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The original version of this article, unfortunately, contained an error.
In [1], we studied

ht = δ
2 |∇h|2 + �(�2h − �div DFW (∇h)) in � × R+,

h(x, 0) = h0(x) for x ∈ �,
(1)

for � = (0, L)d , d = 1 or d = 2 with periodic boundary conditions. The nonlinearity had
the following form,
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where α, β > 0 are anisotropy coefficients.
The way to obtain long-time results was through the study of the differentiated system

(1), u = ∇h, i.e. we differentiated (1) with respect to x . Here is the resulting problem,

ut = δ
2∇|u|2 + �3u − ∇�div DuW (u) in � × R+,

u(x, 0) = u0(x) for x ∈ �,
(2)

where u = (u1, u2) = (hx , hy) (resp. u = hx ), if d = 2, (resp. d = 1).

The original article can be found online at https://doi.org/10.1007/s10884-015-9510-6.
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We proved in [1] the following result about (2).

Theorem 1 ([1, Theorem 4], [1, Theorem 5]) Let us consider � = (0, L)d with d = 1, 2
and L > 0 arbitrary. The semigroup S(t) : Ḣ2

per (�) → Ḣ2
per (�), u0 �→ S(t)u0 = u(t)

generated by equation (2) with periodic boundary conditions has a global attractor.

We also claimed that the following result holds true.

Theorem 2 ([1, Theorem 6]) The semigroup generated by equation (1) has a global attractor
in H3

per for d = 1 and d = 2.

However, this claim is not valid, because if h is solution to (1), then due to [1, Lemma 13]
we know that ∇h ∈ L2(0, T ; Ḣ5

per ) and integration of (1) over � yields,

d

dt

∫
�

h(x, t) dx =
∫

�

∂h

∂t
(x, t) dx =

∫
�

δ|∇h|2 dx ≥ 0.

However, d
dt

∫
�
h(x, t) dx = 0 if and only if h ≡ const . Moreover, h = const . is a steady

state of (1). As a result, if h is not a constant steady state, then

0 <
d

dt

∫
�

h(x, t) dx .

This fact was overlooked in [1], making the claim in Theorem 2 invalid.
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