) ® (l - %)
pap(x) = — / dy——=~
max(—1,—2—x) 1—y2

xk|: 1-(%%)2}, (57)

where ® (x) is the Heaviside step function, and k(x) is the elliptic function of the first

kind: k(x) = 7% d1/y/1 = x2sin® 1.

For the anomalous excitonic Green function, we have

~ . = ~ A
Ge 7 (. ivn) = (06, v) Fk, vp)) = ——— SEENE!
El)é (vn) E; (vp) — A?
The retarded function, which corresponds to it, is then [41]
GE 7k v) = Gy 5 (K, ivp) liv, > vein. (59)
The single-particle DOS is forthcoming then as
1 -
p: 7 (k,v) = ——ImGF ~(k,v):A-8(v2+Akv+Bk). (60)
5 T ¢, f

Obviously, it has more simple form than the function in Eq. (52). The k-summed
DOS for excitons will be

(61)

Peiv) = A- [pw (A1) p3p [Az(V)]]
¢t - ,

i (AT [x2 [A2(0)]]

where the dimensionless parameters A 2(v) are given by following expressions:

- [(r +1)v— (é5f+ Ef.t)] + \/[(t — v+ (égf— Eft)]z + 4tf|A?

A1(v) = a7 ,
(62)

@ Springer



312 J Low Temp Phys (2015) 178:295-330

_ [(t +i)v— (égr"+ Ej:t)] —_ \/[(z — v+ (ng—éft)]z NG

A = =
2(v) Att

(63)

and the functions x; [A1(v)] (i = 1, 2), in the denominators in the right-hand side in
Eq. (61) are

XA =2 (1 + 1) v + 8tFA 1 (v) —Z(ng-i- E};t) (64)
and
K2 [A2()] =2 (1 + 1) v + 8T Az (v) —2 (ng—i— Eft) . (65)

Now, turning to the convolution forms for total fermionic and excitonic Green
functions in Egs. (48) and (49), we need an explicit expression for the phase-bosonic
Green function G, (k, w,). We will calculate it in the formalism of the effective phase
action given in the quantum rotor model, discussed earlier in Ref. [47], where we
have derived the effective phase-only action Sefr[¢] by integrating the fermions in the
partition function in Eq. (27). In the following, we cast Sefr[¢] into the quantum rotor
representation [47].

4.2 The Phase-Stiffness DOS

To proceed, we replace the phase degrees of freedom with the complex, unimod-
ular field z(rr) = /¥, which satisfies the time-periodic boundary condition
z(rB) = z(r0). The spherical constraint, imposed on a set of the unimodular vari-
ablesis 1/N >\ |z(rt)|> = 1. Now, we introduce these new variables z(rt) into the
partition function in Eq. (27), in a way, consistent with the Faddeev—Popov ghost-field

method [50]
/DZDZ(S( Z Iz(rt)l2 — N)
x 8 (z - e"‘/’“f)) 5 (z - e—l"ﬂ(m) — 1. (66)

The phase—phase propagator G, (rz, r't’) will be rewritten in terms of z(rr)-
variables as follows:

G (rt,v'7) = (:(r0)Z(r'7))). (67)

Furthermore, the variables z(rt) play the role of the phase-flux attached to the
fermions (see discussions in Sect. 2). In general case, the local expression of the
phase—phase correlation function in Eq. (67) is equal to unity, but, at very low tem-
peratures (especially at 7 = 0), this law breaks down, because we have to consider
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the symmetry breaking related to the bosonic sector; thus, critically, we have fluctu-
ation form z(r7) = (eiw(rr)) + z(rt), and the unimodularity constraint for z-field is
violated.

Indeed, in the very low-temperature limit, considering the BEC of excitons, we
have the spontaneous breaking of local U(1) gage symmetry, related to the phase field,
leading to the non-vanishing expectation value of the (ei‘/’ (rt)). In order to demonstrate
this, we separate the single-particle states k = 0 via the Bogoliubov displacement
operation (see for details in Refs. [1,47,51]). This is so-called Bogoliubov phase
coherence mechanism discussed in details in Ref. [1]. Then, we write for the complex
variables z(k, w,)

z(k, wp) = BNY0k,000,,0 + Z(K, @p) (1 = 8k,0) X (1 = 8,,0), (68)

where Vg is the BEC transition amplitude vy = (z(k, w;,)). Next, z(k, w,) are the
excitation part [54] (on-condensate) of effective bose-field. The Fourier transformation
of the phase-phase propagator G, (rz, r't’) in Eq. (47) is

1
G (ko) = ﬁ—N<z(k, wn)Z(k, a),,)>. (69)

We consider the expectation value (z(k, w,)z(K, w,)) in the local limit, i.e., when
d=r—r'=0and t — " = 0 and we should draw the condensate part, by applying
the transformation in Eq. (68). Hence, we have

1
G- (k. ) = ﬁ—N<z(k, on) 2k, )

= BN Yol - 8k,08w,.0 + G (K, @n). (70)

Thereby, in Eq. (70), we have defined the coherent macroscopic state for the exci-
tonic system in the low-temperature limit, and an excitonic BEC is expected in the
next. The Fourier Green function G, (k, w,), defined in Eq. (47), could be calculated
within the quantum rotor model, and we give here only the final result (for details, see
in Ref. [47]).

1

ek on) = S o) —4Te) — %

(71)

where y ~!(w,) is the inverse of the Fourier transformation of the two-point phase—
phase correlation function [47]. We have

-\ 2

) ] +00 7%(,71727#)

Y Wn) = - ] NETR
UZy me—bo | — 16[1‘(3” . % (m . 2#)]

(72)
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where Zj is the partition function of the non-interacting Bose sector
400 U ( zﬂ)z
(73)

m=—00

The summations, in Eqs. (72) and (73), run over topological winding numbers m
of the group U(1). Now, the local constraint on the z-variables will be rewritten as

1
1= [yl = N D Gak wp). (74)
K#£0
a)n#o

Putting here the expression of the Fourier transform G, (k, w,) from Eq. (71) and
performing the Bose—Matsubara frequency summations in Eq. (74), we obtain the
equation

ng (C1k) — nB (2k)
24+ 2UgpJ [€(0) — e(K)]

U
1= Yol = — (75)
’ 4N§\//l

where np (¢€) is the Bose—Einstein distribution function ng (¢) = 1/ (eﬁé — 1) and the
variables 1k and {>k are defined as

fok = —[L — (—1)“\/112 +2UJg [€(0) — e(K)]. (76)

Here @ = 1, 2. We see also that at the fundamental state with k = 0, there is a
residual gap

AW =21 (0) — 52 (0) = 2|4 (77)

developing, which is related to the condensate state. It equals exactly the binding
energy of a molecule in the BEC limit Eping ~ |2/] [52,53]. In fact, we have obtained
in Eq. (75) a useful relation from which we can get the critical temperature 7, of the
excitonic condensate phase transition. Putting |o|> = 0 (thus passing to the critical
line of the excitonic condensate phase transition) in Eq. (75), we obtain the equation
for T,

U Z ng (1x) — nB (L2k) _
AN 4 V2 +2UgpJ [€(0) — e(K)]

(78)

The solution for T, for the hopping amplitude 7 = —0.3 is plotted in Fig. 2 in
Sect. 3. For more details about the discussion of the phase diagram obtained, please
see in Ref. [47].

The retarded bosonic Green function [54] is related to the Matsubara Green function,
by the analytical continuation
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GR(k, 0) = G, (K, iwn)liwy—wrin- (79)

And the k-summed DOS for bosons reads as

1
pol@) = —— Zk:Im GR(k, w). (80)

After non -difficult algebraic manipulations and replacing the summation in Eq.
(80) by integration with the help of 3D DOS p3p (x) = % >k 8(x — o), we get

po(@) = _/+°° g U@ | Slo— k)]
: oo 4 Vi +4U7T (3 —x)

3 [w — Kk2(x)]
JiZ+4UT G —x) |

81

where «;(x) i = 1,2 are given by the following relations kj2(x) = —pg =+
\/ % 4+ 4UJ (3 — x) and the stiffness parameter J is given in Eq. (39) in Sect. 3. As
it could be expected, the Bosonic DOS function Eq. (81) is negative p,(w) < 0. This
is consistent with the general considerations of the weakly non-ideal Bose gas [54].

4.3 Spectral Density Functions and Fermionic DOS

Furthermore, we separate the condensate modes {q = 0, w,, = 0} in Egs. (48) and
(49). We have

Grx (K, vn) = |¥0l* - Gz (K, vy)

+-1 3 Gua o) Grstk ) ()
— . ~ ~ — ]) —
,BN Z q’ Wy X, X q’ n Wp

q7#0

Wy, #0

and

Ger(k, v) = [Yol” - Gy (K, vy)

1 ~
— > G.(q. ) Gk — q, v, — ). (83)

+,3N

As we see, the normal and excitonic propagators are composed of two parts, one
responsible for the condensate state and the other on condensate excitation part (see
discussion in Ref. [54] for the case of the pure Bose gas). Note also that first terms in the
right-hand sides in Eqgs. (82) and (83) consist of the condensate-transition probability
function ||, multiplied with the fermionic propagators G z(k, v,) and G af (k, vy).
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Now, we are ready to calculate the analytical forms of the normal excitonic spectral
functions Ay x(k, v) (x = f, ¢) and anomalous excitonic spectral function Ac r(k, v)
and, later on, the profiles of the respective DOS, including states of the condensate.
We introduce here the spectral functions Ax x(k, v) and A¢ (K, v) that carries the
same physical information as the correlation functions Gy x(k, v,) and G¢ (K, vy).
We have

+0o0 A k /
Gyx(k,vy) = / dvJ (84)
—00 v, — v
—+o0 A k ’
Ger(k, vy) = ay Aetle V) (85)
’ 0 iv, — Vv

The integration here is over continuous frequencies. Note that Gy x(k, v,) and
G r(k, vy,) are total fermionic Green functions, including also the convolutions with
bosonic parts. In the same way, we can introduce the spectral functions A, (k, v),
Az z(k,v) and Aé’f(k, v), associated with the charge and the pure fermionic parts
(without bosonic sector). They correspond, respectively, to the correlation functions
G (k, wy,), Gz z(k, v,) and Gé’;(k, V). We have the following equations for these
counterparts:

G.(k, w,) = / m dv’?;L’Vv/?, (86)
o n —
Gzz(k, vy) = /+Oo dv//?j(—k’vv//) (87)
o y —
and
Geik, vy) = /;Oo dv’%. (88)

Using these definitions, we get for the total spectral density functions Ay x(k, v)
and A r(k, v) (see Appendix)

Axx (K, v) = [Wo]* - Az z(k, v)
1
-y 2 [ @ Ak - g - )

q#0

x [n0) + f0 =] (89)
and
Ac (R, v) = [yl - Ag (K, v)
_ % Z/dv/Az(q, V) Ag ik —q, v — )

q#0

x [nO) + fv =] (90)
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The proof of these relations is given in Appendix. From the spectral functions, we
can obtain the corresponding DOS, by summing over the reciprocal wave vectors K;
hence, the total DOS are px,x (V) = % > Axx(k, v) and pe s (V) = & > Ace(k, v).

Furthermore, using the expressions for Ay x(k, v) and A ¢(k, v) in Egs. (89) and
(90), we get for the total DOS functions

pxx (V) = [Yol* - px (V) + px (V) oD

and

pe.i(v) = Yol - pg (V) + B (V). (92)

where p5 z(v) and p; ;(v) are DOS, corresponding to the excitation part of the sys-
tem and are given, as convolutions, in terms of continuous frequency modes (see
Appendix)

+00
Bea(v) = — / v 0. (V)pss (v — V')

—00

X [n (v’) + f (v - v’)] (93)
and
+00
/36,?(‘}) = _/ dv/pz(v/)/)aj(v —)

X [n (v/) + f (U - v/)] . (94)

A key feature of the results in Eqs. (A.4) and (92) is that we have separated DOS
contributions coming from the condensate and excitation parts. We define also the
total DOS function as

p) = D" pux(v). (95)
x=f,c

In Sect. 4.4, we present the numerical evaluations of all discussed DOS functions.

4.4 Total DOS Functions

Employing Egs. (56), (61), and (81), we can obtain the explicit analytical expressions
for DOS functions in Eqgs. (A.4) and (92). For the normal f- and c-band excitonic
DOS functions, we obtain

Pxx (V) = |0l - pzz(v)

+3
U / " p3p(x)
3 4/p24+4UJ(3—x)
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x {pzx (v — k1 (X)) - [n (k1 (%) + f (0 — Kk1(x))]
+ prx (v — k2 (%) - [n (k2 (%) + f (v — k2 ()]} (96)

For the anomalous excitonic DOS function, we have

pe.f(V) = 1%ol* - pg (V)

+3
—U/ dr P3D(x)
3 4/R2+4UJ (3 —x)

X {pa,; (v =K1 (x)) - [n (k1 (x) + f (v = Kk1(x))]

+ pep (v —K2(x)) - [n(k2(x)) + f (v — Kz(X))]} . 7)

The numerical evaluations of calculated DOS functions at 7 = 0 are given in
Figs. 3, 4, 5, 6, and 7 for f = —0.3. The presence of singularities in the integration
region causes that we used an adaptive 21-point integration routine combined with
the Wynn e-algorithm [55] to calculate those integrals numerically. The accuracy for
adaptive evaluations is achieved with an absolute error of order of 10™* and with a
relative error of order of 107,

Particularly, in Figs. 3 and 4, we have presented purely fermionic normal single-
particle (incoherent) DOS px (). We examine their behavior over the entire BCS—
BEC crossover region (i.e., for different values of the Coulomb interaction U). An
artificial Lorentzian broadening n = 0.01 is used in numerical evaluations for the
incoherent partial and total DOS functions of f-and ¢ -orbitals. The chemical potential
values are inserted along the upper-bound (4., Where they are maximal (see in Ref.
[47]). The principal reason of it is that the BEC transition amplitude y¢ has no physical
solutions along the lower-bound i, of the chemical potential. On the other hand,
the values pmax are most convenient, because they are minimalizing the Hamiltonian
of the system. Furthermore, as the reference for the coherent BEC transition ampli-
tude |o|?, we considered the self-consistent calculation results from the work in Ref.
[47], where this function is calculated both analytically and numerically for different
values of the Coulomb interaction parameter U and for different temperatures, includ-
ing the zero temperature limit. We use here the numerical data, which are evaluated
there.

We see in Fig. 3 that in the small interaction limit, when 2 < U < 6 (i.e., the BCS
limit), the incoherent excitonic DOS exhibits a BCS-like double-peak structure (see
the panels I-III in Fig. 3) and the peaks are separated with a well-defined hybridiza-
tion gap. The principal reason of it is the non-vanishing Hartree-gap Ay # 0 in the
single-particle energy-spectrum discussed above, in Sect. 3. The hybridization gap
is proportional to the parameter U, and it is increasing with the increase of para-
meter U. We observe also that the peaks become more separated when increasing
of U. In the strong interaction limit, this displacement is stabilizing and we have
practically constant value of the hybridization gap, when further increasing the inter-
action (see the panels I-III, in Fig. 4). The results in Figs. 3 and 4 are very similar
with the previous theoretical results [15,20,52,53]. Especially, they are close to those
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Fig. 3 Single-particle normal
DOS functions (incoherent) for
different values of the Coulomb
interaction parameter U and for
the case ' = 0. In panels I-111,
%= f and ¥ = ¢ partial DOS
structures are shown, and total
DOS is plotted for f = —0.3.
The chemical potential values
are also shown in each panel
(Color figure online)
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Fig. 4 Single-particle normal 2.0 — T " .
DOS functions (incoherent) for 1 !
different values of the Coulomb i U =8
interaction parameter U and for ) ! _
the case T = 0. In panels -1, ST ! Mmax = 3.46 ]
X = f and X = ¢ partial DOS | n=0.01
structures are shown, and total ? !
DOS is plotted for 7 = —0.3. % 10l i ——— Total DOS
The chemical potential values ] | L
are also shown in each panel < 3 [ orbital
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Fig. 5 Condensate part I
| Y |2 - p~ 7 of the anomalous a
0. N ¢.f R R . Anomalous—DOS
excitonic DOS function given in 15
Eq. (97), for different values of
the Coulomb interaction
parameter U and for the case >
T = 0. The case f = —0.3 is S 10 _ U-=18
considered here, and the values S
of the functions |W0|2 were N—o
taken from the work in Ref. [47] > = U=3
(Color figure online) 05 - 1
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Fig. 6 Total phase-coherent 05— T T
normal DOS function p(v)
given in Eq. (97) for different !
values of the Coulomb 04+F | B
interaction parameter U (U = 4, 1 — U =4
U=6U=8U=09, | — uv-¢
U = 10.4 in the figure) and for 03} _ U—s 1
the case T = 0. The case |

f = —0.3 is considered here, and
the values of the functions |g|2 02t — U =104
were taken from the work in

Ref. [47] (Color figure online)
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presented in Refs. [17] and [20], where the partial incoherent f- and c-band normal
DOS functions, and total DOS is calculated using HF and SO(2)-invariant slave boson
approaches.

In Fig. 5 (see the panels a—c), we have shown the coherent condensate part of the
anomalous excitonic DOS given by the first term in the right-hand side in Eq. (A.4),
corresponding to the fundamental state (k = 0). Different values of the Coulomb
interaction are considered, including the small and strong interaction cases. Here, we
observe again the double-peak fermionic structure, but there is no the hybridization
gap for the small and medium values of the Coulomb interaction parameter (see the
panel-a and panel-b in Fig. 5), and we have an infinite number of states for all values
of the frequency modes v. This is due to the coherence effects and the presence of
the coherent excitonic condensate at the fundamental mode v = 0. For higher values
of U in Fig. 5 (see the panel-c), this double-peak structure in DOS is smoothing, but,
in contrast to the incoherent normal DOS behavior (see in Figs. 3, 4), here a small
Mott-gap appears at the very high values of the Coulomb interaction parameter (see
the DOS curves for U = 8 and U = 9.6 in the panel-c in Fig. 5). This is due to the
fact that the very strong Coulomb interaction has a destructive role on the condensate
state and, in the large-U limit of interaction, we have the destruction of the excitonic
condensate, and a very small Mott-type hybridization gap is enhanced. In this region
of the interaction, we have the coherent exciton DOS separation into two separate
parts, similar to the case of the incoherent DOS functions in Figs. 3 and 4.

In the positive (negative) frequency regions, the DOS spectrum in Figs. 3,4, and 5 is
slightly displacing and broadening into the direction of higher (smaller) frequencies,
for both normal (incoherent) single-particle fermionic and coherent excitonic DOS
functions and, for both, we observe also a gradual decrease in the DOS amplitudes,
across the whole BCS-BEC crossover region, when increasing the Coulomb interac-
tion parameter U. In Fig. 6, we have shown the total coherent fermionic DOS functions
p(v), given by Eq. (95), for different values of the Coulomb interaction parameter U
and in the limit of zero temperature. An artificial Lorentzian broadening n = 0.01 is
again used during the numerical calculations. Contrary the case of the incoherent DOS
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Fig. 7 Incoherent (in green)
and coherent (in black) normal
DOS functions for the c-band
and for different values of the
parameter U (U =4 in a,

U =6inband U = 8inc¢). The
case f = —0.3 is considered here
(Color figure online)
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in Figs. 3 and 4, the coherent total fermionic DOS in Fig. 6 shows a different, gapless
behavior. Here, again, as in the case of the incoherent DOS functions, for small and
intermediate interactions U, we have typical double-peak fermionic structure in the
DOS, which is smoothing and disappearing totally in the strong interaction limit. But,
in difference with incoherent DOS functions, here we have not the presence of the
hybridization gap in the spectra and we have always a finite number of states for all
values of the frequency modes (see in Fig. 6). The reason of this gapless DOS behavior
could be related to the strong coherence effects between two bands, which is due to
the presence of the phase-stiffness mechanism considered here. It is worth to mention
that another gapless-type behavior in the DOS spectrum has been found recently in
Ref. [56], where this effect is associated with metallic charge-density-wave phase and
is driven by strong electron correlations. In Fig. 6, all figures are combined together,
in the way, to see the total DOS evolution with variation of the interaction parameter
U. We see clearly how the tuning of the interaction parameter U affects the general
DOS behavior in the model, by reducing the DOS amplitudes with increasing of U
and reducing also the number of states at the Fermi level p (v = €r) when increasing
U. Thereby, in the case of normal fermionic DOS (both incoherent and coherent),
presented in Figs. 3, 4, 5, and 6, the double-peak structure disappears for U 2 6,
signaling the appearance of the SM (BEC) limit of the transition.

In Fig. 7, a comparison is given for the incoherent and coherent c-band normal DOS
behaviors. Three different values of the Coulomb interaction U are chosen (see the
panels a, b, and c). We see clearly in Fig. 7 that how the coherence effects are reducing
the incoherent DOS amplitudes and DOS spectra become broader, along frequency
axis, and also, there is no gap near the Fermi level (p(v ~ ef) # 0).

In Figs. 8 and 9, we have presented the temperature dependence of the c-band
normal fermionic (Fig. 8) and anomalous excitonic DOS functions (Fig. 9). They are
given by the first terms in the right-hand side in Egs. (96) and (97). In the left-panel
in Fig. 8, we have presented the temperature dependence of the single-particle DOS
|1ﬂ0|2 Pe.c(v), which corresponds to the fundamental state k = 0, and for U = 6. The
case = —0.3 is considered. The corresponding values of the amplitude vy of BEC
transition are taken again from the work in Ref. [47]. In the right panel in Fig. 9, the
same function is plotted for the case U = 9. As we see in Fig. 8, the hybridization gap
is still open for all values of the temperature. So the system is always an insulator.

In Fig. 9, the temperature dependence of the phase-coherent anomalous excitonic
condensate part of the DOS is presented (i.e., k = 0, and without excitation part)
for U = 2 and U = 6. We observe in all Figs. 8 and 9 that the temperature has a
destructive effect on the DOS amplitudes.

We realize also, from Figs. 8 and 9, that the anomalous excitonic DOS functions
vanish at the temperatures that are far away from the region of the EI transition of
about two orders of magnitude (compare the temperature scales in Figs. 8 and 9 with
those given in Fig. 2 in Sect. 3). This result could be regarded as a good proof of the
theory elaborated in Ref. [47], and we can theoretically clearly state that the excitonic
BEC and EI states are not the same phases of matter. We see also, in Figs. 8 and 9, that
the normal single-particle DOS persists for a rather large values of temperature than
the anomalous condensate DOS, because of the presence of the hybridization gap in
the low-energy spectra.
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Fig. 8 Temperature dependence of the normal c-band DOS function in Eq. (96) for the case 7 = —0.3 and
for different values of the Coulomb interaction parameter U (Color figure online)

. 1.0 T
Lo} U > : U=6
08 E
0.8 1 H
1 — T=0 — = T=0
‘?’-., 06 : — T=2x107" \?“1 0.6 é— T=7x10"
N — T=3x10" 9?.0 P =0
: : « :
o : — T=4x10" ° 04 : T =3x10"
= : o =3x
0.4+ : > 1
E : — T=5x10"* - H
2
4 4

Fig. 9 Temperature dependence of the condensate part of the anomalous excitonic DOS function given
in Eq. (97) for the case f = —0.3 and for different values of the Coulomb interaction parameter U (Color
figure online)

5 Final Remarks and Conclusions

We have studied 3D system of conduction band electrons and valence band holes in
the frame of the extended Falicov—Kimball model. We have implemented the path-
integral formalism, in which the Coulomb interaction term is expressed in terms of
U(1) quantum phase variables ¢ conjugated to the local particle number, providing a
useful interpretation of the problem. In Sect. 3, we have shown that at low temper-
atures, the electron—hole system becomes unstable with respect to the formation of
the excitons at 7 = Tgj, and the local gap A is present in the excitation spectrum,
controlled by the Coulomb interaction parameter U /¢, which gives the relevant energy
scales for the excitonic insulator state. Here, as a result of the spontaneous symmetry
breaking, an expectation value of (¢/?) # 0 appears, which is signaling of the presence
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of the phase coherence in the system. Furthermore, pairing and condensation are not
generally the same, as it was admitted in the literature, except the weak interaction
limit, when we have a BCS-like condensation of excitonic pairs. However, in the exci-
tonic system with the strong pairing, we have the situation where the pairs are strongly
bound, but are uncorrelated one with each other, until they become phase coherent at
temperatures T < T,. This situation was studied in detail in Ref. [47].

We have evaluated the normal and anomalous excitonic spectral functions for the
f-and c-band. We have determined, both analytically and numerically, DOS spectra,
governed by the pure fermionic part (due to the condensate modes k = 0), and the
excitation spectra. We have shown that there is a usual hybridization gap in the normal
(incoherent) f- and c-band DOS structures. Contrary, in the case of the coherent
normal DOS functions (presented in Fig. 6), this gap is lacking, and there is always a
finite number of states at all frequency modes v. We associate this result to the strong
coherence effects, which are present in the system at low temperatures.

In the anomalous excitonic DOS structure, we have found that the hybridization gap
is absent for the weak and intermediate values of the Coulomb interaction parameter
U and this is due to the presence of the coherent excitonic condensate and strong
coherence effects. A very small gap is opening in the spectra in the strong interaction
limit, signaling the destruction of the coherence and condensate state.

The excitonic phase coherence may be evidenced by the coherence of their light
emission, which can be studied by interferometry measurements [57]. Therefore, mea-
surements of the intensity of the line-shape of the excitons decay (by emitting photons,
upon electron-hole recombination) may be a powerful probe of the DOS spectra in
the excitonic systems [58].

However, a final remark that should be featured is such that for the experimental
determination of the excitonic Bose—Einstein condensate, the ARPES measurements
should be provided at temperatures much lower than temperatures at which the exci-
tonic insulator state is being determined [20]. This is important for the achievement
of macroscopic phase coherence between excitonic pairs, and the strong coherence
effects are manifesting at the very low temperatures.

As a continuation of our studies, we would like to consider the role of the charge-
density-wave-like excitations in the excitonic systems, within the EFKM model and
consider the temperature effects. It is especially interesting to find out how the coherent
excitonic DOS will be affected in the case of the presence of such elementary exci-
tations. This will give us a more complete picture on the excitonic phase transition
scenario.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

@ Springer



J Low Temp Phys (2015) 178:295-330 327

Appendix: Spectral Functions and DOS
A Convolution for DOS

Here, we give a short derivation of Egs. (89) and (90) presented in Sect. 4.3. To this
end, we use the denitions in Egs. (86)—(88) and the convolution form of the Green
functions given in Eqs. (82) and (83). Then, it is easy to see that the following identity
holds for the integrals of the normal x = f, c-band fermionic spectral functions:

A k, Az 5 (K,
R — ”)=|wo|2-/d”—?’x( Y
iv, — v iv, — v
Z /dv/dv [
q¢0w £0

- _ o
iwﬂ_lvn+v —V] A (q’ ) A (k q,v V).
(A1)

Furthermore, for calculating the Matsubara sums over bosonic frequencies w,,, we
will use the property of the Bose—Einstein distribution function n (¢) (see Sect. 4.3)
of complex argument

niva+v—v)=—f(v-1), (A.2)

where f (€) is the Fermi—Dirac distribution function. In Eq. (A.2), we used the fact
that v, are even Fermion—Matsubara frequencies v, = % (2n + 1). Next, we sum the
Bosonic Matsubara frequencies in Eq. (A.1) amd we rewrite the equality in Eq. (A.1)
in the following form:

Avx (K, v) = [0l - Az 5 (K, v)

__Z/dvA @) Ars (k—q.v—v) [0 (V)£ (v—)].
v (A.3)

The derivation of the convolution form, given in Eq. (90), is exactly the same.

Summing over the wave vectors k in Eq. (A.3), we will have the forms of the normal
S and c-bands density of states p, , (v) and also the excitonic DOS function o, r (v)
given in Egs. (A.4) and (92) in Sect. 4.3.

Normalization Conditions for DOS
We have a composed nature of the interacting electron, given in Sect. 2; thus, we have

various sum rules, corresponding to different counterparts of the total coherent DOS
functions. As a general rule, the partial normal DOS and anomalous excitonic DOS
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functions py x (v) and p. r (v) satisfy following normalization conditions:

+00
/ dvpr.s () = n,

—0o0
+00
/ dvpec (v) = ne, (A.4)
—0o0
and
+00
/ dvpcr (v) = 1. (A.5)
—00

For the total normal band DOS function p(v), given in Eq. (95), we have
+00
/ dvp (v) = 1. (A.6)
—0o0

The functions pz 3(v) and o 3(v) in Egs. (93) and (94) are excitation parts [54]
of the respective total DOS functions in Egs. (A.4) and (92), i.e., without condensate
modes k = 0; therefore, the following normalization conditions hold

+00 )
/ dvpg (V) =ny — Yol
—00

—+o00
/ dvpec(v) = ne — |¥ol? (A7)
and
“+o00
/ dve ;) =1 = [yol*. (A8)

In contrary, the integral over the charge-DOS function p,(w), given in Eq. (76),

vanishes, because it is antisymmetric: p,(w) = —p;(—w). Then
+00
/ dwp, (w) = 0. (A.9)
—0oQ

The norms of the full spectral density functions in Eqgs. (89) and (90) depend on
the constraints in the charge and spin bosonic sectors.
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