Skip to main content
Log in

Heat and mass transfer in natural draft cooling towers

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Cooling towers (CTs) are important units in the vast majority of power plants. They have been intensively investigated for the last 70 years. The abundance of works makes difficult to “see” the total area of investigations of CTs and to find the most urgent and important results. This article contains a compact overview of contemporary publications (for the last 11 years) in the area of heat and mass transfer in CTs, especially in natural draft wet cooling towers (NDWCT), and of related phenomena. Attention is specially paid to modern numerical computational investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Spalding, Heat Exchanger Design Handbook, Vol. 1, Hemisphere Publishing Corporation, New York (1986), Section 1.1.5.

  2. M. A. Al-Nimr, Modeling the dynamic thermal behavior of cooling towers containing packing materials, Heat Transf. Eng., 20, No. 1, 91–96 (1999).

    Article  Google Scholar 

  3. S. P. Fisenko, A. I. Petruchik, and A.D. Solodukhin, Evaporative cooling of water in a natural draft cooling tower, Int. J. Heat Mass Transf., 45, No. 23, 4683–4694 (2002).

    Article  MATH  Google Scholar 

  4. M. N. A. Hawlader and B. M. Liu, Numerical study of the thermal-hydraulic performance of evaporative natural draft cooling tower, Appl. Thermal Eng., 22, 41–59 (2002).

    Article  Google Scholar 

  5. J. C. Kloppers and D. G. Kröger, A critical investigation into the heat and mass transfer analysis of crossflow wetcooling towers, Numer. Heat Transf., 46, No. 8, 785–806 (2004).

    Article  Google Scholar 

  6. J. C. Kloppers and D. G. Kroger, A critical investigation into the heat and mass transfer analysis of counterflow wetcooling towers, Int. J. Heat Mass Transf., 48,765–777 (2005).

    Article  MATH  Google Scholar 

  7. K. Boulama, N. Galanis, and J. Orfi, Heat and mass transfer between gas and liquid streams in direct contact, Int. J. Heat Mass Transf., 47, 3669–3681 (2004).

    Article  MATH  Google Scholar 

  8. Paisarn Naphon, Study on the heat transfer characteristics of an evaporative cooling tower, Int. Commun. Heat Mass Transf., 32, 1066–1074 (2005).

  9. Chengqin Ren, An analytical approach to the heat and mass transfer processes in counterflow cooling towers, J. Heat Transf., 128, 1142 (2006).

  10. S. P. Fisenko and A. A. Brin, Simulation of a cross-flow cooling tower performance, Int. J. Heat Mass Transf., 50, 3216–3223 (2007).

    Article  MATH  Google Scholar 

  11. Si Y. Lee, James S. Bollinger, Alfred J. Garrett, and Larry D. Koffman, CFD modeling analysis of mechanical draft cooling tower, in: Proc. ASME Conf. HT2008 (2008).

  12. Ralph L. Webb and Alejandro Villacres, Performance simulation of evaporative heat exchangers, Cooling towers, fluid coolers, and condensers, Heat Transf. Eng., 6, No. 2, 31–38 (1985).

    Article  Google Scholar 

  13. W. M. Yan and T. F. Lin, Evaporative cooling of liquid film through interfacial heat and mass transfer in a vertical channel—II. Numerical study, Int. J. Heat Mass Transf., 34, 1113–1124 (1991).

    Article  Google Scholar 

  14. V. Stefanović, Gradimir Ilić, Mića Vukić, Nenad Radojković, Goran Vučković, and Predrag Živković, 3D model in simulation of heat and mass transfer processing in wet cooling towers, Facta Univ., Ser. Mech. Eng., 1, No. 8, 1065–1081 (2001).

    Google Scholar 

  15. G. Gan, S. B. Riffat and L. Shao, Application of CFD to closed-wet cooling towers, Appl. Thermal Eng., 21, No. 1, 79–921 (2001).

    Article  Google Scholar 

  16. Maja Rotar, Brane Širok, Boštjan Drobnič, Matej Novak, and Bozin Donevski, A numerical analysis of the local anomalies in a natural-draft cooling tower, Heat Transf. Eng., 26, No. 9, 61–72 (2005).

    Article  Google Scholar 

  17. Xiang-Liang Yang, Feng-Zhong Sun, Kai Wang, Yue-Tao Shi, and Nai-Hua Wang, Numerical simulation of flow fields in a natural draft wet-cooling tower, J. Hydrodyn., Ser. B, 19, No. 6, 762–768 (2007).

    Article  Google Scholar 

  18. Jorge Facão and Armando C. Oliveira, Heat and mass transfer in an indirect contact cooling tower: CFD simulation and experiment, Numer. Heat Transf., Part A, 54, No. 10, 933–944 (2008).

    Article  Google Scholar 

  19. N. Williamson, M. Behnia, and S. Armfield, Comparison of a 2D axisymmetric CFD model of a natural draft wet cooling tower and a 1D model, Int. J. Heat Mass Transf., 51, 2227–2236 (2008).

    Article  Google Scholar 

  20. N. Williamson, M. Behnia, and S. Armfield, Thermal optimization of a natural draft wet cooling tower, Int. J. Energy Res., 32, No. 14, 1349–1361 (2008).

    Article  Google Scholar 

  21. N. Williamson, S. Armfield, and M. Behnia, Numerical simulation of flow in a natural draft wet cooling tower – The effect of radial thermofluid fields, Appl. Thermal Eng., 28, No. 2–3, 178–189 (2008).

    Article  Google Scholar 

  22. Wang Kai, Sun Feng-Zhong, Zhao Yuan-Bin, Gao Ming, and Shi Yue-Tao, Three-dimensional regularities of distribution of airinlet characteristic velocity in natural-draft wet cooling tower, J. Hydrodyn., 20, No. 3, 323–330 (2008).

    Article  Google Scholar 

  23. Ghassem Heidarinejad, Maryam Karami, and Shahram Delfani, Numerical simulation of counter-flow wet-cooling towers, Int. J. Refrig., 32, No. 5, 996–1002 (2009).

    Article  Google Scholar 

  24. Adam Klimanek, Ryszard A. Białecki, and Ziemowit Ostrowski, CFD two-scale model of a wet natural draft cooling tower, Numer. Heat Transf., Part A, 57, No. 2, 119–137 (2010).

    Article  Google Scholar 

  25. Xiao Li, Yaoyu Li, and John E. Seem, Dynamic modeling of mechanical draft counter-flow wet cooling tower with modelica, in: Proc. ASME 2010 "Dynamic Systems and Control Conference", Vol. 2 (2010).

  26. Z. Z. Xia, C. J. Chen, and R. Z. Wang, Numerical simulation of a closed wet cooling tower with novel design, Int. J. Heat Mass Transf., 54, 2367–2374 (2011).

    Article  MATH  Google Scholar 

  27. Hanno C. R. Reuter and Detlev G. Kröger, Computational models for predicting cooling tower fill performance in cross-counterflow configuration, in: Proc. ASME Conf. IHTC14, Vol. 4 (2010).

  28. Hanno C. R. Reuter and Detlev G. Kröger, A new two-dimensional CFD model to predict the performance of natural draught wet-cooling towers packed with trickle or splash fills, in: Proc. ASME Conf. IHTC14, Vol. 4 (2010).

  29. Brane Širok, Marko Hočevar, Tom Bajcar, Bogdan Blagojević, Matjaž Dvoršek, and Matej Novak, Thermovision method for diagnostics of local characteristics of natural draft cooling towers, Instrum. Sci. Technol., 34, No. 3, 289–304 (2006).

    Article  Google Scholar 

  30. J. Smrekar, J. Oman, and B. Širok, Improving the efficiency of natural draft cooling towers, Energy Convers. Manage., 47, 1086–1100 (2006).

    Article  Google Scholar 

  31. S. M. Bower and J. R. Saylor, A study of the Sherwood–Rayleigh relation for water undergoing natural convection-driven evaporation, Int. J. Heat Mass Transf., 52, 3055–3063 (2009).

    Article  Google Scholar 

  32. M. Lemouari and M. Boumaza, Experimental investigation of the performance characteristics of a counterflow wet cooling tower, Int. J. Thermal Sci., 49, No. 10, 2049–2056 (2010).

    Article  Google Scholar 

  33. Matjaž Dvoršek1, Marko Hočevar, Brane Širok, Nikola Holeček, and Božin Donevski, The influence of airflow inlet region modifi cations on the local efficiency of natural draft cooling tower operation, J. Mech. Eng., 57, No. 10, 750–759 (2011).

    Article  Google Scholar 

  34. K. M. Mohiuddin and K. Kant, Knowledge base for the systematic design of wet cooling towers. Part I: Selection and tower characteristics, Int. J. Refrig., 19, No. 1, 52–60 (1996).

    Article  Google Scholar 

  35. Hector L. Cruz, Common design deficiencies in counterflow cooling towers, in: Proc. ASME Conf. POWER2004 (2004).

  36. Bilal Ahmed Qureshi and Syed M. Zubair, Prediction of evaporation losses in wet cooling towers, Heat Transf. Eng., 27, No. 9, 86–92 (2006).

    Article  Google Scholar 

  37. S. P. Fisenko, A. A. Brin, and A. I. Petruchik, Evaporative cooling of water in a mechanical draft cooling tower, Int. J. Heat Mass Transf., 47, 165–177 (2004).

    Article  MATH  Google Scholar 

  38. Hector L. Cruz, Estimating cooling towers for power plant applications, in: Proc ASME Conf. POWER2006 (2006).

  39. Giorgia F. Cortinovis, José L. Paiva, Tah W. Song, and José M. Pinto, A systemic approach for optimal cooling tower operation, Energy Convers. Manage., 50, 2200–2209 (2009).

  40. Eusiel Rubio-Castro, Medardo Serna-González, José María Ponce-Ortega, and Miguel Angel Morales-Cabrera, Optimization of mechanical draft counter flow wet-cooling towers using a rigorous model, Appl. Thermal Eng., 31, No. 16, 3615–3628 (2011).

    Article  Google Scholar 

  41. J. Smrekar, I. Kuštrin, and J. Oman, Methodology for evaluation of cooling tower performance – Part 1: Description of the methodology, Energy Convers. Manage., 52, 3257–3264 (2011).

    Article  Google Scholar 

  42. H. R. Goshayshi, J. F. Missenden, and R. Tozer, Cooling tower – an energy conservation resource, Appl. Thermal Eng., 19, 1223–1235 (1999).

    Article  Google Scholar 

  43. H. C. R. Reuter and D. G. Kröger, Computational fluid dynamics analysis of cooling tower inlets, J. Fluids Eng., 133, 081104 (2011).

    Article  Google Scholar 

  44. Robert N. Meroney, CFD prediction of cooling tower drift, J. Wind Eng. Ind. Aerodyn., 94, 463–490 (2006).

    Article  Google Scholar 

  45. M. Lucas, P. J. Martínez, J. Ruiz, A. S. Kaiser, and A. Viedma, On the influence of psychrometric ambient conditions on cooling tower drift deposition, Int. J. Heat Mass Transf., 53, 594–604 (2010).

    Article  MATH  Google Scholar 

  46. Rafat Al-Waked and Masud Behnia, The effect of windbreak walls on the thermal performance of natural draft dry cooling towers, Heat Transf. Eng., 26, No. 8, 50–62 (2005).

    Article  Google Scholar 

  47. Ming Gao, Feng-zhong Sun, Kai Wang, Yue-tao Shi, and Yuan-bin Zhao, Experimental research of heat transfer performance on natural draft counter fl ow wet cooling tower under cross-wind conditions, Int. J. Therm. Sci., 47, No. 7, 935–941 (2008).

    Article  Google Scholar 

  48. J. Madad-Nia and H. Koosha, Effect of wind break walls on performance of a cooling tower model, Mech. Aerospace Eng. J., 3, No. 4, 61–67 (2008).

    Google Scholar 

  49. Rafat Al-Waked, Crosswinds effect on the performance of natural draft wet cooling towers, Int. J. Thermal Sci., 49, No. 1, 218–224 (2010).

    Article  Google Scholar 

  50. Youliang Chen, Fengzhong Sun, Hongguo Wang, Nasi Mu, and Ming Gao, Experimental research of the cross walls effect on the thermal performance of wet cooling towers under crosswind conditions, Appl. Therm. Eng., 31, No. 17–18, 4007–4013 (2011).

    Article  Google Scholar 

  51. Kai Wang, Feng-zhong Sun, Yuan-bin Zhao, Ming Gao, and Lei Ruan, Experimental research of the guiding channels effect on the thermal performance of wet cooling towers subjected to crosswinds — Air guiding effect on cooling tower, Appl. Therm. Eng., 30, No. 5, 533–538 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Hemmasian Kashani.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 5, pp. 1008–1018, September–October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashani, M.M.H., Dobrego, K.V. Heat and mass transfer in natural draft cooling towers. J Eng Phys Thermophy 86, 1072–1082 (2013). https://doi.org/10.1007/s10891-013-0930-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0930-z

Keywords

Navigation