Skip to main content
Log in

A Direct Numerical Simulation of Axisymmetric Cryogenic Chill Down in a Pipe in Microgravity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Cryogenic two-phase flow with phase change heat transfer, consisting of a saturated liquid slug translating in its own superheated vapor in a circular pipe, was numerically simulated. The cryogenic chill down process was simplified by assuming ideal inverted annular flow regime. The method used is based on a sharp interface concept and developed on an Eulerian Cartesian fixed-grid with a cut-cell scheme and marker points to track the moving interface. The unsteady, axisymmetric Navier–Stokes equations in both liquid and vapor phases are solved separately and used to compute the velocity, pressure, and temperature fields and the deformation of the liquid core very accurately. Three most common cryogenic fluids, viz. nitrogen, oxygen, and argon were included in the study. The influence of non-dimensional parameters like Reynolds number \(Re,\) Weber number \(We\), and Jakob number \(Ja\) on flow characteristics was studied by systematically varying only one at a time. \(Re\) was found to affect the mass flow rates, but did not have a significant influence on the wall cooling or the Nusselt number. \(We\) affected the interface shape at the leading edge of the liquid slug, also influencing the heat transfer and velocity field there. \(Ja\) affects all three quantities of interest, i.e., mass flow rate, wall cooling, and the Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

References

  1. A. Agarwal, Numerical simulation of cryogenic flow with phase change using sharp interface cut-cell method, Ph.D. thesis, University of Florida (2010)

  2. G. Analytis, G. Yadigaroglu, Analytical modeling of inverted annular film boiling. Nucl. Eng. Des. 99, 201–212 (1987)

    Article  Google Scholar 

  3. M. Andreani, G. Yadigaroglu, Prediction methods for dispersed flow film boiling. Int. J. Multiph. Flow 20(Supplement 1), 1–51 (1994)

    Article  MATH  Google Scholar 

  4. B.N. Antar, F.G. Collins, Flow boiling during quench in low gravity environment. Microgravity Sci. Technol. 10, 118–128 (1997)

    Google Scholar 

  5. B.N. Antar, F.G. Collins, M. Kawaji, Flow boiling in low gravity environment. in Proceedings of the ninth symposium on space nuclear power systems, vol. 246, pp. 1210–1215. AIP (1992)

  6. A. Brandt, Multi-level adaptive techniques (MLAT) for partial differential equations: ideas and software, in Mathematical Software III, ed. by J.R. Rice (Academic Press, New York, 1977), pp. 277–318

    Chapter  Google Scholar 

  7. F.P. Bretherton, The motion of long bubbles in tubes. J. Fluid Mech. Digit. Arch. 10(02), 166–188 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. V.P. Carey, Liquid–Vapor Phase-Change Phenomena (Hemisphere, London, 1992)

    Google Scholar 

  9. G. Celata, M. Cumo, M. Gervasi, G. Zummo, Quenching experiments inside 6.0 mm tube at reduced gravity. Int. J. Heat Mass Transf. 52(11–12), 2807–2814 (2009)

    Article  Google Scholar 

  10. J. Chorin, Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  11. B.G. Cox, On driving a viscous fluid out of a tube. J. Fluid Mech. Digit. Arch. 14(01), 81–96 (1962)

    Article  ADS  MATH  Google Scholar 

  12. D.S. Dandy, L.G. Leal, Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers. J. Fluid Mech. 208, 161–192 (1989)

    Article  ADS  Google Scholar 

  13. R.S. Dougall, W.M. Rohsenow, Film boiling on the inside of vertical tubes with upward flow of the fluid at low qualities, MIT report (9079–26) (1963)

  14. F. Fairbrother, A.E. Stubbs, Studies in electroendosmosis. Part VI. The bubble-tube method of measurements. J. Chem. Soc. 1(2), 527 (1935)

    Article  Google Scholar 

  15. J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  16. M. Francois, E. Uzgoren, J. Jackson, W. Shyy, Multigrid computations with the immersed boundary technique for multiphase flows. Int. J. Numer. Methods Heat Fluid Flow 14, 98–115 (2004)

    Article  MATH  Google Scholar 

  17. M.D. Giavedoni, F.A. Saita, The axisymmetric and plane cases of a gas phase steadily displacing a newtonian liquid—a simultaneous solution of the governing equations. Phys. Fluids 9(8), 2420–2428 (1997)

    Article  ADS  Google Scholar 

  18. N. Hammouda, D.C. Groeneveld, S.C. Cheng, Two-fluid modeling of inverted annular film boiling. Int. J. Heat Mass Transf. 40(11), 2655–2670 (1997)

    Article  MATH  Google Scholar 

  19. T. Hayase, J. Humphrey, R. Greif, A consistently formulated quick scheme for fast and stable convergence using finite-volume iterative calculation procedures. J. Comput. Phys. 98(1), 108–118 (1992)

    Article  ADS  MATH  Google Scholar 

  20. M. Heil, Finite Reynolds number effects in the Bretherton problem. Phys. Fluids 13(9), 2517–2521 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Ishii, G.D. Jarlais, Flow regime transition and interfacial characteristics of inverted annular flow. Nucl. Eng. Des. 95, 171–184 (1986)

    Article  Google Scholar 

  22. M. Kawaji, Y.S. Ng, S. Banerjee, G. Yadigaroglu, Reflooding with steady and oscillatory injection. ASME J. Heat Transf. 107(3), 670–678 (1985)

    Article  Google Scholar 

  23. M. Kawaji, C.J. Westbye, B.N. Antar, Microgravity experiments on two-phase flow and heat transfer during quenching of a tube and filling of a vessel, in AIChE Symposium Series, pp. 236–243 (1991)

  24. W.M. Kays, M.E. Crawford, B. Weigand, Convective Heat and Mass Transfer (McGraw-Hill, Kogakusha, 2005)

    Google Scholar 

  25. J. Kim, P. Moin, Application of a fractional step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. H. Lai, Y.Y. Yan, C.R. Gentle, Calculation procedure for conjugate viscous flows about and inside single bubbles. Num. Heat Transf. Part B 43, 241–265 (2003)

    Article  ADS  Google Scholar 

  27. B.P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19, 59–98 (1979)

    Article  ADS  MATH  Google Scholar 

  28. J. Liao, Modeling two-phase transport during cryogenic chilldown in s pipeline, Ph.D. thesis, University of Florida (2005)

  29. Y. Rimon, S.I. Cheng, Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers. Phys. Fluids 12(5), 949–959 (1969)

    Article  ADS  MATH  Google Scholar 

  30. G. Ryskin, L.G. Leal, Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique. J. Fluid Mech. 148, 1–17 (1984)

    Article  ADS  MATH  Google Scholar 

  31. R. Singh, E. Uzgoren, C.F. Tai, W. Shyy, A marker-based, adaptive/multigrid technique for interfacial fluid dynamics, in Proceedings of CFD2005 (2005)

  32. C.J. Swanson, B. Julian, G.G. Ihas, R.J. Donnelly, Pipe flow measurements over a wide range of reynolds numbers using liquid helium and various gases. J. Fluid Mech. 461, 51–60 (2002)

    Article  ADS  MATH  Google Scholar 

  33. C. Tai, W. Shyy, Multigrid computations and conservation law treatment of a sharp interface method. Numer. Heat Transf. Part B 48, 405–424 (2005)

    Article  ADS  Google Scholar 

  34. C.F. Tai, Cryogenic two-phase flow and phase-change heat transfer in microgravity, Ph.D. thesis, University of Florida (2008)

  35. S. Taneda, Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Jpn. 11(10), 1104–1108 (1956)

    Article  ADS  Google Scholar 

  36. E. Uzgoren, Adaptive, multi-domain techniques for two-phase flow computations, Ph.D. thesis, University of Florida, Gainesville, FL (2006)

  37. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Longman Scientific and Technical, Harlow, 1995)

    Google Scholar 

  38. P. Wesseling, An Introduction to Multigrid Methods. http://www.MGNet.org, Cos Cob, CT (2001). Reprint of the 1992 edition

  39. C.J. Westbye, M. Kawaji, B.N. Antar, Boiling heat transfer in the quenching of a hot tube under microgravity. J. Thermophys. Heat Transf. 9(2), 302–307 (1995)

    Article  ADS  Google Scholar 

  40. I.J. Wygnanski, F.H. Champagne, On transition in a pipe. I. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335 (1973)

    Article  ADS  Google Scholar 

  41. G. Yadigaroglu, The reflooding phase of the loca in pwrs. Part I: Core heat transfer and fluid flow. Nucl. Saf. 19, 20–36 (1978)

    Google Scholar 

  42. G. Yadigaroglu, K.P. Yu, Flow regimes and carryover during reflooding. In: European Two-phase Flow Group Meeting, Zurich, Switzerland, 1983

  43. T. Ye, Direct numerical simulation of a translating vapor bubble with phase change, Ph.D. thesis, University of Florida, 2001

  44. T. Ye, W. Shyy, J.N. Chung, A fixed-grid, sharp-interface method for bubble dynamics and phase change. J. Comput. Phys. 174, 781–815 (2001)

    Article  ADS  MATH  Google Scholar 

  45. Y. Zang, R.L. Street, J.R. Koseff, A non-staggered grid, fractional step method for time-dependent incompressible Navier-stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 18–33 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the Andrew H. Hines, Jr./Progress Energy Endowment Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Chung, J.N. A Direct Numerical Simulation of Axisymmetric Cryogenic Chill Down in a Pipe in Microgravity. J Low Temp Phys 179, 186–230 (2015). https://doi.org/10.1007/s10909-014-1257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1257-7

Keywords

Navigation