Skip to main content
Log in

Steady-State and Time Resolved Fluorescence Analysis on Tyrosine–Histidine Model Compounds

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Four model compounds, for a tyrosine–histidine covalent bonding, 2-(5-imidazolyl)-4-methylphenol (C–C bonding in ortho-position at the phenyl group); 2′-(1-imidazolyl)-4-methylphenol (C–N bonding in ortho′-position at the phenyl group); 2-(5-imidazolyl)-4-H-phenol and 2-(5-imidazolyl)-4-H-phenol, at physiological pH have been studied by UV-Vis absorption, steady-state and time resolved fluorescence spectroscopy. Their absorption and emission properties are presented and discussed. The photophysical properties depend on the para-substituted phenyl group as well as on C–C/C–N bonding in the Phenol–Imidazole linkage. The N position, N1N3/N1N4, in the imidazole group was found to be relevant. The results are discussed with relevance to the redox processes of tyrosine and to better understand the role of a tyrosine–histidine covalent linkage as found in cytochrome c oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, Dordrecht, pp 448–514

    Google Scholar 

  2. Ross JBA, Laws WR, Roussland KW, Wyssbrod HR (1992) Tyrosine fluorescence and phosphorescence from proteins and polypeptides. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol. 3. Biochemical applications. Plenum, New York, pp 1–63

    Google Scholar 

  3. Seidel C, Orth A, Greulich K-O (1993) Electronic effects on the fluorescence of tyrosine in small peptides. Photochem Photobiol 58:178–184 doi:10.1111/j.1751-1097.1993.tb09546.x

    Article  PubMed  CAS  Google Scholar 

  4. Wiczk W, Rzeska A, Łukomska J, Stachowiak K, Karolczak J, Malicka J et al (2001) Mechanism of fluorescence quenching of tyrosine derivatives by amide group. Chem Phys Lett 341:99–106 doi:10.1016/S0009-2614(01)00470-5

    Article  CAS  Google Scholar 

  5. Łukomska J, Rzeska A, Malicka J, Wiczk W (2001) Influence of substituent on amide nitrogen atom on fluorescence efficiency quenching of Tyr(Me) by amide groups. J Photochem Photobiol Chem 142:135–123 doi:10.1016/S1010-6030(01)00521-4

    Article  Google Scholar 

  6. White A (1959) Effect of pH on fluorescence of tyrosine, tryptophan and related compounds. Biochem J 71:217–220

    PubMed  CAS  Google Scholar 

  7. Szabelski M, Guzow K, Rzeska A, Malika J, Przyborowska M, Wiczk W (2002) Acidity of carboxyl group of tyrosine and its analogues and derivatives studied by steady-state fluorescence spectroscopy. J Photochem Photobiol Chem 152:73–78 doi:10.1016/S1010-6030(02)00187-9

    Article  CAS  Google Scholar 

  8. Pal H, Palit DK, Mukherejee T, Mittal P (1990) Some aspects of steady state and time-resolved fluorescence of tyrosine and related compounds. J Photochem Photobiol Chem 52:391–409 doi:10.1016/1010-6030(90)85018-R

    Article  CAS  Google Scholar 

  9. Wilis KJ, Szabo AG (1991) Fluorescence decay kinetics of tyrosinate and tyrosine hydrogen-bonded complexes. J Phys Chem 95:1585–1589 doi:10.1021/j100157a015

    Article  Google Scholar 

  10. Laws WR, Ross JBA, Wyssbrod HR, Beechem JM, Brand L, Sutherland JC (1986) Time-resolved fluorescence and proton NMR studies of tyrosine and tyrosine analogs: correlation of NMR-determined rotamer populations and fluorescence kinetics. Biochemistry 25:599–607 doi:10.1021/bi00351a013

    Article  PubMed  CAS  Google Scholar 

  11. Rayner DM, Kraycarski DT, Szabo AG (1978) Excited state acid–base equilibrium of tyrosine. Can J Chem 56:1238–1245 doi:10.1139/v78-206

    Article  CAS  Google Scholar 

  12. Fayet M, Wahl P (1971) Variation avec le pH du rendement quantique et du déclin de la fluorescence de la tyrosine. The variation in the quantum yield and fluorescence decay of tyrosine as a function of pH. Biochim Biophys Acta 221:102–112

    Google Scholar 

  13. Feitelson J (1964) On the mechanism of fluorescence quenching. Tyrosine and similar compounds. J Phys Chem 68:391–397 doi:10.1021/j100784a033

    Article  CAS  Google Scholar 

  14. Guzow K, Szabelski M, Rzeska A, Karolczak J, Sulowska H, Wiczk W (2002) Photophysical properties of tyrosine at low pH range. Chem Phys Lett 362:519–526 doi:10.1016/S0009-2614(02)01135-1

    Article  CAS  Google Scholar 

  15. Vos R, Engelborghs Y (1994) A Fluorescence study of tryptophan–histidine interactions in the peptide anantin and in solution. Photochem Photobiol 60:24–32

    Article  PubMed  CAS  Google Scholar 

  16. Pratt DA, Pesavento RP, van der Donk WA (2005) Model studies of the histidine–tyrosine cross link in cytochrome c oxidase reveal the flexible substituent effect of the imidazole moiety. Org Lett 7:2735–2738 doi:10.1021/ol050916g

    Article  PubMed  CAS  Google Scholar 

  17. Parker CA, Rees WT (1960) Corrections of fluorescence spectra and measurement quantum efficiency. Analyst (Lond.) 85:587–600 doi:10.1039/an9608500587

    Article  CAS  Google Scholar 

  18. Chen RF (1967) Fluorescence quantum yields of tryptophan and tyrosine. Anal Lett 1:35–42

    CAS  Google Scholar 

  19. Farinha JPS, Martinho JMG, Pogliani L (1997) Non-linear least-squares and chemical kinetics. An improved method to analyse monomer–excimer decay data. J Math Chem 21:131–139 doi:10.1023/A:1019114217567

    Article  CAS  Google Scholar 

  20. Moss D, Nabedryk E, Breton J, Mantele W (1990) Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Evaluation of the technique with cytochrom c. Eur J Biochem 187:565–572 doi:10.1111/j.1432-1033.1990.tb15338.x

    Article  PubMed  CAS  Google Scholar 

  21. Hellwig P, Behr J, Ostermeier C, Richter OMH, Pfitzner U, Odenwald A et al (1998) Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FTIR spectroscopy. Biochemistry 37:7390–7399 doi:10.1021/bi9725576

    Article  PubMed  CAS  Google Scholar 

  22. Marques AT, Silva JA, Silva MR, Beja AM, Justino LL, Sobral AJ (2008) X-ray diffraction and DFT studies of 2-methoxy-5-phenylaniline. J Chem Crystallogr 38:295–299 doi:10.1007/s10870-007-9306-6

    Article  CAS  Google Scholar 

  23. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170 doi:10.1021/bi00745a020

    Article  PubMed  CAS  Google Scholar 

  24. Lakowicz JR, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins in the nanosecond time scale. Biochemistry 12:4171–4179 doi:10.1021/bi00745a021

    Article  PubMed  CAS  Google Scholar 

  25. Lakowicz JR, Maliwal BP (1983) Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J Biol Chem 258:4794–4801

    PubMed  CAS  Google Scholar 

  26. Shinitzky M, Goldman R (1967) Fluorometric detection of histidine–tryptophan complexes in peptides and proteins. Eur J Biochem 3:139–144 doi:10.1111/j.1432-1033.1967.tb19508.x

    Article  PubMed  CAS  Google Scholar 

  27. Ross JBA, Laws WR, Buku A, Sutherland JC, Wyssbrod HR (1986) Time-resolved fluorescence and 1H NMR studies of tyrosyl residues oxytocin and small peptides. Correlation and of NMR determined conformations of tyrosyl residues and fluorescence decay kinetics. Biochemistry 25:607–612 doi:10.1021/bi00351a014

    Article  PubMed  CAS  Google Scholar 

  28. Guzow K, Ganzynkowicz R, Rzeska A, Mrozek J, Szabelski M, Karolczak J et al (2004) Photophysical properties of tyrosine and its simple derivatives studies by time-resolved fluorescence spectroscopy, global analysis and theoretical calculations. J Phys Chem B 108:3879–3889 doi:10.1021/jp036721c

    Article  CAS  Google Scholar 

  29. Hellwig P, Pfitzner U, Behr J, Rost B, Pesavento RP, v Donk W et al (2002) Vibrational modes of tyrosines in cytochrom c oxidase from Paracoccus denitrificants: FTIR and electrochemical studies on Tyr-D4-labeled and on Tyr280His and Tyr35Phe mutant enzymes. Biochemistry 41:9116–9125 doi:10.1021/bi012056r

    Article  PubMed  CAS  Google Scholar 

  30. Berthomieu C, Hienerwadel R (2005) Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins. Biochim Biophys Acta 1707:51–66 doi:10.1016/j.bbabio.2004.03.011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS, ULP and ANR. M. Voicescu is grateful for financial support from the CNRS. The authors are indebted to Prof. van der Donk’s team, UIUC, Illinois, USA for Tyr–His model compounds synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Voicescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voicescu, M., Heinrich, M. & Hellwig, P. Steady-State and Time Resolved Fluorescence Analysis on Tyrosine–Histidine Model Compounds. J Fluoresc 19, 257–266 (2009). https://doi.org/10.1007/s10895-008-0411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0411-5

Keywords

Navigation