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Abstract The dynamics of an infinite system of point particles in R
d , which hop and interact

with each other, is described at both micro- and mesoscopic levels. The states of the system are
probability measures on the space of configurations of particles. For a bounded time interval
[0, T ), the evolution of states μ0 �→ μt is shown to hold in a space of sub-Poissonian
measures. This result is obtained by: (a) solving equations for correlation functions, which
yields the evolution k0 �→ kt , t ∈ [0, T ), in a scale of Banach spaces; (b) proving that each
kt is a correlation function for a unique measure μt . The mesoscopic theory is based on a
Vlasov-type scaling, that yields a mean-field-like approximate description in terms of the
particles’ density which obeys a kinetic equation. The latter equation is rigorously derived
from that for the correlation functions by the scaling procedure. We prove that the kinetic
equation has a unique solution �t , t ∈ [0,+∞).
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1 Introduction

1.1 The Setup

In this paper, we study the dynamics of an infinite system of point particles in R
d which hop

and interact with each other. The corresponding phase space is the set of configurations

� =
{
γ ⊂ R

d : |γ ∩ K | < ∞ for any compact K ⊂ R
d
}
, (1.1)

where |A| denotes the cardinality of a finite set A. The set � is equipped with a complete
metric and with the corresponding Borel σ -field, which allows one to employ probability
measures on �.

In this work, we follow the statistical approach to stochastic dynamics, see e.g., [11,12,15]
and the literature quoted in those articles. In this approach, a model is specified by a Markov
‘generator’, which acts on observables—appropriate functions F : � → R. For the model
considered here, it has the form

(L F)(γ ) =
∑
x∈γ

∫

Rd

c(x, y, γ )
[
F(γ \ x ∪ y)− F(γ )

]
dy, γ ∈ �. (1.2)

In (1.2) and in the sequel in the corresponding context, we treat each x ∈ R
d also as a single-

point configuration {x}. That is, if x belongs to γ (resp. y does not), by γ \ x (resp. γ ∪ y)
we mean the configuration which is obtained from γ by removing x (resp. by adding y).
The elementary act of the dynamics described by (1.2), which with probability c(x, y, γ )dt
occurs during the infinitesimal time dt , consists in a random change from γ to γ \ x ∪ y. The
rate c(x, y, γ ) may depend on z ∈ γ with z 	= x, y, which is interpreted as an interaction of
particles. In this article, we choose

c(x, y, γ ) = a(x − y) exp
(−Eφ(y, γ )

)
, (1.3)

where the jump kernel a : R
d → [0,+∞) =: R+ is such that a(x) = a(−x) and

α :=
∫

Rd

a(x)dx < ∞. (1.4)

The second factor in (1.3) describes the interaction, which is supposed to be pair-wise and
repulsive. This means that

Eφ(y, γ ) =
∑
z∈γ

φ(y − z) ≥ 0, (1.5)

where the ‘potential’ φ : R
d → R+ is such that φ(x) = φ(−x) and

cφ :=
∫

Rd

(
1 − e−φ(x)) dx < ∞. (1.6)

In the sequel, when we speak of the model we consider, we mean the one defined in (1.2)–
(1.6). We also call it continuum Kawasaki system.

The main reason for us to choose the rates as in (1.3) is that any grand canonical Gibbs
measure with potential φ, see e.g., [30], is invariant (even symmetrizing) for the dynamics
generated by (1.2) with such rates, see [21].
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As is usual for Markov dynamics, the ‘generator’ (1.2) enters the backward Kolmogorov
equation

d

dt
Ft = L Ft , Ft |t=0 = F0, (1.7)

where, for each t, Ft is an observable. In the approach we follow, the states of the system are
probability measures on �, and hence

∫
�

Fdμ can be considered as the value of observable
F in state μ. This pairing allows one to define also the corresponding forward Kolmogorov
or Fokker–Planck equation

d

dt
μt = L∗μt , μt |t=0 = μ0. (1.8)

The evolutions described by (1.2) and (1.8) are mutually dual in the sense that
∫

�

Ft dμ0 =
∫

�

F0dμt .

Thus, the Cauchy problem in (1.8) determines the evolution of states of our model. If we were
able to solve it for all possible probability measures as initial conditions, we could construct a
Markov process on�. For nontrivial models, however, including that considered in this work,
this is far beyond the possibilities of the available technical tools. The main reason for this
is that the configuration space � has a complex topological structure. Furthermore, the mere
existence of the process related to (1.8) would not be enough for drawing conclusions on the
collective behavior of the considered system. The basic idea of the approach which we follow
is to solve (1.8) not for all possible μ0, but only for those belonging to a properly chosen
class of probability measures on �. It turns out that even with such restrictions the direct
solving (1.8) is also unattainable, at least so far. Then the solution in question is obtained by
employing the so called moment or correlation functions. Similarly as a probability measure
on R is characterized by its moments, a probability measure on � can be characterized by
its correlation functions. Of course, as not every measure on R has all moments, not every
measure on � possesses correlation functions. The mentioned restriction in the choice of μ0

takes into account, among others, also this issue.
By certain combinatoric calculations, one transforms (1.8) into the following Cauchy

problem

d

dt
kt = L�kt , kt |t=0 = k0, (1.9)

where k0 is the correlation function ofμ0. Note that the equation in (1.9) is, in fact, an infinite
chain of coupled linear equations. Then the construction of the evolution of states μ0 �→ μt

is performed by: (a) solving (1.9) with k0 = kμ0 ; (b) proving that, for each t, there exists a
unique probability measure μt such that kt = kμt . This way of constructing the evolution of
states is, in a sense, analogous to that suggested by Bogoliubov [2] in the statistical approach
to the Hamiltonian dynamics of large systems of interacting physical particles, cf. [4,16,23]
and also a review in [7]. In the theory of such systems, the equation analogous to (1.9) is
called BBGKY chain [7].

The description based on (1.8) or (1.9) is microscopic since one deals with coordinates
of individual particles; cf. the Introduction in [29]. More coarse-grained levels are meso-
and macroscopic ones. They are attained by appropriate space and time scalings [29,31].
Of course, certain details of the system’s behavior are then lost. Kinetic equations provide a
space-dependent mean-field-like approximate description of the evolution of infinite particle
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systems. For systems of physical particles, such an equation is the Boltzmann equation
related to the BBGKY chain, cf. Sect. 6 in [7] and also [29,31]. Nowadays, a mathematically
consistent way of constructing the mesoscopic description based on kinetic equations is the
procedure analogous to the Vlasov scaling in plasma physics, see [12]. In its framework, we
obtain from (1.9) a new chain of linear equations for limiting ‘correlation functions’ rt , called
Vlasov hierarchy. Note that these rt may not be correlation functions at all but they have one
important property. Namely, if the initial state μ0 is the Poisson measure with density �0,
then rt is the correlation function for the Poisson measureμt with the density �t which solves
the corresponding kinetic equation.

In the present article, we aim at:

• constructing the evolution of states μ0 �→ μt of the model (1.2), (1.3) by solving (1.9)
and then by identifying its solution with a unique μt ;

• deriving rigorously the limiting Vlasov hierarchy, which includes also the convergence of
rescaled correlation functions to the limiting functions rt , as well as deriving the kinetic
equation;

• studying the solvability of the kinetic equation.

Let us make some comments. When speaking of the evolution of states, one might distinguish
between equilibrium and non-equilibrium cases. The equilibrium evolution is built with
the help of the reversible measures, if such exist for the considered model, and with the
corresponding Dirichlet forms. Recall that, for the choice as in (1.3), such reversible measures
are grand canonical Gibbs measures. The result is a stationary Markov process, see [21] where
a version of the model studied in this work was considered. Note that in this framework, the
evolution is restricted to the set of states which are absolutely continuous with respect to the
corresponding Gibbs measures. The non-equilibrium evolution, where initial states can be
“far away” from equilibrium, is much more interesting and much more complex—for the
model considered in this work, it has been constructed for noninteracting particles only, see
[22]. In this article, we go further in this direction and construct the non-equilibrium evolution
for the continuum Kawasaki system with repulsion. Results similar to those presented here
were obtained for a continuum Glauber model in [9], and for a spatial ecological model
in [10].

There exists a rich theory of interacting particle systems based on continuous time Markov
processes, which studies so called lattice models, see [24] and Part II of [31], and also [25]
for the latest results. The essential common feature of these models is that the particles are
distributed over a discrete set (lattice), typically Z

d . However, in many real-world applica-
tions, such as population biology or spatial ecology, the habitat, i.e., the space where the
particles are placed, should essentially be continuous, cf. [26], which we take into account
in this work. In statistical physics, a lattice model of ‘hopping spins’ was put forward in
[17], see also a review in [18]. There exists an extended theory of interacting particles hop-
ping over Z

d , cf. [31, Sect. 1 in Part II], and also, e.g., [3,8] for some aspects of the recent
development. However, this theory cannot be applied to continuum Kawasaki systems for a
number of reasons. One of which is that a bounded K ⊂ R

d can contain arbitrary number
of particles, whereas the number of particles contained in a bounded K ⊂ Z

d is at most |K |.

1.2 The Overview of the Results

The microscopic description is performed in Sect. 3 in two steps. First, we prove that, for
a given correlation function k0, the problem (1.9) has a unique classical solution kt on a
bounded time interval [0, T ) and in a Banach space, somewhat bigger than that containing
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k0, cf. Theorems 3.1 and 3.2. Here bigger means that the initial space is a proper subspace of
the latter. The parameter T > 0 is related to the ‘difference’ between the spaces. The main
characteristic feature of both Banach spaces is that if their elements are correlation functions
of some probability measures on�, then these measures are sub-Poissonian, cf. Definition 2.3
and Remark 2.4. This latter property is important in view of the mesoscopic description
which we construct subsequently, cf. Remark 4.1. The restriction of the evolution k0 �→ kt

to a bounded time interval is because we failed to apply to (1.9) semigroup methods, or
similar techniques, which would allow for solving this equation on [0,+∞) in the mentioned
Banach spaces. Our method is based on Ovcyannikov’s observation, cf. [6, pp. 9–13] and
[33], that an unbounded operator can be redefined as a bounded one acting, however, from a
‘smaller’ to a ‘bigger’ space, both belonging to a scale of Banach spaces, indexed by ϑ ∈ R.
The essential fact here is that the norm of such a bounded operator has an upper bound
proportional to (ϑ ′′ −ϑ ′)−1, see (3.18). This implies that the expansion for kt in powers of t
converges for t ∈ [0, T ), cf. (3.19) and (3.21). Second, we prove that the evolution k0 �→ kt

corresponds to the evolution μ0 �→ μt of uniquely determined probability measures on � in
the following sense. In Theorem 3.8, we show that if k0 is the correlation function of a sub-
Poissonian measureμ0, then, for each t ∈ (0, T ), kt is also a correlation function for a unique
sub-Poissonian measure μt . The proof is based on the approximation of states of the infinite
system by probability measures on� supported on the set of finite configurations�0 ⊂ � (we
call such measures �0-states). The evolution of the latter states can be derived directly from
(1.8), which we perform in Theorem 3.7. It is described by a stochastic semigroup constructed
with the help of a version of Miyadera’s theorem obtained in [32]. Then we prove that the
correlation functions of the mentioned states supported on�0 weakly converge to the solution
kt , which implies that it has the positivity property as in (3.38), which by Proposition 2.2
yields that kt is also a correlation function for a unique state.

The mesoscopic description is performed in Sect. 4 in the framework of the scaling method
developed in [12]. First, we derive an analog of (1.9) for the rescaled correlation functions,
that is, the Cauchy problem in (4.5). This problem contains the scaling parameter ε > 0,
which is supposed to tend to zero in the mesoscopic limit. In this limit, we obtain another
Cauchy problem, given in (4.12). By the results of Sect. 3, we readily prove the existence
of classical solutions of both (4.5) and (4.12). The essence of the scaling technique which
we use is that the evolution r0 �→ rt obtained from (4.12) preserves the set of correlation
functions of Poisson measures, cf. Lemma 4.3. Then the density �t that corresponds to rt

satisfies the kinetic equation (4.13), which we then transform into an integral equation, cf.
(4.15). For its eventual solutions, by the Gronwall inequality we obtain an a priori bound,
cf. (4.16), (4.17), by means of which we prove the existence of a unique solution of both
(4.13) and (4.15) on [0,+∞), which implies the global evolution r0 �→ rt , cf. Theorem 4.5.
Finally, in Theorem 4.6 we show that the rescaled correlation functions converge to the
Poisson correlation functions rt as ε → 0+, uniformly on compact subsets of [0, T ). This
result links both micro- and mesoscopic evolutions constructed in this work.

Let us mention some open problems related to the model studied in this work. The exis-
tence of the global mesoscopic evolution does not, however, imply that the restriction of the
microscopic evolution to a bounded time interval is only a technical problem. One cannot
exclude that, due to an infinite number of jumps, kt finally leaves any space of the type of
(3.10). It is still unclear whether the global evolution k0 �→ kt exists in any of Banach spaces
reasonably bigger than those used in Theorems 3.1 and 3.2.

A very interesting problem, in the spirit of the philosophy of Cox [5], is to relate the rate
of convergence in (3.54) to the value of t , which determines the space in which kt lies, cf.
Theorem 3.2. Another open problem is the existence of globally bounded solutions of the
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kinetic equation (4.13). It can be proven that, for a local repulsion, this is the case. Namely,
if φ in (4.13) is such that (φ ∗ �)(x) = ��(x) for all x and some � ≥ 0, and if �0 is a
bounded continuous function on R

d , then the solution �t is also a continuous function, cf.
Corollary 3.3, such that �t ≤ supx∈Rd �0(x)+ ε for all t > 0 and any ε > 0. From this one
can see how important can be the relation between the radii of the jump kernel a and of the
repulsion potential φ.

2 The Basic Notions

In this paper, we work in the approach of [10,11,13–15,19] where all the relevant details can
be found.

2.1 The Configuration Spaces

By B(Rd) and Bb(R
d) we denote the sets of all Borel and all bounded Borel subsets of R

d ,
respectively. The configuration space � is

� =
{
γ ⊂ R

d : |γ ∩ K | < ∞ for any compact K ⊂ R
d
}
.

Each γ ∈ � can be identified with the following positive Radom measure

γ (dx) =
∑
y∈γ

δy(dx) ∈ M
(
R

d
)
,

where δy is the Dirac measure centered at y, and M(Rd) denotes the set of all positive Radon
measures on B(Rd). This allows one to consider� as a subset of M(Rd), and hence to endow
it with the vague topology. The latter is the weakest topology in which all the maps

� � γ �→
∫

Rd

f (x)γ (dx) =
∑
x∈γ

f (x), f ∈ C0

(
R

d
)
,

are continuous. Here C0(R
d) stands for the set of all continuous functions f : R

d → R

which have compact support. The vague topology on � admits a metrization, which turns
it into a complete and separable (Polish) space, see, e.g., [20, Theorem 3.5]. By B(�) we
denote the corresponding Borel σ -field.

For n ∈ N0 := N ∪ {0}, the set of n-particle configurations in R
d is

�(0) = {∅}, �(n) =
{
η ⊂ R

d : |η| = n
}
, n ∈ N. (2.1)

For n ≥ 2, �(n) can be identified with the symmetrization of the set
{
(x1, . . . , xn) ∈

(
R

d
)n : xi 	= x j , for i 	= j

}
⊂ (Rd)n,

which allows one to introduce the corresponding topology and hence the Borel σ -field
B(�(n)). The set of finite configurations is

�0 :=
⊔

n∈N0

�(n). (2.2)

We equip it with the topology of the disjoint union and hence with the Borel σ -field B(�0).
Obviously, �0 is a subset of �, cf. (1.1). However, the topology just mentioned and that
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induced from � do not coincide. At the same time, �0 ∈ B(�). In the sequel, by�we denote
a bounded subset of R

d , that is, we always mean � ∈ Bb(R
d). For such �, we set

�� = {γ ∈ � : γ ⊂ �} .
Clearly, �� is also a measurable subset of �0 and the following holds

�� =
⊔

n∈N0

(
�(n) ∩ ��

)
,

which allows one to equip �� with the topology induced by that of �0. Let B(��) be the
corresponding Borel σ -field. It is clear that, for A ∈ B(�0), �� ∩ A ∈ B(��). It can be
proven, see Lemma 1.1 and Proposition 1.3 in [27], that

B(��) = {�� ∩ A : A ∈ B(�)} , (2.3)

and hence

B(�0) = {A ∈ B(�) : A ⊂ �0} . (2.4)

Next, we define the projection

� � γ �→ p�(γ ) = γ� := γ ∩�, � ∈ Bb

(
R

d
)
. (2.5)

It is known [1, p. 451] that B(�) is the smallest σ -algebra of subsets of � such that the maps
p� with all � ∈ Bb(R

d) are B(�)/B(��) measurable. This means that (�,B(�)) is the
projective limit of the measurable spaces (��,B(��)), � ∈ Bb(R

d). A set A ∈ B(�0) is
said to be bounded if

A ⊂
N⊔

n=0

�
(n)
� (2.6)

for some � ∈ Bb(R
d) and N ∈ N. The smallest � such that A ⊂ �� will be called the

support of A.

2.2 Measures and Functions

Given n ∈ N, by m(n) we denote the restriction of the Lebesgue product measure
dx1dx2 · · · dxn to (�(n),B(�(n))). The Lebesgue–Poisson measure with intensity � > 0
is a measure on (�0,B(�0)) defined by

λ� = δ∅ +
∞∑

n=1

�n

n! m(n). (2.7)

For � ∈ Bb(R
d), the restriction of λ� to �� will be denoted by λ�� . This is a finite measure

on B(��) such that

λ�� (��) = exp [�m(�)] ,

where m(�) := m(1)(�) is the Lebesgue measure of �. Then

π�� := exp(−�m(�))λ�� (2.8)
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is a probability measure on B(��). It can be shown [1] that the family {π�� }�∈Bb(Rd ) is
consistent, and hence there exists a unique probability measure, π� , on B(�) such that

π�� = π� ◦ p−1
� , � ∈ Bb

(
R

d
)
,

where p� is the same as in (2.5). This π� is called the Poisson measure. The Poisson measure
π� corresponding to the density � : R → R+ is introduced by means of the measure λ�,
defined as in (2.7) with �m replaced by m�, where, for � ∈ Bb(R

d),

m�(�) :=
∫

�

�(x)dx, (2.9)

which is supposed to be finite. Then π� is defined by its projections

π�� = exp(−m�(�))λ
�
� . (2.10)

For � = 1, we shall drop the subscript and consider the Lebesgue–Poisson measure λ and
the Poisson measure π .

For a measurable f : R
d → R and η ∈ �0, the Lebesgue–Poisson exponent is

e( f, η) =
∏
x∈η

f (x), e( f,∅) = 1. (2.11)

Clearly, e( f, ·) ∈ L1(�0, dλ) for any f ∈ L1(Rd) := L1(Rd , dx), and

∫

�0

e( f, η)λ(dη) = exp

⎧⎪⎨
⎪⎩

∫

Rd

f (x)dx

⎫⎪⎬
⎪⎭
. (2.12)

By Bbs(�0) we denote the set of all bounded measurable functions G : �0 → R, which have
bounded supports. That is, each such G is the zero function on�0 \ A for some bounded A, cf.
(2.6). Note that any measurable G : �0 → R is in fact a sequence of measurable symmetric
functions G(n) : (Rd)n → R such that, for η = {x1, . . . , xn}, G(η) = G(n)(x1, . . . , xn). We
say that F : � → R is a cylinder function if there exists� ∈ Bb(R

d) and G : �� → R such
that F(γ ) = G(γ�) for all γ ∈ �. By Fcyl(�) we denote the set of all measurable cylinder
functions. For γ ∈ �, by writing η � γ we mean that η ⊂ γ and η is finite, i.e., η ∈ �0. For
G ∈ Bbs(�0), we set

(K G)(γ ) =
∑
η�γ

G(η), γ ∈ �. (2.13)

Clearly K maps Bbs(�0) into Fcyl(�) and is linear and positivity preserving. This map plays
an important role in the theory of configuration spaces, cf. [19].

By M1(�) we denote the set of all probability measures on (�,B(�)), and let M1
fm(�)

denote the subset of M1(�) consisting of all measures which have finite local moments, that
is, for which ∫

�

|γ�|nμ(dγ ) < ∞ for all n ∈ N and � ∈ Bb

(
R

d
)
.

Definition 2.1 A measure μ ∈ M1
fm(�) is said to be locally absolutely continuous with

respect to the Poisson measure π if, for every � ∈ Bb
(
R

d
)
, the projection
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μ� := μ ◦ p−1
� (2.14)

is absolutely continuous with respect to π� and hence with respect to λ�, see (2.8).

A measure χ on (�0,B(�0)) is said to be locally finite if χ(A) < ∞ for every bounded
measurable A ⊂ �0. By Mlf (�0) we denote the set of all such measures. Let a measurable
A ⊂ �0 be bounded, and let IA be its indicator function on �0. Then IA is in Bbs(�0), and
hence one can apply (2.13). For μ ∈ M1

fm(�), we let

χμ(A) =
∫

�

(K IA)(γ )μ(dγ ), (2.15)

which uniquely determines a measureχμ ∈ Mlf (�0)). It is called the correlation measure for
μ. For instance, let A ⊂ �(n) ⊂ �0 and let � ∈ Bb(R

d) be the support of A, cf. (2.6). Then
(K IA)(γ ) is the number of distinct n-particle sub-configurations of γ contained in �, and
thus χμ(A) is the expected number of such sub-configurations in � in state μ. In particular,
if A ⊂ �(1), then χμ(A) is just the expected number of particles in state μ contained in �.

The equation (2.15) defines a map K ∗ : M1
fm(�) → Mlf (�0)) such that K ∗μ = χμ. In

particular, K ∗π = λ. It is known, see [19, Proposition 4.14], that χμ is absolutely continuous
with respect to λ if μ is locally absolutely continuous with respect to π . In this case, we have
that, for any � ∈ Bb(R

d) and λ�-almost all η ∈ ��,

kμ(η) = dχμ
dλ

(η) =
∫

��

dμ�

dπ�
(η ∪ γ )π�(dγ ) (2.16)

=
∫

��

dμ�

dλ�
(η ∪ ξ)λ�(dξ).

The Radon–Nikodym derivative kμ is called the correlation function corresponding to the
measure μ. As all real-valued measurable functions on �0, each kμ is the collection of

measurable k(n)μ : (Rd)n → R such that k(0)μ ≡ 1, and k(n)μ , n ≥ 2, are symmetric. In

particular, k(1)μ is the particle’s density in state μ, cf. (2.15).
Recall that by Bbs(�0)we denote the set of all bounded measurable functions G : �0 → R,

which have bounded supports. We also set

B+
bs(�0) = {G ∈ Bbs(�0) : (K G)(γ ) ≥ 0} . (2.17)

The following fact is known, see Theorems 6.1, 6.2 and Remark 6.3 in [19].

Proposition 2.2 Suppose χ ∈ Mlf (�0)) has the properties

χ({∅}) = 1,
∫

�0

G(η)χ(dη) ≥ 0, (2.18)

for each G ∈ B+
bs(�0). Then there existμ ∈ M1

fm(�) such that K ∗μ = χ . For the uniqueness
of such μ, it is enough that the Radon–Nikodym derivative (2.16) of χ obeys

k(η) ≤
∏
x∈η

CR(x), (2.19)

for all η ∈ �0 and for some locally integrable CR : R
d → R+.
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Let π� be the Poisson measure as in (2.10), and let � be the support of a given bounded
A ⊂ �0. If A ⊂ �(n), cf. (2.1), then

χπ�(A) =
∫

�n

�(x1) · · · �(xn)dx1 · · · dxn =
⎛
⎝
∫

�

�(x)dx

⎞
⎠

n

, (2.20)

which, in particular, means that particles appear in � independently. In this case,

kπ� (η) = e(�, η), (2.21)

where e is as in (2.11). In particular,

k(n)π� (x1, . . . , xn) = �(x1) · · · �(xn), n ∈ N. (2.22)

Definition 2.3 A locally absolutely continuous measure μ ∈ M1
fm(�), cf. Definition 2.1, is

called sub-Poissonian if its correlation function kμ obeys (2.19) for some locally integrable
CR : R

d → R+.

Remark 2.4 If μ is sub-Poissonian and A is as in (2.20), then

χμ(A) ≤ Cn

⎛
⎝
∫

�

k(1)μ (x)dx

⎞
⎠

n

,

for some C > 0. That is, the correlation measure is controlled by the density in this case. For
instance, if one knows that k(1)μt does not explode for all t > 0, then so does kμt , and hence
μt exists for all t > 0. A faster increase of χμ(A), e.g., as n!, can be interpreted as clustering
in state μ.

Finally, we present the following integration rule, cf. [11, Lemma 2.1],
∫

�0

∑
ξ⊂η

H(ξ, η \ ξ, η)λ(dη) =
∫

�0

∫

�0

H(ξ, η, η ∪ ξ)λ(dξ)λ(dη), (2.23)

which holds for any appropriate function H .

3 Microscopic Dynamics

In view of the fact that � contains also infinite configurations, the direct construction of the
evolution based on (1.7) and (1.2) cannot be done, and thus we pass to the description based
on correlation functions, cf. (1.9) and (2.16). The ‘generator’ in (1.9) has the form, cf. [15,
Eq. (4.8)]

(
L�k

)
(η) =

∑
y∈η

∫

Rd

a(x − y)e
(
τy, η \ y ∪ x

)

×
⎛
⎜⎝
∫

�0

e(ty, ξ)k (ξ ∪ x ∪ η \ y) λ(dξ)

⎞
⎟⎠ dx
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−
∫

�0

k(ξ ∪ η)
⎛
⎜⎝
∑
x∈η

∫

Rd

a(x − y)e(τy, η)

× e(ty, ξ)dy
)
λ(dξ). (3.1)

Here e is as in (2.11) and

tx (y) = e−φ(x−y) − 1, τx (y) = tx (y)+ 1. (3.2)

We shall also consider the following auxiliary evolution G0 �→ Gt , dual to that k0 �→ kt

described by (1.9) and (3.1). The duality is understood in the sense

〈〈Gt , k0〉〉 = 〈〈G0, kt 〉〉 , (3.3)

where

〈〈G, k〉〉 :=
∫

�0

G(η)k(η)λ(dη), (3.4)

and λ is the Lebesgue–Poisson measure defined in (2.7) with � = 1. The ‘generators’ are
related to each other by

〈〈
G, L�k

〉〉 = 〈〈
L̂G, k

〉〉
. (3.5)

Then the equation dual to (1.9) is

d

dt
Gt = L̂Gt , Gt |t=0 = G0, (3.6)

with, cf. [15, Eq. (4.7)],

(
L̂G

)
(η) =

∑
ξ⊂η

∑
x∈ξ

∫

Rd

a(x − y)e(τy, ξ)

× e(ty, η \ ξ) [G(ξ \ x ∪ y)− G(ξ)] dy. (3.7)

3.1 The Evolution of Correlation Functions

We consider (1.9) with L� given in (3.1). To place this problem in the right context we
introduce the following Banach spaces. Recall that a function G : �0 → R is a sequence of
G(n) : (Rd)n → R, n ∈ N0, where G(0) is constant and all G(n), n ≥ 2, are symmetric. Let
k : �0 → R be such that k(n) ∈ L∞((Rd)n), for n ∈ N. For this k and ϑ ∈ R, we set

‖k‖ϑ = sup
n∈N0

νn(k) exp(ϑn), (3.8)

where

ν0(k) = |k(0)|, νn(k) = ‖k(n)‖L∞((Rd )n), n ∈ N. (3.9)

Then

Kϑ := {k : �0 → R : ‖k‖ϑ < ∞} , (3.10)

is a real Banach space with norm (3.8) and usual point-wise linear operations. Note that
{Kϑ : ϑ ∈ R} is a scale of Banach spaces in the sense that
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Kϑ ⊂ Kϑ ′ , for ϑ > ϑ ′. (3.11)

As usual, by a classical solution of (1.9) in Kϑ on time interval I , we understand a map
I � t �→ kt ∈ Kϑ , which is continuous on I , continuously differentiable on the interior of
I , lies in the domain of L�, and solves (1.9). Recall that we suppose (1.6) and (1.4).

Theorem 3.1 Given ϑ ∈ R and T > 0, we let

ϑ0 = ϑ + 2αT exp(cφe−ϑ). (3.12)

Then the problem (1.9) with k0 ∈ Kϑ0 has a unique classical solution kt ∈ Kϑ on [0, T ).

According to the above theorem, for arbitrary T > 0 and ϑ , one can pick the initial space
such that the evolution k0 �→ kt lasts in Kϑ until t < T . On the other hand, if the initial space
is given, the evolution is restricted in time to the interval [0, T (ϑ)) with

T (ϑ) = ϑ0 − ϑ

2α
exp

(−cφe−ϑ ) . (3.13)

Clearly, T (ϑ0) = 0 and T (ϑ) → 0 as ϑ → −∞. Hence, there exists T∗ = T∗(ϑ0, α, cφ)
such that T (ϑ) ≤ T∗ for all ϑ ∈ (−∞, ϑ0]. Set

ϑ(t) = sup {ϑ ∈ (−∞, ϑ0] : t < T (ϑ)} . (3.14)

Then the alternative version of the above theorem can be formulated as follows.

Theorem 3.2 For every ϑ0 ∈ R, there exists T∗ = T∗(ϑ0, α, cφ) such that the problem (1.9)
with k0 ∈ Kϑ0 has a unique classical solution kt ∈ Kϑ(t) on [0, T∗).

Proof of Theorem 1 Let ϑ ∈ R be fixed. Set

Dom(L�) = {
k ∈ Kϑ : L�k ∈ Kϑ

}
. (3.15)

Given k, let L�1 k and L�2 k denote the first and the second summands in (3.1), respectively.
Then, for ϑ ≤ ϑ ′ < ϑ ′′ and k ∈ Kϑ ′′ , we have

|(L�1 k)(η)|eϑ ′|η|

≤
∑
y∈η

∫

Rd

dx a(x − y)
∫

�0

λ(dξ)|k(η\y ∪ x ∪ ξ)| exp(ϑ ′|η ∪ ξ |)

× exp(−ϑ ′′|η ∪ ξ |)e(|ty |, ξ)|eϑ ′|η|

≤
∑
y∈η

∫

Rd

dx a(x − y)
∫

�0

λ(dξ)‖k‖ϑ ′′e−ϑ ′′|ξ |

×e(|ty |, ξ)|e−|η|(ϑ ′′−ϑ ′)

= ‖k‖ϑ ′′α exp
(

e−ϑ ′′
cφ

)
|η|e−|η|(ϑ ′′−ϑ ′′)

≤ ‖k‖ϑ ′′α exp
(

e−ϑ ′′
cφ

) 1

e(ϑ ′′ − ϑ ′)
,

which holds for λ-almost all η ∈ �0. In the last line we used (2.12) and the following
inequality

τe−δτ ≤ 1/eδ, for all τ ≥ 0, δ > 0.
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Similarly one estimates also L�2 k, which finally yields

‖L�k‖ϑ ′ ≤ 2α

e(ϑ ′′ − ϑ ′)
exp

(
cφe−ϑ ′′) ‖k‖ϑ ′′ , ϑ ′′ > ϑ ′, (3.16)

and hence, cf. (3.11) and (3.15),

Dom
(
L�

) ⊃ Kϑ ′ , for all ϑ ′ > ϑ. (3.17)

By (3.16), L� can be defined as a bounded linear operator L� : Kϑ ′′ → Kϑ ′ , ϑ ′ < ϑ ′′, with
norm

‖L�‖ϑ ′′ϑ ′ ≤ 2α

e(ϑ ′′ − ϑ ′)
exp

(
cφe−ϑ ′′)

. (3.18)

Given k0 ∈ Kϑ0 , we seek the solution of (1.9) as the limit of the sequence {kt,n}n∈N0 ⊂ Kϑ ,
where kt,0 = k0 and

kt,n = k0 +
t∫

0

L�ks,n−1ds, n ∈ N.

The latter can be iterated to yield

kt,n = k0 +
n∑

m=1

1

m! tm (
L�

)m
k0. (3.19)

Then, for n, p ∈ N, we have

‖kt,n − kt,n+p‖ϑ ≤
n+p∑

m=n+1

tm

m! ‖
(
L�

)m ‖ϑ0ϑ‖k0‖ϑ0 . (3.20)

For a given m ∈ N and l = 0, . . . ,m, set ϑl = ϑ + (m − l)ε, ε = (ϑ0 − ϑ)/m. Then by
(3.18) and (3.13), we get

∥∥∥(L�
)m

∥∥∥
ϑ0ϑ

≤
m∏

l=0

‖L�‖ϑlϑl+1 ≤
(

2αm exp
[
cφe−ϑ ]

e(ϑ0 − ϑ)

)m

=
(m

e

)m 1

[T (ϑ)]m
. (3.21)

Applying the latter estimate in (3.20) we obtain that the sequence {k(n)t }n∈N converges in
Kϑ for |t | < T , and hence is differentiable, even real analytic, in Kϑ on the latter set. From
the proof above we see that {k(n)t }n∈N converges also in Kϑ(t) with ϑ(t) as in (3.14), which
proves Theorem 3.2. The latter by (3.17) yields that kt ∈ Dom(L�) for all t < T (ϑ), which
completes the proof of the existence. The uniqueness readily follows by the analyticity just
mentioned. ��

Let now kt , as a function of η ∈ �0, be continuous. Then instead of (3.10) we consider

K̃ϑ = {k ∈ C(�0 → R) : ‖k‖ϑ < ∞} ,
endowed with the same norm as in (3.8), (3.9).

Corollary 3.3 Let ϑ , T , and ϑ0 be as in Theorem 3.1. Suppose in addition that the function φ
is continuous. Then the problem (1.9) with k0 ∈ K̃ϑ0 has a unique classical solution kt ∈ K̃ϑ
on [0, T ).
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Now we consider (3.6) in the Banach space

Gϑ = L1
(
�0, e−ϑ |·|dλ

)
, ϑ ∈ R,

that is, G ∈ Gϑ if ‖G‖ϑ < ∞, where

‖G‖ϑ :=
∫

�0

exp(−ϑ |η|) |G(η)| λ(dη). (3.22)

Theorem 3.4 Let ϑ0 ϑ , T > 0 be as in (3.12). Then the Cauchy problem (3.6) with G0 ∈ Gϑ
has a unique classical solution Gt ∈ Gϑ0 on [0, T ).

Proof As above, we obtain the solution of (3.6) as the limit of the sequence {Gt,n}n∈N0 ⊂ Gϑ0 ,

where G(0)
t = G0 and

Gt,n = G0 +
n∑

m=1

1

m! tm L̂m G0. (3.23)

For the norm (3.22), from (3.7) similarly as above by (2.23) we get

∥∥L̂G
∥∥
ϑ ′′ ≤ 2α

e(ϑ ′′ − ϑ ′)
exp

(
cφe−ϑ ′′) ‖G‖ϑ ′ .

This means that L̂ can be defined as a bounded linear operator L̂ : Gϑ ′ → Gϑ ′′ with norm

∥∥L̂
∥∥
ϑ ′ϑ ′′ ≤ 2α

e(ϑ ′′ − ϑ ′)
exp

(
cφe−ϑ ) .

Then we apply the latter estimate in (3.23) and obtain, for any p, n ∈ N,

∥∥Gt,n − Gt,n+p
∥∥
ϑ

≤
n+p∑

m=n+1

(m/e)m

m!
(

t

T

)m

.

The latter estimate yields the proof, as in the case of Theorem 3.1. ��

Corollary 3.5 Let k0, kt , and G0, Gt be as in Theorems 3.1 and 3.4, respectively. Then, cf.
(3.3), the following holds

〈〈G0, kt 〉〉 = 〈〈Gt , k0〉〉 . (3.24)

That is, the evolutions described by these Theorems are dual.

Proof By (3.5) and by (3.19) and (3.23), we see that, for all n ∈ N,

〈〈
G0, kt,n

〉〉 = 〈〈
Gt,n, k0

〉〉
.

Then (3.24) is obtained from the latter by passing to the limit n → +∞, since we have the
norm-convergences of the sequences {kt,n} and {Gt,n}. ��
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3.2 The Evolution of �0-States

We recall that the set of finite configurations �0, cf. (2.2), is a measurable subset of �. By
a �0-state we mean a state μ ∈ M1(�) such that μ(�0) = 1. That is, in a �0-state the
system consists of a finite number of particles, but this number is random. Each �0-state can
be redefined as a probability measure on (�0,B(�0)), cf. (2.3) and (2.4). The action of the
‘generator’ in (1.8) on �0-states can be written down explicitly. Namely, for such a state μ
and A ∈ B(�0),

(L∗μ)(A) = −
∫

�0

�(�0, η)IA(η)μ(dη)+
∫

�0

�(A, η)μ(dη), (3.25)

where, cf. (1.3) and (1.5),

�(A, η) =
∑
x∈η

∫

Rd

a(x − y) exp(−Eφ(y, η))IA(η \ x ∪ y)dy, (3.26)

which is a measure kernel on (�0,B(�0)). That is, �(·, η) is a measure for all η ∈ �0, and
�(A, ·) is B(�0)-measurable for all A ∈ B(�0). Note that

�(�0, η) =
∑
x∈η

∫

Rd

a(x − y) exp(−Eφ(y, η))dy ≤ α|η|, (3.27)

which is obtained by (1.4) and the positivity of φ.
Let M(�0) be the Banach space of all signed measures on (�0,B(�0)) which have

bounded variation. For each μ ∈ M(�0), there exist β± ≥ 0 and probability measures
μ± such that

μ = β+μ+ − β−μ−, and ‖μ‖ = β+ + β−. (3.28)

Let M+(�0) be the cone of positive elements of M(�0), for which ‖μ‖ = μ(�0). Then we
define, cf. (3.27),

Dom(L∗) = {μ ∈ M(�0) : �(�0, ·)μ ∈ M(�0)} . (3.29)

Recall that a C0-semigroup {Sμ(t)}t≥0 of bounded operators in M(�0) is called stochastic if
each Sμ(t), t > 0, leaves the cone M+(�0) invariant, and ‖Sμ(t)μ‖ = 1 whenever ‖μ‖ = 1.
Our aim is to show that the problem (1.8) has a solution in the form

μt = Sμ(t)μ0, (3.30)

where {Sμ(t)}t≥0 is a stochastic semigroup in M(�0), that leaves invariant important sub-
spaces of M(�0). For a measurable b : �0 → R+, we set

Mb(�0) = {μ ∈ M(�0) : μ±(b) < ∞} ,
where μ± are the same as in (3.28) and

μ±(b) :=
∫

�0

b(η)μ±(dη).

The set Mb(�0) can be equipped with the norm

‖μ‖b = α+μ+(b)+ α−μ−(b),
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which turns it into a Banach space. Set

Mb,+(�0) = Mb(�0) ∩ M+(�0).

We also suppose that b is such that the embedding Mb(�0) ↪→ M(�0) is dense and contin-
uous. In the sequel, we use [32, Proposition 5.1], which we rephrase as follows.

Proposition 3.6 Suppose that b and some positive C and ε obey the following estimate
∫

�0

(b(ξ)− b(η))�(dξ, η) ≤ Cb(η)− ε�(�0, η), (3.31)

which holds for all η ∈ �0. Then the closure of L∗ as in (3.25), (3.26) with domain (3.29)
generates a C0-stochastic semigroup {Sμ(t)}t≥0, which leaves Mb(�0) invariant and induces
a positive C0-semigroup on (Mb(�0), ‖ · ‖b).

Theorem 3.7 The problem (1.8) with a �0-state μ0 has a unique classical solution in
M+(�0) on [0,+∞), given by (3.30) where Sμ(t), t > 0, constitute the stochastic semigroup
on M(�0) generated by the closure of L∗ given in (3.25), (3.26), and (3.29). Moreover, for
each b which satisfies

b(η) = δ(|η|) ≥ ε�(�0, η), for all η ∈ �0, (3.32)

with some ε > 0 and suitable δ : N → [0,+∞), the mentioned semigroup {Sμ(t)}t≥0 leaves
Mb,+(�0) invariant.

Proof Computations based on (2.23) show that, for b(η) = δ(|η|), the left-hand side of
(3.31) vanishes, which reflects the fact the the Kawasaki dynamics is conservative. Then the
proof follows by Proposition 3.6. The condition thatμ0 ∈ Mb,+(�0)with b satisfying (3.32)
merely means that this μ0 is taken from the domain of L∗, cf. (3.29). ��

Suppose now that the initial stateμ0 in (1.8) is supported on�0 and is absolutely continuous
with respect to the Lebesgue–Poisson measure λ. Then

R0(η) = dμ0

dλ
(η) (3.33)

is a positive element of unit norm of the Banach space R := L1(�0, dλ). Ifμ0 ∈ Mb,+(�0),
then also R0 ∈ Rb := L1(�0, bdλ). For b obeying (3.32), it is possible to show that, for
any t > 0, the solution μt as in Theorem 3.7 has the Radon–Nikodym derivative Rt which
lies in Rb. Furthermore, there exists a stochastic semigroup {SR(t)}t≥0 on R, which leaves
invariant each Rb with b obeying (3.32), and such that

Rt = SR(t)R0, t ≥ 0. (3.34)

The generator L† of the semigroup {SR(t)}t≥0 has the following properties

Dom(L†) ⊃ Rb, (3.35)

∫

�0

F(η)(L† R)(η)λ(dη) =
∫

�0

(L F)(η)R(η)λ(dη), (3.36)
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which holds for each b obeying (3.32), and for each R ∈ R and each measurable F : �0 → R

such that both integrals in (3.36) exist. Here L is as in (1.2). For each t ≥ 0, the correlation
function of μt and its Radon–Nikodym derivative satisfy, cf. (2.16),

kμt (η) =
∫

�0

Rt (η ∪ ξ)λ(dξ). (3.37)

By this representation and by (2.23), we derive
∫

Rd

k(1)μt
(x)dx =

∫

�0

|η|Rt (η)λ(dη),

which yields the expected number of particles in state μt . Note that we cannot expect now
that kμt lies in the spaces where we solve (1.9), cf. Theorem 3.1.

3.3 The Evolution of States

Recall that by Bbs(�0) we denote the set of all bounded measurable functions G : �0 → R

each of which is supported on a bounded A, cf. (2.6). Its subset B+
bs(�0) is defined in (2.17).

Given ϑ ∈ R, let Mϑ(�) stand for the set of all μ ∈ M1
fm(�), for which kμ ∈ Kϑ , see

(2.16) and (3.10). Let also K+
ϑ be the set of all k ∈ Kϑ such that, cf. (2.18),

∫

�0

G(η)k(η)λ(dη) ≥ 0, (3.38)

which holds for every G ∈ B+
bs(�0). Note that this property is ‘more than the mere positivity’

as B+
bs(�0) can contain functions which take also negative values, see (2.13) and (2.17). Then

in view of Proposition 2.2, the map Mϑ(�) � μ �→ kμ ∈ K+
ϑ is a bijection as such kμ

certainly obeys (2.19). In what follows, the evolution of states μ0 �→ μt is understood as
the evolution of the corresponding correlation functions kμ0 �→ kμt obtained by solving the
problem (1.9).

Theorem 3.8 Let ϑ0 ∈ R, ϑ , and T (ϑ) be as in Theorem 3.1 and in (3.13), respectively, and
let μ0 be in Mϑ0(�). Then the evolution described in Theorem 3.1 with k0 = kμ0 leaves K+

ϑ

invariant, which means that each kt is the correlation function of a unique μt ∈ Mϑ(�).
Hence, the evolution kμ0 �→ kt , t ∈ [0, T (ϑ)), determines the evolution of states

Mϑ0(�) � μ0 �→ μt ∈ Mϑ(�), t ∈ [0, T (ϑ)).

Proof To prove the statement we have to show that a solution kt of the problem (1.9) with
k0 = kμ0 obeys (3.38) for all t ∈ (0, T (ϑ)). Fix μ0 ∈ Mϑ0(�) and take � ∈ Bb(R

d). Let
μ�0 be the projection of μ0 onto ��, cf. (2.14). Since μ0 is in M1

fm(�), its density R�0 , as
in (3.33), is in R. Given N ∈ N, we let IN (η) = 1 whenever |η| ≤ N , and IN (η) = 0
otherwise. Then we set

R�,N0 (η) = R�0 (η)IN (η). (3.39)

As a function on �0, R�,N0 is a collection of R�,N ,n0 : (Rd)n → R+, n ∈ N0. Clearly, R�,N0

is a positive element of R of norm ‖R�,N0 ‖R ≤ 1. Furthermore, for each β > 0,

∫

�0

eβ|η| R�,N0 (η)λ(dη) =
N∑

n=0

enβ

n!
∫

�n

R�,N ,n0 (x1, . . . , xn)dx1 · · · dxn < ∞,
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and hence R�,N0 ∈ Rb with b(η) = eβ|η|, for each β > 0. Set

R�,Nt = SR(t)R
�,N
0 . t ≥ 0, (3.40)

where SR(t) is as in (3.34). By Theorem 3.7, we have that

∀t ≥ 0 : (a) ∀β > 0 R�,Nt ∈ Rb, with b(η) = eβ|η|,
(b) R�,N (η) ≥ 0, for λ− a.a. η ∈ �0,

(c) ‖R�,Nt ‖R ≤ 1. (3.41)

Furthermore, in view of (3.35), by [28, Theorem 2.4, pp. 4–5] we have from (3.40)

R�,Nt = R�,N0 +
t∫

0

L† R�,Ns ds. (3.42)

Set, cf. (2.16) and (3.37),

q�,Nt (η) =
∫

�0

R�,Nt (η ∪ ξ)λ(dξ). (3.43)

For G ∈ Bbs(�0), let N (G) ∈ N0 be such that G(n) ≡ 0 for n > N (G). For such G, K G is
a cylinder function on �, which can also be considered as a measurable function on �0. By
(2.13), we have that, for every G ∈ Bbs(�0) and each t ≥ 0,

〈〈
K G, R�,Nt

〉〉
=

〈〈
G, q�,Nt

〉〉
, (3.44)

see (3.4). Since G ∈ Bbs(�0) is bounded, we have

C(G) := max
n∈{0,...,N (G)} ‖G(n)‖L∞((Rd )n) < ∞, (3.45)

which immediately yields that

|(K G)(η)| ≤ (1 + |η|)N (G)C(G),

and hence both integrals in (3.44) exist since R�,Nt ∈ Rb for b(η) = eβ|η| with any β > 0.
Moreover, by the same argument the map R � R �→ 〈〈K G, R〉〉 is continuous, and thus from
(3.42) and (3.36) we obtain

〈〈
K G, R�,Nt

〉〉
=

〈〈
K G, R�,N0

〉〉
+

t∫

0

〈〈
K G, L† R�,Ns

〉〉
ds

=
〈〈

K G, R�,N0

〉〉
+

t∫

0

〈〈
L K G, R�,Ns

〉〉
ds. (3.46)

Now we would want to interchange in the latter line L and K . If L̂G were in Bbs(�0), one
could get point-wise L K G = K L̂G – by the very definition of L̂ . However, this is not the
case since, cf. (3.7),

∣∣(L̂G)(η)
∣∣ ≤ (KU G)(η),
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where

(U G)(ξ) =
∑
x∈ξ

∫

Rd

a(x − y) |G(ξ \ x ∪ y)− G(ξ)| dy.

Here we used, cf. (2.11) and (3.2), that

0 ≤ e(τy, ξ) ≤ 1, |e(ty, η \ ξ)| ≤ 1,

which holds for almost all all y, ξ , and η. Then, for G ∈ Bbs(�0), we have, cf (3.45),

N (U G) = N (G), C(U G) ≤ 2αN (G)C(G),

which then yields
∣∣(L̂G)(η)

∣∣ ≤ 2αN (G)C(G)(1 + |η|)N (G). (3.47)

Let us show that, for any t ≥ 0, the function (L̂G)q�,Nt is λ-integrable, cf. (3.43). By (2.23),
from (3.43) and (3.47) we get

〈〈
L̂G, q�,Nt

〉〉
≤ 2αN (G)C(G)

∫

�0

R�,Nt (η)

⎛
⎝∑
ξ⊂η

(1 + |ξ |)N (G)

⎞
⎠ λ(dη)

≤ 2αN (G)C(G)
∫

�0

2|η|(1 + |η|)N (G)R�,Nt (η)λ(dη).

Hence, by claim (a) in (3.41) we get the integrability in question. Then by (3.44) we transform
(3.46) into

〈〈
G, q�,Nt

〉〉
=

〈〈
G, q�,N0

〉〉
+

t∫

0

〈〈
L̂G, q�,Ns

〉〉
ds. (3.48)

Since R�,Nt is positive, cf. (b) in (3.41), by (3.44) we get
〈〈

G, q�,Nt

〉〉
≥ 0 for G ∈ B+

bs(�0). (3.49)

On the other hand, by (3.39) and (3.43) we have, see also (2.16),

0 ≤ q�,N0 (η) ≤
∫

�0

R�(η ∪ ξ)λ(dξ) = kμ0(η)I��(η) ≤ kμ0(η), (3.50)

where I�� is the indicator of ��, i.e., I��(η) = 1 whenever η ∈ ��, and I��(η) = 0
otherwise. By (3.50), q�,N0 ∈ Kϑ0 . Let k�,Nt , t ∈ [0, T ), be the solution of (1.9) with

k0 = q�,N0 , as stated in Theorem 3.1. Then

k�,Nt = k�,N0 +
t∫

0

L�k�,Ns ds,

which for G as in (3.48) yields

〈〈
G, k�,Nt

〉〉
=

〈〈
G, q�,N0

〉〉
+

t∫

0

〈〈
L̂G, k�,Ns

〉〉
ds. (3.51)

123



1046 J Dyn Diff Equat (2013) 25:1027–1056

Set

ϕ(t; G) =
〈〈

G, q�,Nt

〉〉
, ψ(t; G) =

〈〈
G, k�,Nt

〉〉
.

By (3.48) and (3.51), we obtain, cf. Corollary 3.5,

dnϕ

dtn
(0; G) = dnψ

dtn
(0; G) =

〈〈
L̂nG, q�,N0

〉〉
=

〈〈
G, (L�)nq�,N0

〉〉
. (3.52)

From this we can get that, cf. (3.49),
〈〈

G, k�,Nt

〉〉
=

〈〈
G, q�,Nt

〉〉
≥ 0, for G ∈ B+

bs(�0), (3.53)

provided the series

∞∑
m=0

tm

m!
〈〈

G, (L�)mq�,N0

〉〉

converges for all t ∈ [0, T (ϑ)), cf. (3.52). But the latter indeed holds true in view of (3.21),
which implies that (3.53) holds for all t ∈ [0, T (ϑ)).

In Appendix, we show that, for each G ∈ B+
bs(�0) and any t ∈ [0, T (ϑ)),

〈〈G, kt 〉〉 = lim
n→+∞ lim

l→+∞

〈〈
G, k�n ,Nl

t

〉〉
, (3.54)

for certain increasing sequences {�n}n∈N and {Nl}l∈N such that Nl → +∞ and �n → R
d .

Then by (3.54) and (3.53) we obtain (3.38), and thus complete the proof. ��

4 Mesoscopic Dynamics

As mentioned above, the mesoscopic description of the considered model is obtained by
means of a Vlasov-type scaling, originally developed for describing mesoscopic properties
of plasma. We refer to [7,29,31] as to the source of general concepts in this field, as well as
to [12] where the peculiarities of the scaling method which we use are given along with the
updated bibliography on this item.

4.1 The Vlasov Hierarchy

The main idea of the scaling which we use in this article is to make the particle system
more and more dense whereas the interaction respectively weaker. This corresponds to the
so called mean field approximation widely employed in theoretical physics. Note that we
are not scaling time, which would be the case for a macroscopic scaling. The object of our
manipulations will be the problem (1.9). The scaling parameter ε > 0 will be tending to zero.
The first step is to assume that the initial state depends on ε in such a way that the correlation
function k(ε)0 diverges as ε → 0 in such a way that the so called renormalized correlation
function

k(ε)0,ren(η) := ε|η|k(ε)0 (4.1)

converges k(ε)0,ren → r0, as ε → 0, to the correlation function of a certain measure. Let

k(ε,n)0 : (Rd)n → R denote n-particle ‘component’ of k(ε)0 . Then our assumption, in particular,
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means

k(ε,1)0 ∼ ε−1. (4.2)

Then the second step is to consider the Cauchy problem

d

dt
k(ε)t = L�ε k(ε)t , k(ε)t |t=0 = k(ε)0 , (4.3)

where L�ε is as in (3.1) but with φ multiplied by ε. As might be seen from (3.19), the solution

k(ε)t , which exists in view of Theorem 3.1, diverges as ε → 0. Thus, similarly as in (4.1) we
pass to

k(ε)t,ren(η) = ε|η|k(ε)t , (4.4)

which means that instead of (4.3) we are going to solve the following problem

d

dt
k(ε)t,ren = Lε,renk(ε)t,ren k(ε)t,ren|t=0 = k(ε)0,ren, (4.5)

with

Lε,ren = R−1
ε L�ε Rε, (Rεk) (η) := ε−|η|k(η). (4.6)

Remark 4.1 Since k(ε)0 is a correlation function, by Theorem 3.7 we know that k(ε)t is the

correlation function of a unique measure μ(ε)t . If μ(1)0 is a Poisson measure with density

k(1,1)0 = �0, then also μ(ε)0 with density k(ε,1)0 = ε−1�0 is a Poisson measure. We can expect

that, for t > 0, k(ε)t,ren has a nontrivial limit as ε → 0+, only if k(ε)t (η) ≤ [k(ε,1)t (x)]|η|, cf.

(4.2) and (4.4). For this to hold,μ(ε)t should be sub-Poissonian, cf. Definition 2.3 and Remark
2.4. That is, the evolution μ(ε)0 �→ μ

(ε)
t should preserve sub-Poissonicity, which is the case

by Theorem 3.1 in view of (3.8).

By (3.1) and (4.6), we have

(
Lε,renk

)
(η) =

∑
y∈η

∫

Rd

a(x − y)e(τ (ε)y , η \ y ∪ x) (4.7)

×
⎛
⎜⎝
∫

�0

e(ε−1t (ε)y , ξ)k(ξ ∪ x ∪ η \ y)λ(dξ)

⎞
⎟⎠ dx

−
∫

�0

k(ξ ∪ η)
⎛
⎜⎝
∑
x∈η

∫

Rd

a(x − y)e(τ (ε)y , η)

× e(ε−1t (ε)y , ξ)dy
)
λ(dξ),

where, cf. (3.2),

t (ε)x (y) = e−εφ(x−y) − 1, τ (ε)x (y) = t (ε)x (y)+ 1.

As in (3.18), for any ϑ ′ ∈ R and ϑ ′′ > ϑ ′, we have

‖Lε,ren‖ϑ ′′ϑ ′ ≤ 2α

e(ϑ ′′ − ϑ ′)
exp

(
c(ε)φ e−ϑ ′′)

, (4.8)
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where, cf. (1.6),

c(ε)φ = ε−1
∫

Rd

(
1 − e−εφ(x)) dx .

Suppose now that φ is in L1(Rd) and set

〈φ〉 =
∫

Rd

φ(x)dx .

Recall that we still assume φ ≥ 0. Then

‖Lε,ren‖ϑ ′′ϑ ′ ≤ sup
ε>0

{RHS(4.8)} = 2α

e(ϑ ′′ − ϑ ′)
exp

(
〈φ〉e−ϑ ′′)

. (4.9)

Let us now, informally, pass in (4.7) to the limit ε → 0. Then we get the following operator

(LV k) (η) =
∑
y∈η

∫

Rd

a(x − y)
∫

�0

e(−φ(y − ·), ξ) (4.10)

× k(ξ ∪ x ∪ η \ y)λ(dξ)dx

−
∫

�0

k(ξ ∪ η)
∑
x∈η

∫

Rd

a(x − y)

×e(−φ(y − ·), ξ)dyλ(dξ).

It certainly obeys

‖LV ‖ϑ ′′ϑ ′ ≤ 2α

e(ϑ ′′ − ϑ ′)
exp

(
〈φ〉e−ϑ ′′)

, (4.11)

and hence along with (4.3) we can consider the problem

d

dt
rt = LV rt , rt |t=0 = r0, (4.12)

which is called the Vlasov hierarchy for the Kawasaki system which we consider. Repeating
the arguments used in the proof of Theorem 3.1 we obtain the following

Proposition 4.2 For every ϑ0 ∈ R, there exists T∗ = T∗(ϑ0, α, 〈φ〉) such that the problem
(4.5) (resp. (4.11)) with any ε > 0 and k(ε)0 ∈ Kϑ0 (resp. r0 ∈ Kϑ0 ) has a unique classical

solution k(ε)t ∈ Kϑ(t) (resp. rt ∈ Kϑ(t)) for t ∈ [0, T∗).

As mentioned in Remark 4.1, k(ε)t is also a correlation function if k(ε)0 is so. However, this

could not be the case for rt , even if r0 = k(ε)0 . Moreover, we do not know how ‘close’ is rt to

k(ε)t , as the passage from Lε,ren to LV was only informal. In the remaining part of the article
we give answers to both these questions.

4.2 The Vlasov Equation

Here we show that the problem (4.12) has a very particular solution, which gives sense to
the whole construction. For a as in (1.3) and an appropriate g : R

d → R, we write
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(a ∗ g)(x) =
∫

Rd

a(x − y)g(y)dy,

and similarly for φ ∗ g. Then let us consider in L∞(Rd) the following Cauchy problem

d

dt
�t (x) = (a ∗ �t ) (x) exp

[−(�t ∗ φ)(x)] (4.13)

−�t (x) (a ∗ exp (−�t ∗ φ)) (x),
�t |t=0 = �0.

Denote

Δ+ =
{
� ∈ L∞ (

R
d
)

: �(x) ≥ 0 for a.a. x
}
,

Δu =
{
� ∈ L∞ (

R
d
)

: ‖�‖L∞(Rd ) ≤ u
}
, u > 0,

Δ+
u = Δ+ ∩Δu .

Lemma 4.3 Let ϑ0 and T∗ be as in Proposition 4.2. Suppose that, for some T ∈ (0, T∗), the
problem (4.13) with �0 ∈ Δ+

u0
, has a unique classical solution �t ∈ Δ+

uT
on [0, T ], for some

uT > 0. Then, for ϑ0 = − log u0 and ϑ(T ) = − log uT , the solution rt ∈ Kϑ(T ) of (4.11)
as in Proposition 4.2 with r0(η) = e(�0, η) is given by

rt (η) = e(�t , η) =
∏
x∈η

�t (x). (4.14)

Proof First of all we note that, for a given ϑ , e(�, ·) ∈ Kϑ if and only if � ∈ Δu with
u = e−ϑ , see (3.8). Now set r̃t = e(�t , ·)with �t solving (4.13). This r̃t solves (4.12), which
can easily be checked by computing d/dt and employing (4.13). In view of the uniqueness
as in Proposition 4.2, we then have r̃t = rt on [0, T ], from which it can be continued
to [0, T∗). ��
Remark 4.4 As (4.14) is the correlation function of the Poisson measure π�t , see (2.9) and
(2.10), the above lemma establishes the so called chaos preservation or chaos propagation
in time. Indeed, the most chaotic states those corresponding to Poisson measures, cf. (2.20),
(2.21), and (2.22).

Let us show now that the problem (4.13) does have the solution we need. In a standard
way, (4.13) can be transformed into the following integral equation

�t (x) = Ft (�)(x) := �0(x)e
−αt (4.15)

+
t∫

0

exp (−α(t − s)) (a ∗ �s) (x) exp
[−(�s ∗ φ)(x)] ds

+
t∫

0

exp (−α(t − s)) �s(x)
[
a ∗ (1 − exp (−�s ∗ φ))] (x)ds,

that is, [0, T ) � t �→ �t ∈ L∞(Rd) is a classical solution of (4.13) if and only if it solves
(4.15). Suppose �t ∈ Δ+ is such a solution. Then we set

ut = ‖�t‖L∞(Rd), t ∈ [0, T ). (4.16)
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Since φ ≥ 0 and �t ∈ Δ+, from (4.15) we get for vt := ut exp(αt), cf. (1.4),

vt ≤ v0 + 2α

t∫

0

vsds,

from which by the Gronwall inequality we obtain vt ≤ v0 exp(2αt); and hence,

ut ≤ u0eαt . (4.17)

In a similar way, one shows that, for �0 ∈ Δ+
u0

and �s ∈ Δ+
ut

for all s ∈ [0, t],
Ft (�) ∈ Δ+

ut
, ut := u0

2 − eαt
. (4.18)

Now for �0 ∈ Δ+
u0

and some t > 0 such that eαt < 2, cf. (4.18), we consider the sequence

�
(0)
t = �0, �

(n)
t = Ft (�

(n−1)), n ∈ N.

Obviously, each �(n)t is in Δ+
ut

. Now let us find T < min{T∗, log 2/α}, T∗ being as in
Lemma 4.3, such that the sequence of

δn := sup
t∈[0,T ]

∥∥∥�(n)t − �
(n−1)
t

∥∥∥
L∞(Rd)

, n ∈ N (4.19)

is summable, which would guarantee that, for each t ≤ T , {�(n)t }n∈N0 is a Cauchy sequence.
For �(n−1)

s , �
(n−2)
s ∈ ΔuT , we have

∥∥∥1 − exp
(
φ ∗

(
�(n−1)

s − �(n−2)
s

))∥∥∥ L∞(Rd) ≤
∥∥∥φ ∗

(
�(n−1)

s − �(n−2)
s

)∥∥∥ L∞(Rd)

×
∞∑

m=0

1

m!
1

m + 1

∥∥∥φ ∗
(
�(n−1)

s − �(n−2)
s

)∥∥∥ m
L∞(Rd)

≤ 〈φ〉‖�(n−1)
s − �(n−2)

s ‖L∞(Rd) exp (2〈φ〉uT ) .

By means of this estimate, we obtain from (4.15) and (4.19)

δn ≤ q(T )δn−1,

where

q(T ) = 2
(

1 − e−αT
) (

1 + 〈φ〉u0 exp
(
αT + 2〈φ〉u0eαT

))
. (4.20)

Since q(T ) is a continuous increasing function such that q(0) = 0, one finds T > 0 such
that q(T ) < 1. For this T , the sequence {�(n)t }n∈N0 converges to some �t ∈ Δ+

uT
, uniformly

on [0, T ]. Clearly, this �t solves (4.13) and hence (4.15).

Theorem 4.5 The unique classical solution of (4.12) with r0 = e(�0, ·), �0 ∈ Δ+, exists
for all t > 0 and is given by (4.14) with �t ∈ Δ+ being the solution of (4.13). Moreover,
this solution obeys

rt (η) ≤ r0(η) exp(α|η|t). (4.21)

Proof For a given �0 ∈ Δ+, we find T such that q(T ) < 1, cf. (4.16) and (4.20). Then there
exists a unique classical solution of (4.13) �t ∈ Δ+

uT
on [0, T ], which by Lemma 4.3 yields

the solution (4.14). Since �t obeys the a priori bound (4.17), it does not explode and hence
can be continued, which yields also the continuation of rt . Finally, the bound (4.21) follows
from (4.17). ��
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4.3 The Scaling Limit ε → 0

Our final task in this work is to show that the solution of (4.5) k(ε)t,ren converges in Kϑ uniformly
on compact subsets of [0, T∗) to that of (4.12), see Proposition 4.2. Here we should impose
an additional condition on the potential φ, which, however, seems quite natural. Recall that
in this section we suppose φ ∈ L1(Rd).

Theorem 4.6 Let ϑ0 and T∗ be as in Proposition 4.2, and for T ∈ [0, T∗), take ϑ such that
T < T (ϑ), see (3.13). Assume also that φ ∈ L1(Rd) ∩ L∞(Rd) and consider the problems
(4.5) and (4.12) with k(ε)0,ren = r0 ∈ Kϑ0 . For their solutions k(ε)t,ren and rt , it follows that

k(ε)t,ren → rt in Kϑ , as ε → 0, uniformly on [0, T ].

Proof For n ∈ N, let k(ε)t,n and rt,n be defined as in (3.19) with Lε,ren and LV , respectively.

As in the proof of Theorem 3.1, one can show that the sequences of k(ε)t,n and rt,n converge in

Kϑ to k(ε)t,ren and rt , respectively, uniformly on [0, T ]. Then, for δ > 0, one finds n ∈ N such
that, for all t ∈ [0, T ],

∥∥∥k(ε)t,n − k(ε)t,ren

∥∥∥
ϑ

+ ∥∥rt,n − rt
∥∥
ϑ
< δ/2.

From (3.19) we then have

∥∥∥k(ε)t,ren − rt

∥∥∥
ϑ

≤
∥∥∥∥∥

n∑
m=1

1

m! tm (
Lm
ε,ren − Lm

V

)
r0

∥∥∥∥∥ ϑ + δ

2
(4.22)

≤ ‖Lε,ren − LV ‖ϑ0ϑ‖r0‖ϑ0 T exp (T b(ϑ))+ δ

2
,

where, see (4.9) and (4.11),

b(ϑ) := 2α

e(ϑ0 − ϑ)
exp

(〈φ〉e−ϑ) .

Here we used the following identity

Lm
ε,ren − Lm

V = (
Lε,ren − LV

)
Lm−1
ε,ren + LV

(
Lε,ren − LV

)
Lm−2
ε,ren

+ · · · + Lm−2
V

(
Lε,ren − LV

)
Lε,ren + Lm−1

V

(
Lε,ren − LV

)
.

Thus, we have to show that

‖Lε,ren − LV ‖ϑ0ϑ → 0, as ε → 0, (4.23)

which will allow us to make the first summand in the right-hand side of (4.22) also smaller
than δ/2 and thereby to complete the proof.

Subtracting (4.10) from (4.7) we get

(
Lε,ren − LV

)
k(η) =

∑
y∈η

∫

Rd

∫

�0

a(x − y)k(ξ ∪ x ∪ η \ y) (4.24)

×Qε(y, η \ y ∪ x, ξ)λ(dξ)dx

−
∑
x∈η

∫

Rd

∫

�0

a(x − y)k(ξ ∪ η)

×Qε(y, η, ξ)λ(dξ)dy
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where

Qε(y, ζ, ξ) := e(τ (ε)y , ζ )e(ε−1t (ε)y , ξ)− e(−φ(y − ·), ξ)
= e(ε−1t (ε)y , ξ)− e(−φ(y − ·)

−
[
1 − e(τ (ε)y , ζ )

]
e(ε−1t (ε)y , ξ).

For t > 0, the function e−t − 1 + t takes positive values only; hence,

�(t) := (e−t − 1 + t)/t2, t > 0,

is positive and bounded, say by C > 0. Then by means of the inequality

b1 · · · bn − a1 · · · an ≤
n∑

i=1

(bi − ai )b1 · · · bi−1bi+1 · · · bn, bi ≥ a1 > 0,

we obtain
∣∣∣e(ε−1t (ε)y , ξ)− e(−φ(y − ·), ξ)

∣∣∣ ≤
∑
z∈ξ

ε[φ(y − z)]2� (εφ(y − z))

×
∏

u∈ξ\z

φ(y − u)

≤ εC
∑
z∈ξ

[φ(y − z)]2e(φ(y − ·), ξ \ z),

and
∣∣∣
[
1 − e(τ (ε)y , ζ )

]
e(ε−1t (ε)y , ξ)

∣∣∣ ≤ ε
∑
z∈ζ

φ(y − z)e(φ(y − ·), ξ).

Then from (4.24) for λ-almost all η we have, see (3.8),

∣∣(Lε,ren − LV
)

k(η)
∣∣ ≤ ε‖k‖ϑ0

(
C̃ |η|e−ϑ0|η| + D(η)e−ϑ0|η|) , (4.25)

with

C̃ = 2Cα‖φ‖L∞(Rd)〈φ〉e−ϑ0

and

D(η) = 2α exp
(〈φ〉e−ϑ0

) ‖φ‖L∞(Rd)|η|(|η| + 1).

Thus, we conclude that the expression in (·) in the right-hand side of (4.25) is in Kϑ , which
yields (4.23) and hence completes the proof. ��
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Appendix Proof of (3.54)

For fixed t ∈ (0, T (ϑ)) and G0 ∈ Bbs(�0), by (3.24) we have

〈〈G0, kt 〉〉 −
〈〈

G0, k�n ,Nl
t

〉〉
= 〈〈Gt , k0〉〉 −

〈〈
Gt , q�n ,Nl

0

〉〉
=: I(1)n + I(2)n,l , (5.1)

where we set

I(1)n =
∫

�0

Gt (η)k0(η)
(
1 − I��n

(η)
)
λ(dη),

I(2)n,l =
∫

�0

Gt (η)
[
k0(η)I��n

(η)− q�n ,Nl
0 (η)

]
λ(dη).

Let us prove that, for an arbitrary ε > 0,

|I(1)n | < ε/2, (5.2)

for sufficiently big�n . Recall that k0 is a correlation function, and hence is positive. Taking
into account that

I��(η) =
∏
x∈η

I�(x),

we write

|I(1)n | ≤
∫

�0

|Gt (η)| k0(η)(1 − I��n
(η))λ(dη) (5.3)

=
∞∑

p=1

1

p!
∫

(Rd)
p

∣∣∣(Gt )
(p)(x1, . . . x p)

∣∣∣ k(p)0 (x1, . . . x p)

× J�n (x1, . . . x p)dx1 · · · dx p,

where

J�(x1, . . . , x p) := 1 − I�(x1) · · · I�(x p) (5.4)

:= I�c (x1)I�(x2) · · · I�(x p)+ I�c (x2)I�(x3) · · · I�(x p)

+ · · · + I�c (x p−1)I�(x p)+ I�c (x p),

≤
p∑

s=1

I�c (xs),

and �c := R
d \�. Taking into account that k0 = kμ0 ∈ Kϑ0 , by (5.4) we obtain in (5.3)

∣∣∣I(1)n

∣∣∣ ≤ ‖k0‖α∗
∞∑

p=1

p

p!e−α∗ p
∫

�c
n

∫

(Rd)
p−1

∣∣∣(Gt )
(p)(x1, . . . x p)

∣∣∣dx1 · · · dx p. (5.5)
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For t as in (5.1), one finds ϑ < ϑ0 such that Gt ∈ Gϑ , cf. Theorem 3.2. For this ϑ and ε as
in (5.2), we pick p̄ ∈ N such that

∞∑
p= p̄+1

e−ϑp

p!
∫

(Rd)
p

∣∣∣(Gt )
(p)(x1, . . . x p)

∣∣∣ dx1 · · · dx p <
εe(ϑ0 − ϑ)

4‖k0‖ϑ0

. (5.6)

Then we apply (5.6) and the following evident estimate

pe−ϑ0 p ≤ e−ϑp/e(ϑ0 − ϑ),

and obtain in (5.5) the following

∣∣∣I(1)n

∣∣∣ < ‖k0‖ϑ0

e(ϑ0 − ϑ)

p̄∑
p=1

p

p!e−ϑ0 p
∫

�c
n

∫

(Rd)
p−1

∣∣∣(Gt )
(p)(x1, . . . x p)

∣∣∣ dx1 · · · dx p

+ ε/4.

Here the first term contains a finite number of summands, in each of which (Gt )
(p) is in

L1((Rd)p). Hence, it can be made strictly smaller than ε/4 by picking big enough�n , which
yields (5.2).

Let us show the same for the second integral in (5.1). Write, see (3.37), (3.43), and (3.39),

I(2)n,l =
∫

�0

Gt (η)

∫

�0

R�n
0 (η ∪ ξ) [1 − INl (η ∪ ξ)] λ(dη)λ(dξ)

=
∫

�0

Ft (η)R
�n
0 (η)

[
1 − INl (η)

]
λ(dη)

=
∞∑

m=Nl+1

1

m!
∫

�m
n

(
R�n

0

)(m)
(x1, . . . , xm)

× F (m)t (x1, . . . , xm)dx1 · · · dxm,

where

Ft (η) := (K Gt )(η) =
∑
ξ⊂η

Gt (ξ),

and hence

F (m)t (x1, . . . , xm) =
m∑

s=0

∑
{i1,...,is }⊂{1,...,m}

(
Gt

)(s)
(xi1 , . . . , xis ). (5.7)

By (3.37), for xi ∈ �n , i = 1, . . . ,m, we have

k(m)0 (x1, . . . , xm) =
∞∑

s=0

∫

�s
n

(
R�n

0

)(m+s)
(x1, . . . , xm, y1, . . . ys)dy1 · · · dys,

from which we immediately get that
(
R�n

0

)(m)
(x1, . . . , xm) ≤ k(m)0 (x1, . . . , xm) ≤ e−ϑ0m‖k0‖ϑ0 ,
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since k0 ∈ Kϑ0 . Now let �n be such that (5.2) holds. Then we can have
∣∣∣I(2)n,l

∣∣∣ < ε/2, (5.8)

holding for big enough Nl if e−ϑ0|·|Ft is in L1(�n, dλ). By (5.7),

∞∑
p=0

1

p!e−ϑ0 p
∫

�
p
n

|F (p)(x1, . . . , x p)|dx1 · · · dx p

≤
∞∑

p=0

p∑
s=0

1

s!(p − s)!e−ϑ0s
∥∥∥(Gt

)(s)∥∥∥
L1(�0,dλ)

e−ϑ0(p−s)[m(�n)]p−s

= ‖Gt‖ϑ0 exp
(

e−ϑ0 m(�n)
)
,

where m(�n) is the Lebesgue measure of �n , cf. (2.8). This yields (5.8) and thereby also
(3.54).
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