Skip to main content
Log in

Exfoliated MoS2–Polyaniline Nanocomposites: Synthesis and Characterization

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Exfoliated MoS2PANI nanocomposites with varying percentage by weight of exfoliated 2HMoS2 were synthesized and characterized by several techniques. The characterization techniques used were powder X-ray diffraction, electrical conductivity, Seebeck coefficient measurements, thermogravimetric analysis, and transmission electron microscopy. An intriguing observation was observed in the conductivity data as several of the nanocomposites that contained 5 to 15% by weight of exfoliated MoS2 yielded higher conductivity than a sample of pure PANI synthesized under the same conditions. Exfoliated 2HMoS2 has very low conductivity due to the disorder of the system, so this increase was not expected. This may indicate that the presence of MoS2 may improve the conductivity of PANI by altering its doping, or by enhancing PANI ordering; or, that PANI may be stabilizing MoS2 in its 1T zero band gap metallic form, which is higher in conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Rurack, R. Martinez-Manez (eds.), The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials (Wiley, Netherlands, 2010)

    Google Scholar 

  2. L. Wang, J. Wu, M. Huang, J. Lin, Scr. Mater. 50, 465 (2004)

    CAS  Google Scholar 

  3. P. Nalawade, B. Aware, V.J. Kadam, R.S. Hirlekar, J. Sci. Ind. Res. 68, 267 (2009)

    CAS  Google Scholar 

  4. A.A. Voevodin, J.S. Zabinski, Thin Solid Films 370, 223 (2000)

    CAS  Google Scholar 

  5. A.R. Armstrong, C. Lyness, P.M. Panchmatia, M.S. Islam, P.G. Bruce, Nat. Mater. 10, 223 (2011)

    CAS  PubMed  Google Scholar 

  6. Y. Li, Y. Liang, F.C. Hernandez, H.D. Yoo, Q. An, Y. Yao, Nano Energy 15, 453 (2015)

    Google Scholar 

  7. J. Hong, R. Bissessur, D.C. Dahn, in Molybdenum Disulfide: Synthesis. Properties and Industrial Applications, ed. by J. McBride (Nova Science, Hauppauge, 2016), p. 83

    Google Scholar 

  8. M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766 (2013)

    CAS  PubMed  Google Scholar 

  9. F. Wypych, R. Schőllhorn, J. Chem. Soc. 19, 1386 (1992)

    Google Scholar 

  10. A.P. Nayak, T. Pandey, D. Voiry, J. Liu, S.T. Moran, A. Sharma, C. Tan, C.-H. Chen, L.-J. Li, M. Chhowalla, J.-F. Lin, A. Singh, D. Akinwande, Nano Lett. 15, 346 (2014)

    PubMed  Google Scholar 

  11. G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011)

    CAS  Google Scholar 

  12. T.K. Das, S. Prusty, J. Polym. Plast. Technol. Eng. 51, 1887 (2012)

    Google Scholar 

  13. L.-Z. Fan, J. Maier, Electrochem. Commun. 8, 937 (2006)

    CAS  Google Scholar 

  14. G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, J. Power Sour. 229, 72 (2013)

    CAS  Google Scholar 

  15. M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Chem. Mater. 14, 1610 (2002)

    CAS  Google Scholar 

  16. Y.W. Ju, G.R. Choi, H.R. Jung, W.J. Lee, Electrochim. Acta 53, 5796 (2008)

    CAS  Google Scholar 

  17. V. Khomenko, E. Frackowiak, F. Beguin, Electrochim. Acta 50, 2499 (2005)

    CAS  Google Scholar 

  18. V. Gupta, N. Miura, Electrochim. Acta 52, 1721 (2006)

    CAS  Google Scholar 

  19. M. Kanatzidis, R. Bissessur, D.C. DeGroot, J.L. Schindler, C.R. Kannewurf, Chem. Mater. 5, 595 (1993)

    CAS  Google Scholar 

  20. R. Bissessur, W. White, Mater. Chem. Phys. 99, 214 (2006)

    CAS  Google Scholar 

  21. L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O.G. Schmid, Adv. Mater. 25, 1180 (2013)

    CAS  PubMed  Google Scholar 

  22. K.-J. Huang, L. Wang, Y.-J. Liu, H-Bo Wang, Y.-M. Liu, L.-L. Wang, Electrochim. Acta 109, 587 (2013)

    CAS  Google Scholar 

  23. L. Hu, Y. Ren, H. Yang, Q. Xu, ACS Appl. Mater. Interfaces 6, 14644 (2014)

    CAS  PubMed  Google Scholar 

  24. J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, J. Alloys Compd. 619, 38 (2015)

    CAS  Google Scholar 

  25. J. Zhu, W. Sun, D. Yang, Y. Zhang, H.H. Hoon, H. Zhang, Q. Yan, Small 11, 4123 (2015)

    CAS  PubMed  Google Scholar 

  26. M. Kim, Y.K. Kim, J. Kim, S. Cho, G. Lee, J. Jang, RSC Adv. 6, 27460 (2016)

    CAS  Google Scholar 

  27. C. Yang, Z. Chen, I. Shakir, Y. Xu, H. Lu, Nano Res.9(4), 951 (2016)

    CAS  Google Scholar 

  28. C. Zhao, J.M. Ang, Z. Liu, X. Lu, Chem. Eng. J. 330, 462 (2017)

    CAS  Google Scholar 

  29. J. Chao, J. Deng, W. Zhou, J. Liu, R. Hu, L. Yang, M. Zhu, O.G. Schmidt, Electrochim. Acta 243, 98 (2017)

    CAS  Google Scholar 

  30. M. Maqsood, S. Afzal, A. Shakoor, N.A. Niaz, A. Majid, N. Hassan, H. Kanwal, J. Mater. Sci. 29, 16080 (2018)

    CAS  Google Scholar 

  31. L. Ren, G. Zhang, J. Lei, D. Hu, S. Dou, H. Gu, H. Li, X. Zhang, J. Alloys Compd. 798, 227 (2019)

    CAS  Google Scholar 

  32. H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chem. 122, 4153 (2010)

    Google Scholar 

  33. R. Bissessur, W. White, D.C. Dahn, Mater. Lett. 60, 248 (2006)

    CAS  Google Scholar 

  34. N. Arsenault, R. Bissessur, D.C. Dahn, in Advances in Nanostructured Composites, Vol. 2, ed. by M. Aliofkhazraei (CRC Press, Boca Raton, 2019)

    Google Scholar 

  35. D. Hitchcock, S. Waldrop, J. Williams, T. Tritt, Funct. Mater. Lett. 6, 1340009 (2013)

    Google Scholar 

  36. B.C.S. Lane, R. Bissessur, A.S. Abd -El-Aziz, W.H. Alsaedi, D.C. Dahn, E. McDermott, A. Martin, in Conductive Polymers, ed. by F. Yilmaz (InTech, London, 2016)

    Google Scholar 

  37. A. Kaiser, Rep. Prog. Phys. 64, 1 (2001)

    CAS  Google Scholar 

  38. U. Acharya, P. Bober, M. Trchov, A. Zhigunov, J. Stejskal, J. Pfleger, Polymer 150, 130 (2018)

    CAS  Google Scholar 

  39. M.A. Py, R.R. Haering, Can. J. Phys. 61, 76 (1983)

    CAS  Google Scholar 

  40. C.N.R. Rao, U. Maitra, U.V. Waghmare, Chem. Phys. Lett. 609, 172 (2014)

    CAS  Google Scholar 

  41. N.F. Mott, Conduction in Non-Crystalline Materials (Clarendon, Oxford, 1987)

    Google Scholar 

  42. S.F. Scully, R. Bissessur, D.C. Dahn, G. Xie, Solid State Ion. 181, 933 (2010)

    CAS  Google Scholar 

  43. J. Li, X. Tang, H. Li, Y. Yan, Q. Zhang, Synth. Met. 160, 1153 (2010)

    CAS  Google Scholar 

  44. Z.H. Wang, E.M. Scherr, A.G. MacDiarmid, A.J. Epstein, Phys. Rev. B 45, 4190 (1992)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the University of Prince Edward Island, and thank Bowen Gao for assistance with some of the thermopower measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabin Bissessur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyle, E.S., McAllister, C., Dahn, D.C. et al. Exfoliated MoS2–Polyaniline Nanocomposites: Synthesis and Characterization. J Inorg Organomet Polym 30, 206–213 (2020). https://doi.org/10.1007/s10904-019-01327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01327-5

Keywords

Navigation