Skip to main content
Log in

Binding and Fluorescence Resonance Energy Transfer (FRET) of Ruthenium(II)-Bipyridine-Calixarene System with Proteins—Experimental and Docking Studies

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The investigation of the interaction of ruthenium(II)-bipyridine-tert-butylcalix[4]arene complexes (Rubc2 and Rubc3) with proteins (BSA and ovalbumin) using absorption, emission, excited state lifetime and circular dichroism techniques and by docking studies show that luminophore-receptor system bind strongly with proteins. An enhancement of absorption as well as emission intensity of Ru(II)-calixarene complexes in the presence of proteins, but the quenching of the emission intensity of proteins in the presence of Ru(II)-calixarene complexes are the interesting observations. The enhancement of emission intensity of Ru(II)-calixarene complex, in the presence of proteins, is due to the fluorescence resonance energy transfer (FRET) from protein to Ru(II)-calixarene complex. Among the two Ru(II)-calixarene complexes synthesized Rubc3 has more efficient binding and energy transfer than Rubc2 and BSA, with a large cavity size, has the advantage for binding over ovalbumin. Docking studies reveal that the presence of tert-butylcalix[4]arene moiety in Ru(II)-calixarene complexes facilitates binding with proteins. After the binding of Rubc2 and Rubc3 with proteins, the nearby fluorophores present in proteins are in optimal distance from the ruthenium centre for efficient FRET process to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Chart 1

Similar content being viewed by others

References

  1. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem Rev 106:2224–2248

    PubMed  CAS  Google Scholar 

  2. Kratz F, Keppler BK (1993) Metal complexes in cancer chemotherapy. VCH, Weinheim

    Google Scholar 

  3. Fasanol M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57:787–796

    Google Scholar 

  4. Peters T Jr (1996) All about albumin. Academic, Orlando

    Google Scholar 

  5. Paul BK, Samanta A, Guchhait N (2010) Exploring hydrophobic subdomain IIA of the protein bovine serum albumin in the native, intermediate, unfolded, and refolded states by a small fluorescence molecular reporter. J Phys Chem B 114:6183–6196

    PubMed  CAS  Google Scholar 

  6. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–176

    PubMed  CAS  Google Scholar 

  7. He XM, Carter CD (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    PubMed  CAS  Google Scholar 

  8. Mahanta S, Singh RB, Guchhait N (2009) Study of protein–probe interaction and protective action of surfactant sodium dodecyl sulphate in urea-denatured HSA using charge transfer fluorescence probe methyl ester of N, N-dimethylamino naphthyl acrylic acid. J Fluoresc 19:291–302

    PubMed  CAS  Google Scholar 

  9. Singh RB, Mahanta S, Bagchi A, Guchhait N (2009) Interaction of human serum albumin with charge transfer probe ethyl ester of N, N-dimethylamino naphthyl acrylic acid: an extrinsic fluorescence probe for studying protein micro-environment. Photochem Photobiol Sci 8:101–110

    PubMed  CAS  Google Scholar 

  10. Singh RB, Mahanta S, Guchhait N (2009) Study of proteinous and micellar icroenvironment using donor acceptor charge transfer fluorosensor N, N-dimethylaminonaphthyl-(acrylo)-nitrile. Spectrochim Acta Part A 72:1103–1111

    Google Scholar 

  11. Banerjee P, Pramanik S, Sarkar A, Bhattacharya SC (2009) Deciphering the fluorescence resonance energy transfer signature of 3-pyrazolyl 2-pyrazoline in transport proteinous environment. J Phys Chem B 113:11429–11436

    PubMed  CAS  Google Scholar 

  12. Zhong D, Douhal A, Zewail AH (2000) Femtosecond studies of protein–ligand hydrophobic binding and dynamics: human serum albumin. Proc Natl Acad Sci USA 97:14056–14061

    PubMed  CAS  Google Scholar 

  13. Bos OJM, Labro JFA, Ficher MJE, Witling J, Janssen LHM (1989) The molecular mechanism of the neutral-to-base transition of human serum albumin. J Biol Chem 264:953–959

    PubMed  CAS  Google Scholar 

  14. Peters T (1985) Advances in protein chemistry. Academic, New York

    Google Scholar 

  15. Li D, Zhu M, Xu C, Ji B (2011) Characterization of the baicalein–bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches. Euro J Med Chem 46:588–599

    CAS  Google Scholar 

  16. Sun Y, Hayakawa S (2002) Heat-induced gels of egg white/ovalbumins from five avian species: thermal aggregation, molecular forces involved, and rheological properties. J Agric Food Chem 50:1636–1642

    PubMed  CAS  Google Scholar 

  17. Creamer LK, Jimenez-Flores R, Richardson T (1988) Genetic modification of food proteins. Trends Biotechnol 6:163–169

    CAS  Google Scholar 

  18. Stein PE, Leslie GW, Finch JT, McLauglin DJ, Carell RW (1990) Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347:99–102

    PubMed  CAS  Google Scholar 

  19. Azakami H, Mukai A, Kato A (2005) Role of amyloid type cross â-structure in the formation of soluble aggregate and gel in heat-induced ovalbumin. J Agric Food Chem 53:1254–1257

    PubMed  CAS  Google Scholar 

  20. Pearce FG, Mackintosh SH, Gerrard JA (2007) Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing. J Agric Food Chem 55:318–322

    PubMed  CAS  Google Scholar 

  21. Chakraborty T, Chakraborty I, Moulik SP, Gosh S (2009) Physicochemical and conformational studies on BSA-surfactant interaction in aqueous medium. Langmuir 25:3062–3074

    PubMed  CAS  Google Scholar 

  22. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Contr Release 132:171–183

    CAS  Google Scholar 

  23. Welz MM, Ofner CM III (1992) Examination of self-crosslinked gelatin as a hydrogel for controlled release. J Pharm Sci 81:85–90

    PubMed  CAS  Google Scholar 

  24. Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39:8113–8127

    PubMed  CAS  Google Scholar 

  25. Rosenberg B, Lippert B (1999) Cisplatin. Chemistry and biochemistry of a leading Anticancer Drug. Helvetica Chimica Acta, Zurich

    Google Scholar 

  26. Brabec V, Novakova O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Updat 9:111–122

    PubMed  CAS  Google Scholar 

  27. Kelland LR, Sharp SY, O’Neill CF, Raynaud FI, Beale PJ, Judson IR (1999) Mini-review: discovery and development of platinum complexes designed to circumvent cisplatin resistance. J Inorg Biochem 77:111–115

    PubMed  CAS  Google Scholar 

  28. Barnard PJ, Levina A, Lay PA (2005) Chromium(V) peptide complexes: synthesis and spectroscopic characterization. Inorg Chem 44:1044–1053

    PubMed  CAS  Google Scholar 

  29. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK (2006) From bench to bedside—preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). J Inorg Biochem 100:891–904

    PubMed  CAS  Google Scholar 

  30. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem Commun 4764–4776

  31. Bruijnincx PCA, Sadler PJ (2008) New trends for metal complexes with anticancer activity. Curr Opin Chem Biol 12:197–206

    PubMed  CAS  Google Scholar 

  32. Webb MI, Walsby CJ (2011) Control of ligand-exchange processes and the oxidation state of the antimetastatic Ru(III) complex NAMI-A by interactions with human serum albumin. Dalton Trans 40:1322–1331

    PubMed  CAS  Google Scholar 

  33. Puckett CA, Barton JK (2010) Targeting a ruthenium complex to the nucleus with short peptides. Bioorg Med Chem 18:3564–3569

    PubMed  CAS  Google Scholar 

  34. Puckett CA, Barton JK (2008) Mechanism of cellular uptake of a ruthenium polypyridyl complex. Biochemisty 47:11711–11716

    CAS  Google Scholar 

  35. Puckett CA, Barton JK (2007) Methods to explore cellular uptake of ruthenium complexes. J Am Chem Soc 129:46–47

    PubMed  CAS  Google Scholar 

  36. Barragan F, Lopez-Senín P, Salassa L, Betanzos-Lara S, Habtemariam A, Moreno V, Sadler PJ, Marchan V (2011) Photocontrolled DNA binding of a receptor-targeted organometallic ruthenium(II) complex. J Am Chem Soc 133:14098–14108

    PubMed  CAS  Google Scholar 

  37. Salassa L, Ruiu T, Garino C, Pizarro AM, Bardelli F, Gianolio D, Westendorf A, Bednarski PJ, Lamberti C, Gobetto R, Sadler PJ (2010) EXAFS, DFT, Light-induced nucleobase binding, and cytotoxicity of the photoactive complex cis-[Ru(bpy)2(CO)Cl]+. Organometallics 29:6703–6710

    CAS  Google Scholar 

  38. Clarke MJ (2002) Ruthenium metallopharmaceuticals. Coord Chem Rev 232:69–93

    CAS  Google Scholar 

  39. Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364

    PubMed  CAS  Google Scholar 

  40. Mann DA, Kanai M, Maly DJ, Kiessling LL (1998) Probing low affinity and multivalent interactions with surface Plasmon resonance: ligands for concanavalin A. J Am Chem Soc 120:10575–10582

    CAS  Google Scholar 

  41. Takashima H, Shinkai S, Hamachi I (1999) Ru(bpy)3-based artificial receptors toward a protein surface: selective binding and efficient photoreduction of cytochrome c. Chem Commun 2345–2346

  42. Ohkanda J, Satoh R, Kato N (2009) Protein surface recognition by dendritic ruthenium(II) tris(bipyridine) complexes. Chem Commun 6949–6951.

  43. Kikkeri R, Garcia-Rubio I, Seeberger PH (2009) Ru(II)–carbohydrate dendrimers as photoinduced electron transfer lectin biosensors. Chem Commun 235–237.

  44. Hamuro Y, Calama MC, Park HS, Hamilton AD (1997) A calixarene with four peptide loops: an antibody mimic for recognition of protein surface. Angew Chem Int Ed Engl 36:2680–2683

    CAS  Google Scholar 

  45. Scolaro C, Chaplin AB, Hartinger CG, Bergamo A, Cocchietto M, Keppler BK, Savab G, Dyson PJ (2007) Tuning the hydrophobicity of ruthenium(II)–arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy. Dalton Trans 5065–5072.

  46. Peczuh MW, Hamilton AD (2000) Peptide and protein recognition by designed molecules. Chem Rev 100:2479–2494

    PubMed  CAS  Google Scholar 

  47. Zhou H, Wang D, Baldini L, Ennis E, Jain R, Carie A, Sebti SM, Hamilton AD (2006) Structure–activity studies on a library of potent calix[4]arene-based PDGF antagonists that inhibit PDGF-stimulated PDGFR tyrosine phosphorylation. Org Biomol Chem 2376–2386.

  48. Park HS, Lin Q, Hamilton AD (2002) Modulation of protein–protein interactions by synthetic receptors: design of molecules that disrupt serine protease–proteinaceous inhibitor interaction. Proc Natl Acad Sci USA 99:5105–5109

    PubMed  CAS  Google Scholar 

  49. Balskovich MA, Lin Q, Delarue FL, Sun J, Park HS, Coppola D, Hamilton AD (2000) Design of GFB-111, a platelet-derived growth factor binding molecule with antiangiogenic and anticancer activity against human tumors in mice. Nat Biotechnol 18:1065–1070

    Google Scholar 

  50. Grimmer S, van Deurs B, Sandvig K (2002) Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci 115:2953–2962

    PubMed  CAS  Google Scholar 

  51. Lalor R, Baillie-Johnson H, Redshaw C, Matthews SE, Mueller A (2008) Cellular uptake of a fluorescent calix[4]arene derivative. J Am Chem Soc 130:2892–2893

    PubMed  CAS  Google Scholar 

  52. Perret F, Lazar AN, Coleman AW (2006) Biochemistry of the para-sulfonato-calix[n]arenes. Chem Commun 2425–2438.

  53. Baldini L, Casnati A, Sansone F, Ungaro R (2007) Calixarene-based multivalent ligands. Chem Sov Rev 36:254–266

    CAS  Google Scholar 

  54. Chini MG, Terracciano S, Riccio R, Bifulco G, Ciao R, Gaeta C, Rroisi F, Neri P (2010) Conformationally locked calixarene-based histone deacetylase inhibitors. Org Lett 12:5382–5385

    PubMed  CAS  Google Scholar 

  55. Szemes F, Hesek D, Chen Z, Dent SW, Drew MGB, Goulden AJ, Graydon AR, Grieve A, Mortimer RJ, Wear T, Weightman JS, Beer PD (1996) Synthesis and characterization of novel acyclic, macrocyclic, and calix[4]arene ruthenium(II) bipyridyl receptor molecules that recognize and sense anions. Inorg Chem 35:5868–5879

    CAS  Google Scholar 

  56. Lo KK, Tsang KH, Hui WK, Zhu N (2005) Synthesis, characterization, crystal structure, and electrochemical, photophysical, and protein-binding properties of luminescent rhenium(I) diimine indole complexes. Inorg Chem 44:6100–6110

    PubMed  CAS  Google Scholar 

  57. Goto Y, Matsuno R, Konno T, Takai M, Ishihara K (2008) Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules 9:828–833

    PubMed  CAS  Google Scholar 

  58. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer Academic Press, New York

    Google Scholar 

  59. Pan T, Xiao ZD, Huang PM (2009) Characterize the interaction between polyethylenimine and serum albumin using surface plasmon resonance and fluorescence method. J Lumin 129:741–745

    CAS  Google Scholar 

  60. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin. Anatomy of drug site I. J Biol Chem 276:22804–22809

    PubMed  CAS  Google Scholar 

  61. Mol CD, Arvai AS, Sanderson RJ, Slupphaug G, Kavli B, Krokan HE, Mosbaugh DW, Tainer JA (1995) Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82:701–708

    PubMed  CAS  Google Scholar 

  62. www.acceclrys.com

  63. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl Acids Res 34:W116–W118

    PubMed  CAS  Google Scholar 

  64. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    PubMed  CAS  Google Scholar 

  65. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    PubMed  CAS  Google Scholar 

  66. Ojha B, Das G (2010) The interaction of 5-(Alkoxy)naphthalen-1-amine with bovine serum albumin and its effect on the conformation of protein. J Phys Chem B 114:3979–3986

    PubMed  CAS  Google Scholar 

  67. Kudryashova EV, Visser AJWG, van Hoek A, de Jongh HHJ (2007) Molecular details of ovalbumin-pectin complexes at the air/water interface: a spectroscopic study. Langmuir 23:7942–7950

    PubMed  CAS  Google Scholar 

  68. Shih C, Museth AK, Abrahamsson M, Blaco-Rodriguez AM, Di Bilio AJ, Sudhamu J, Crane BR, Ronayne KL, Twine M, Vicek A Jr, Richards JH, Winkler JR, Gray HB (2008) Tryptophan-Accelerated electron flow through proteins. Science 320:1760–1762

    PubMed  CAS  Google Scholar 

  69. Anula HM, Myshkin E, Guliaer A, Luman C, Danilov EO, Castellano FN, Bullerjahn GS, Rodgers MAJ (2006) Photo processes on self-associated cationic porphyrins and plastocyanin complexes 1. Ligation of plastocyanin tyrosine 83 onto metalloporphyrins and electron-transfer fluorescence quenching. J Phys Chem A 110:2545–2559

    PubMed  CAS  Google Scholar 

  70. Tang Y, He F, Yu M, Wang S, Li Y, Zhu D (2006) Radical scavenging mediating reversible fluorescence quenching of an anionic conjugated polymer: highly sensitive probe for antioxidants. Chem Matter 18:3605–3610

    CAS  Google Scholar 

  71. Savariar EN, Gosh S, Gonzalez DC, Thayumanavan S (2008) Disassembly of noncovalent amphiphilic polymers with proteins and utility in pattern sensing. J Am Chem Soc 130:5416–5417

    PubMed  CAS  Google Scholar 

  72. De Geest BG, Sanders NN, Sukhorukuv GB, Demmester J, De Semedt SS (2007) Release mechanisms for polyelectrolyte capsules. Chem Soc Rev 36:636–649

    PubMed  Google Scholar 

  73. Cheng X, Bing T, Liu X, Shangguan D (2009) A label-free fluorescence sensor for probing the interaction of oligonucleotides with target molecules. Anal Chim Acta 633:97–102

    PubMed  CAS  Google Scholar 

  74. Michalet X, Weiss S, Jager M (2006) Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106:1785–1813

    PubMed  CAS  Google Scholar 

  75. Flehr R, Kienzler A, Bannwarth W, Kumke MU (2010) Photophysical characterization of a FRET system using tailor-made DNA oligonucleotide sequences. Bioconjucate Chem 21:2347–2354

    CAS  Google Scholar 

  76. Dalgarno SJ, Thallapally PK, Barbour LJ, Atwood JL (2007) Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem Soc Rev 36:236–245

    PubMed  CAS  Google Scholar 

  77. Atwood JL, Barbour LJ, Jerga A (2004) A new type of material for the recovery of hydrogen from gas mixtures. Angrew Chem Int Ed 43:2948–2950

    CAS  Google Scholar 

  78. Hontama N, Inokuchi Y, Ebata T, Dedonder-Lardeux C, Jouvet C (2010) Structure of the calix[4]arene-(H2O) cluster: the world’s smallest cup of water. J Phys Chem A 114:2967–2972

    PubMed  CAS  Google Scholar 

  79. Forster T, Sinanoglu O (1996) Modern quantum chemistry, vol 3. Academic, New York

    Google Scholar 

Download references

Acknowledgement

We thank Prof. P. Ramamurthy, National Centre for Ultrafast Processes, University of Madras, Taramani, Chennai for his help in excited state lifetime studies. We thank Prof. S. Krishnasamy, School of Biotechnology, Madurai Kamaraj University for his help in the docking studies. We thank UGC-UPE for financial support. We thank Dr. M. Vairamani, IICT, Hyderabad for his help in taking HR-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajagopal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1787 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mareeswaran, P.M., Maheshwaran, D., Babu, E. et al. Binding and Fluorescence Resonance Energy Transfer (FRET) of Ruthenium(II)-Bipyridine-Calixarene System with Proteins—Experimental and Docking Studies. J Fluoresc 22, 1345–1356 (2012). https://doi.org/10.1007/s10895-012-1074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1074-9

Keywords

Navigation