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Abstract
Consortium blockchains offer privacy for members while allowing supervision peers
access to on-chain data under certain circumstances. However, current key escrow
schemes rely on vulnerable traditional asymmetric encryption/decryption algorithms.
To address this issue, we have designed and implemented an enhanced post-
quantum key escrow system for consortium blockchains. Our system integrates NIST
post-quantum public-key encryption/KEM algorithms and various post-quantum
cryptographic tools to provide a fine-grained, single-point-of-dishonest-resistant,
collusion-proof and privacy-preserving solution. We also offer chaincodes, related
APIs, and invoking command lines for development. Finally, we perform detailed
security analysis and performance evaluation, including the consumed time of chain-
code execution and the needed on-chain storage space, and we also highlight the
security and performance of related post-quantum KEM algorithms on consortium
blockchain.
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1 Introduction

Consortium blockchains are widely used by organizations and corporations for
distributed data sharing and can provide benefits like improved data integrity, trans-
parency, and traceability. They are used in various fields such as e-learning (An and
Chen 2021), medical data sharing (Lee et al. 2022), SDN access control (Duy et al.
2022), and decree record management (Verma et al. 2021). Due to the transparency
and traceability provided by consortium blockchain, the privacy of on-chain data is
easy to be violated.

To protect on-chain data confidentiality, encryption is commonly used. Asymmetric
encryption is usually employed for small amounts of data such as session keys due
to its speed, while symmetric encryption is preferred for larger amount of data. The
data downloader then decrypts the encrypted data using the appropriate decryption
algorithm. However, this results in the fact that the encrypted data are out of the
consortium administrator’s supervision. Such an enclave can compromise blockchain
transparency and traceability,which is crucial in scenarios such asfinancial supervision
and forensics evidence.

Consortium blockchains like Hyperledger Fabric (IBM 2022) and Quorum
(Ethereum 2022) offer private channels or peer networks for authorized peers to safe-
guard the related data from unauthorized access. However, if data is shared between
peers inside and outside the private channel, the data confidentiality cannot be ensured.

Key escrow (Denning and Branstad 1996) is an idea that enables authorized entities
(e.g., government investigators) to lawfully access encrypted data by decrypting it
under specific legal circumstances, such as a court-approved search warrant. This
is also known as lawful access (LA) (Ijaz 2021). Therefore, key escrow provides a
solution for blockchain consortiums to balance data confidentiality and supervised
data disclosure.

In a typical key escrow protocol, asymmetric encryption and decryption protect and
recover the session key for further encryption and decryption of secret data. However,
traditional asymmetric cryptography such as RSA, ECDSA, and ECIES are vulnerable
to devastating attacks by quantum computers and their related Shor′s algorithm (Shor
1999). To replace traditional asymmetric cryptography, post-quantum (PQ) asym-
metric cryptography is actively being developed. The National Institute of Standards
and Technology (NIST) has called for proposals of post-quantum public-key cryp-
tosystems, including public-key encryption/Key Encapsulation Mechanism (KEM)
and digital signature algorithms. And in July 7th, 2022, NIST announced the first four
quantum-resistant cryptographic algorithms, including one KEM algorithm and three
signature algorithms, as the national standards (NIST 2022b). Therefore, it is crucial
to use and evaluate state-of-the-art post-quantum public-key encryption/KEM in real
application scenarios like the key escrow system based on the consortium blockchain.

Therefore, we propose the enhanced post-quantum key escrow system based
on consortium blockchain, which provides data confidentiality and supervised data
disclosure along with advanced security characteristics (e.g., fine-grained, single-
point-of-dishonest-resistant, collusion-proof and privacy-preserving) under the threat
from quantum computers. The contributions of our work are listed as follows.
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– Our key escrow system for consortium blockchains is designed primarily using
smart contracts, eliminating the need for cryptographic chips. The consortium
blockchain itself ensures the integrity of escrow-related data and chaincode exe-
cution. Moreover, based on our original PQ key escrow system integrated with the
NIST post-quantum public-key encryption/KEM algorithms, we make improve-
ments by using various post-quantum cryptographic tools such as hash-based tag,
secret sharing and Merkle-tree-based set accumulator and redesigning the system
to further provide the fine-grained, single-point-of-dishonest-resistant, collusion-
proof and privacy-preserving solution.

– We implement our proposed system on top of Hyperledger Fabric, and provide
chaincodes, related APIs together with invoking command lines, which allow
application developers to further create their post-quantum supervised secret data
sharing applications.

– We analyze the security of our improved key escrow system and perform a full
evaluation on the performance of our enhanced key escrow system including the
consumed time of chaincodes execution and the needed on-chain storage space.

To the best of our knowledge, our research is the first to comprehensively evaluate
the performance and security of all NIST winning and candidate public-key encryp-
tion/KEM algorithms in blockchain-based applications (i.e., key escrow systems).

2 Related works

In this section, we overview the related researches of our work, and finally summarize
the comparison of main security characteristics between our research and the related
works in Table 1.

2.1 Key escrow and lawful access

The first key escrow protocol, Escrow Encryption Standard (EES) (Blaze 1994), was
designed using symmetric cryptography and standardized by NIST. EES is imple-

Table 1 Security characteristics comparison of main related works

Related works Aduitable FG SPOD CP PP PQ

Blaze (1996) and Mangipudi
et al. (2021)

× × � × × ×

Kroll et al. (2014) � × � × × ×
Segal et al. (2014) and
Feigenbaum and Ford
(2017)

× × × × � ×

Panwar et al. (20196),
Olukoya (2021) and Verma
et al. (2021)

� � × × × ×

Our work � � � � � �

FG fine grained, SPOD single point of dishonest, CP collusion proof, PP privacy preserving, PQ post
quantum
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mented on a hardware chip named Clipper to prevent peers in the protocol from
bypassing or subverting of stored keys and codes. Based on EES, software-based key
escrow protocols have been developed that utilize asymmetric cryptography like pub-
lic key encryption/decryption. Decryption keys for supervised data disclosure can be
stored by the government or government-trusted escrow agents using both hardware
and software schemes. To prevent Single Point of Failure/Dishonesty among trusted
escrow agents, threshold key escrow (Blaze 1996; Mangipudi et al. 2021) variations
divide the decryption key into n parts and store them with n different escrow agents.
Other constructions provide additional advanced functionalities, such as auditable
threshold decryption (Kroll et al. 2014) and private set intersection across private data
sets from multiple users (Segal et al. 2014; Feigenbaum and Ford 2017).

While on the other hand, to limit the power of the government/official investi-
gators, researchers propose Integrant Key Escrow (PKE) (Shamir 1995; Bellare and
Goldwasser 1997), Encapsulated Key Escrow (EKE) (Bellare and Goldwasser 1996)
and Dragchute (Vargas et al. 2018), which aim to prevent trusted escrow agents from
conducting large-scale wiretapping by imposing a time delay between attaining the
escrowed information and recovering the decryption secret key.More recent work pro-
vides "self-revocable" encryption (Tyagi et al. 2018), in which a user can temporarily
revoke the ability to access his/her secret data for the purpose of defending against
temporary compelled decryption threats (such as border crossings).

2.2 Applications of key escrow and lawful access protocols on blockchains

Benefited from the data transparency and traceability offered by blockchain, some
recent works have integrated blockchain with key-escrow-based judicial system for
better auditability. SAMPL (Panwar et al. 20196) is an auditing framework suggested
by researchers to detect companies and agencies who violate court orders. Olukoya
(Olukoya 2021) proposes a blockchain-based framework for digital investigations
to ensure the consistency, integrity, and traceability of forensic actions. NyaYa is a
blockchain-based electronic law records management and access scheme suggested
in Verma et al. (2021) to guarantee transparency and chronology in law.

Another important branch of escrow services on blockchains is the exchange of
a digital good for payment in electronic commerce. Goldfeder et al. (2017) utilize a
multi-signature based on the (t, n) threshold cryptosystem to develop escrow services
for Bitcoin transactions in untrusted environments. In Asgaonkar et al. (2019), the
researchers present a dual-deposit escrow trade protocol for Ethereum which uses
double-sided payment deposits in conjunction with simple cryptographic primitives.
Authors of Yang et al. (2020) propose a practical escrow protocol for Bitcoin, which is
computationally efficient, round efficient and privacy preserving by using the practical
verifiably encrypted ECDSA scheme designed by the authors.

Besides judicial process and electronic commerce, key escrow protocols have been
applied to other blockchain-based systems such as supply chain (Cha et al. 2020),
contact tracing in COVID-19 pandemic (Lv et al. 2022), vehicular digital forensics
(Li et al. 2021b, a).
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Nevertheless, none of the above-mentioned works consider threats from quantum
computers. Moreover, to the best of our knowledge, there is no work addressing the
problem (i.e., proposing post-quantum key escrow protocols for blockchains).

2.3 PQ cryptographic algorithms and schemes

Currently, PQ cryptography has been actively developed by research projects (e.g.,
PQCrypto 2018; Safecrypto 2022;Cryptomathcrest 2018; Prometheus 2020) and some
standardization initiatives (IEEE 2008; ETSI 2017) have also been launched. Among
these works, it is worth noting the National Institute of Standards and Technology
(NIST) call (NIST 2022b) for proposals of PQ public-key cryptosystems including
Public Key Encryption/Key Encapsulation Mechanism (KEM) and digital signature
algorithms, which has announced that one KEM algorithm and three signature algo-
rithms have been selected as the national standard.

Although many researchers (Campbell 2019a, b; Shen et al. 2019; Semmouni et al.
2019) have developed post-quantum blockchain systems based on digital signature
algorithms, few (Fernández-Caramés and Fraga-Lamas 2020) have considered the
associated public-key encryption/KEM algorithms, let alone a scheme of any appli-
cation based on blockchain systems. Furthermore, a comprehensive evaluation of the
PQ algorithms’ security and performance running on blockchain is currently lacking.

3 Overview and background

In this section,we take anoverviewof consortiumblockchains andHyperledger Fabric.
And then, we introduce the idea of key escrow and related systems. Finally, we present
the PQ cryptographic algorithms and tools, which are used in our paper, including all
the PQ public-key encryption/KEM algorithms in the current/next round of NIST call,
the Shamir’s Secret Sharing scheme and Merkle-tree-based set accumulator.

3.1 Consortium blockchains and hyperledger fabric

Consortium blockchains enable secure interactions among organizations that share a
common goal but lack complete trust. Hyperledger Fabric is a highly successful con-
sortium blockchain that enables the execution of distributed applications, referred to
as chaincodes or smart contracts, on a consortium of organizations and peers within
a single channel. Chaincodes are programmed using standard general-purpose pro-
gramming languages such as Go, Node.js, or Java to implement the desired business
logic.

Hyperledger Fabric has an execute-order-validate design, which includes endorse-
ment peers, commitment peers, orderers, and clients, as illustrated in the accompanying
Fig. 1. Peers can be grouped by the organizations they belong to, and all chaincodes
must be instantiated on specific peers prior to execution. The workflow of Hyper-
ledger Fabric is as follows. (1) Chaincode deployment: Chaincode is a smart contract
in Hyperledger Fabric, which is written by developers and deployed to endorsement
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Fig. 1 The architecture, work and data flow of hyperledger fabric

peers through installation and instantiation. (2) Initiating transactions: In Hyperledger
Fabric, transactions are initiated by clients, which can be end-users or other appli-
cations. The client initiated the transaction by sending the transaction request to the
endorsement peer and invoking the chaincode. (3) Transaction Endorsement: After
an endorsement peer receiving a transaction request, it endorses the transaction and
checks whether the transaction conforms to the rules defined in the chaincode. If the
transaction is legal, the endorsement peer will digitally sign the transaction and return
it to the client. (4) Commit transaction: After receiving enough endorsements, the
client sends the transaction to the orderer node, which is responsible for packaging the
transaction into blocks and broadcasting it to all commitment peers in the network.
(5) Block Validation: After a commitment peer receiving a new block, it verifies the
legitimacy of the block and adds it to its own ledger. At the same time, the commit-
ment peer will also check whether the endorsement of the transaction is correct. If
the endorsement is not correct, the transaction will be rejected and not submitted to
the ledger. (6) Block Synchronization: After a commitment peer successfully adding
a new block to its own ledger, it will broadcast the block to other commitment peers
to ensure that the ledger data in the whole network is synchronized.

In Hyperledger Fabric, peers can access on-chain data stored under keys, which
act like member variables that are bound to the instantiated chaincodes. Keys can
represent a single datum or a tuple of data. All modifications and updates to the data
and instantiated chaincodes are recorded by Hyperledger Fabric, making it easy to
supervise the system.

Besides the on-chain data, peers and organizations may store confidential data in
their off-chain private databases. To ensure secrecy, encrypted data is uploaded when
shared onchain, which can violate the transparency and traceability of the blockchain.
Thus, this drives the development of key escrow system for supervised data disclosure.

3.2 Key escrow systems

Silvio Micali proposed the original concept of key escrow in his work on fair public-
key cryptosystems (Micali 1993). In one typical key escrow system (Kroll et al. 2014),
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data sources generate session keys (normally symmetric keys) to encrypt their secret
data that are uploaded online for further check, and every session key is escrowed to
law enforcement agents. And then, law enforcement agents named escrow agents will
recover the escrowed session keys under the approval of lawful organization named
supervisor (e.g., financial regulator or court). After that, investigator will decrypt the
online secret data using the recovered session key (in the case of financial regulation
or judicial forensics). To increase trust in the system, it’s recommended to configure
multiple escrow agents instead of relying on a single one. Therefore, one key escrow
system mainly consists of 4 groups of entities (i.e., the data sources encrypting their
secret data by using session keys which are escrowed, the supervisor approving the
recovery of session keys, the escrow agents recovering the session keys, and the
investigator decrypting the online encrypted secret data by using the recovered session
keys).

To implement a software-based key escrow system successfully, it’s crucial to pre-
vent malicious users from modifying the key escrow programs on system entities.
Fortunately, consortium blockchains offer a solution to ensure the integrity and trace-
ability of data, identity and code execution, which addresses this issue.

3.3 Post-quantum public-key encryption/KEM algorithms in the NIST call

Currently, at the end of the third round of NIST call (NIST 2022b) for post-quantum
public-key encryption/KEM algorithms, only one algorithm (i.e., CRYSTALS-
KYBER (Kyber 2020)) has been selected as the national standard. However, there
is an extra round of the call (NIST 2022a), during which four alternate public-key
encryption/KEM algorithms (i.e., BIKE 2020; McEliece 2020; HQC 2021; SIKE
2020) would be reviewed again for consideration for standardization because of vari-
ous reasons (e.g., better performance, higher security level, broader range of hardness
assumptions).

Table 2 summarizes the winner of the current round and four alternate candidates
in NIST’s call for post-quantum public-key encryption/KEM algorithms. The security
level of cryptographic algorithms depends on the key size, with higher levels requiring
greater effort for brute-force attacks. NIST security levels 1∼5 correspond roughly to
128, 160, 192, 224 and 256-bit security levels. Compared to the shared secret size, all
the algorithms have relatively big public key, private key and ciphertext sizes, which
indicate that a post-quantum key escrow system would be storage-consuming.

As the winner post-quantum public-key encryption/KEM algorithm in the NIST
call, the Kyber algorithm consists of three sub algorithms, namely key generation,
encryption and decryption algorithm.

1. Key generation algorithm of Kyber. In this sub algorithm, the decryptor initially
generates one Kyber key pair. The process of generating the private key involves
sampling the polynomial and encrypting the polynomial, which are based on lat-
tices. Finally the public key is generated from the private key. More details are
shown as follows.

123

RETRACTED A
RTIC

LE



116 Page 8 of 25 Journal of Combinatorial Optimization (2023) 45 :116

Table 2 Details of the post-quantum KEM algorithms in the current/next round of NIST call

Algorithms SL Pub. key size Priv. key size CT size SS size

KYBER 1/3/5 800∼1568 1632∼3168 768∼1568 32

BIKE 1/3 2542∼6206 3110∼13236 2542∼6206 32

HQC 1/3/5 2249∼7425 2289∼7285 4481∼14,469 64

SIKE 1/2/3/5 197∼564 350∼644 236∼596 16/24/32

McEliece 1/3/5 261,120∼1,357,824 6452∼14,080 128∼240 32

SL security level, CT cipher text, SS shared secret, and all the sizes are in bytes

a. The decryptor uses hash function (i.e. SHAKE-128) to get a hash value based
on the randomly-generated input ρ ∈ B32 (i.e., 32 bytes). Then the decryptor
generates matrix A ∈ Rk×k

q using NTT-transformation (Hofheinz et al. 2017)
with hash value. The matrixA is used for Module-LWE problem construction,
and R together with Rq are rings where q=3329.

b. Sample s ∈ Rk
q from Bη1 . s is the secret key sk in Kyber, and it is a

column vector which is randomly sampled from a centered binomial distri-
bution Bη (η = 2 or η = 3). The sampling process from Bη is defined
as follows:

(
a1, . . . , aη, b1, . . . , bη

) ← {0, 1}2η and the sampling result is∑η
i=1 (ai − bi ).

c. Sample e ∈ Rk
q from Bη1 , where e is a randomly-sampled noise that is used as

column vector in Kyber.
d. Let the private key sk := s, and the public key pk := ((As+e), ρ).

2. Encryption algorithm of Kyber. Before encrypting a message (i.e., plaintext) in
Kyber, the encryptor first needs to convert themessage into a plaintext polynomial.
During the process of encryption, it is necessary to firstly add noise polynomial
to the plaintext polynomial, and then to encrypt the noise polynomial, finally to
concatenate the encrypted noise polynomial to the encrypted plaintext polynomial
as the ciphertext polynomial. The encryption procedure is detailed as follows.

a. The encryptor inputs a message m ∈ B32

b. The encryptor gets t := (As+ e) and ρ from pk, and then recovers the matrix
A based ρ by using the NTT-transformation.

c. Sample r ∈ Rk
q from Bη1 , e1 ∈ Rk

q from Bη2 , and e2 ∈ Rq from Bη2 , where r,
e1 and e2 are all randomly-sampled noises that are used as column vectors in
Kyber.

d. The encryptor performs calculations of u := AT r + e1 and v := tT r +
e2 + Decompressq(m, 1), and then outputs c := ( Compressq (u, du) +
Compress q (v, dv)

)
. The main reason to perform the Compress and

Decompress actions is discarding some low-order bits in the ciphertext that
do not have much effect on the correctness probability of decryption (i.e.,
reducing the size of ciphertexts). The Compress and Decompress actions
are defined as follows.
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Compressq(x, d) = �(2d/q) · x� mod +2d (1)

Decompressq(x, d) = �(q/2d) · x� (2)

And theCompress and Decompress actions satisfy the following operation:

x ′ = Decompressq
(
Compressq(x, d), d

)
, (3)

where x ′ is an element close to x. To be more specific

∣
∣x ′ − (x mod ±q

) | ≤ Bq (4)

where Bq := � q
2d+1 �, and �x� denotes as the rounding of x to the closest integer

with ties being rounded up. For an element w ∈ Zq , ‖w‖∞ (i.e., the infinite
series of w) is denoted as

∣∣w mod ±q
∣∣.

3. Decryption algorithm of Kyber. To decrypt the ciphertext c, the decryptor firstly
gets u′ and v′ by decompressing c that includes the compressed u and v, then
executes Compressq

(
v′ − sTu′, 1

)
to get original plaintext polynomial (i.e.,m′),

which is equal to m.

To eliminate the complexity of the padding scheme and the proofs needed to show
the padding is secure, NIST currently only announces the KEM mode (rather than
the encryption/decryption mode) of all the post-quantum public-key encryption/KEM
algorithms (including Kyber). For better understanding, we summarize the main three
steps of one key encapsulation mechanism K EM as follows.

– The key generation step K EM .KeyGen(), that outputs a public/private key pair
(pubKey,privKey).

– The encapsulation step K EM .Encap(pubKey) that takes a public key pubkey
as input, and outputs a shared secret/ciphertext pair (SS,CT ).

– The decapsulation step K EM .Decap(privKey,CT ), that takes the correspond-
ing private key privKey and the ciphertext CT as input, and outputs the shared
secret SS.

To sum up, in a KEM-based protocol, Alice generates a shared secret SS and a
ciphertext CT that encapsulates SS, and Bob decapsulates SS from CT . The shared
secret SS is further used as a symmetric key to encrypt/decrypt the secret data between
Alice and Bob.

3.4 Shamir’s secret sharing

Shamir’s Secret Sharing (SSS) (Shamir 1979) is an early cryptographic secret sharing
scheme that distributes a secret (normally an encryption key), in a secure manner.
The secret, denoted by S, is divided into multiple shares (denoted by n) in SSS, and
the original secret can be reconstructed using these shares. The minimum number of
shares required to recover the secret is referred to as the threshold (t). If an adversary
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obtains less than the threshold number of shares, they will not gain any additional
information about S.

Themathematical calculation process of SSS is based on the Lagrange interpolation
theorem. This theorem states that t points are enough to determine a unique polynomial
with a degree less than or equal to t − 1.

– Splitting the secret S into n shares Assuming that the secret S can be represented
as an element a0 of a finite field GF(p) where p is a big prime number (the role
of prime number p is to reveal the secret range of values), the splitter randomly
chooses t − 1 elements a1, . . . , at−1 from GF(p) and constructs the polynomial
f (x) = a0 + a1x + · · ·+ at−1xt−1 (mod p) where a0 = S. After that, the splitter
randomly generates xi where i = 1, 2, . . . , n and xi ∈ GF(p), and then calculates
f (xi ) based on the polynomial in order to split S into n shares. Every share holder
is given one pair of (xi , f (xi )) (i.e., a non-zero input xi to the polynomial and the
corresponding output f (xi )), which is one share of the splitted secret S.

– Recovering the secret based on k sharesBased on Lagrange interpolation theorem,
given any subset of t of these pairs (xi , f (xi )), one can recover the secret S (i.e.,
a0) by doing the following calculation:

a0 = f (0) =
t−1∑

j=0

y j

t−1∏

m=0
m �= j

xm
xm − x j

(mod p).

And an adversary who discovers any number of shares less than the threshold t
will not have any additional information about the secured secret S (i.e., a0).

As have been introduced, SSS is based on polynomial interpolation over finite fields,
to which there is no effective attack algorithms based on quantum computers.

3.5 Merkle tree and set accumulator

A Merkle tree (Merkle 1988) is a hash-based data structure, where each leaf node is
a hash of a block of data, and each non-leaf node is a hash of its children. Typically,
Merkle trees have a branching factor of 2, meaning that each node has up to 2 children.
With a Merkle tree, one can accumulate a set of arbitrary elements S = {x1, . . . , xn}
(let us assume for simplicity that n is a power of 2) by building a binary Merkle tree
in which {x1, . . . , xn} are the leaves, and every internal node is the hash of its two
children. The accumulator value Acc is then the value at the Merkle tree’s root.

a Merkle tree together with its accumulator value Acc allow us to check whether
one element xi is a part of the set S in an efficient and privacy-preserving way. To
create such a proof πi that xi ∈ S, the prover provides all the sibling nodes that are in
the path from the leaf xi to the root (rather than all the other elements in the set S).
Then, the verifier gets the proof πi that consists of the log(n) sibling node values of
� bits each (where � is the length of the hash function output), recomputes the nodes
from the leaf xi to the root based on the given sibling node values, and eventually
checks if the final result of the root is equal to the accumulator value Acc.
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In cryptography, theMerkle tree accumulator Acc is a kind of hash-based (set) com-
mitment (Xu et al. 2021), which has two critical security properties namely binding
and hiding. The former security property guarantees that once theMerkle tree accumu-
lator Acc (i.e., the commitment) is publicly revealed, the element set S = {x1, . . . , xn}
are bound to Acc and cannot be changed/modified. While the latter one means that
the accumulator Acc hides the values at all the leaves of the tree (i.e., all the elements
in S) before the verification of xi ∈ S, and furthermore during the verification, the
verifier only obtains the leaf value xi along with the sibling node values from xi to the
root and has no clue to other leaf values (i.e., x1, . . . , xi−1, xi+1, . . . , xn).

Merkle trees are a very powerful construct andwidely used in peer-to-peer networks
such as Tor, Bitcoin and Git. In Bitcoin and many other kinds of blockchain systems,
Merkle tree and its variants are used as underlying data structure to record and verify
the transactions in one block. Finally, since Merkle trees are purely based on hash
algorithm, it is also post-quantum.

4 System design and execution flow

In this section, we introduce the design of our post-quantum key escrow system based
on consortium blockchain and the relating security properties. Then, we present the
system architecture and execution flow based on Hyperledger Fabric.

4.1 Desired security properties and system design

Our system design mainly inherits the core idea of key escrow mentioned in Sect. 3.2,
but makes some improvements for advanced security properties, by making use of
consortium blockchain and the post-quantum cryptography algorithms. The desired
security properties and our improvements in our system are listed as follows.

– Secrecy of the secret data. Only the data source who owns the data record and the
investigator with the supervisor’s approval could learn the content of the secret
data in the data records.

– Preventing Single Point of Dishonest. In case of single corrupted escrow agent, we
split one half of the escrowed session key (denoted as SessKey_A) into n shares,
which are given to n escrow agents. And at least t escrow agents are needed to
recover the SessKey_A.

– Preventing collusion of escrow agents. Furthermore, in the event of the collu-
sion of t escrow agents, we escrow the other half of the session key (denoted as
SessKey_B) to the supervisor, who will recover the session key SessKey by
calculating SessKey = SessKey_A ⊕ SessKey_B.

– Fine-grained access to the secret data. In order to precisely control that the inves-
tigator only has the access to the data records needed for the investigation, we
attach each data record with a tag (id, t) to indicate which data source owns the
data record and the timewhen the data record is generated. In that case, the supervi-
sor could only approve of the access to the data records with the right tag according
to the investigation.
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– Identity privacy protection for data sources. Since the escrow agents are not fully
trusted, no escrow agents but only the investigator and the supervisor should learn
the data source identity (i.e., id in the tag (id, t), which is from certificate of iden-
tity) requested by the investigator. To preserve the identity privacy of data sources,
we let the supervisor give each data source a different pseudonym and only show
the escrow agents the pseudonyms. Benefited from Merkle tree, the supervisor
can hide the real identity id, the pseudonym and other personal information (e.g.,
country, locality, etc.) of one data source in the tree root value (i.e., the accumulator
Acc), and choose to expose Acc, the pseudonym together with specific personal
information that are less sensitive to the escrow agents.

– Accountability. All the operations of recovering session keys and decrypting
data records should be logged and accountable. Benefited from the traceability
and transparency of consortium blockchain, the recovery and decryption opera-
tions implemented in the chaincodes are automatically recorded and available for
accountability.

On the basis of the core idea of key escrow and our desired security properties,
there are 4 kinds of peers namely data source peer, supervisor peer, escrow agent peer
and investigator peer in our blockchain-based system.

– The data source peer is responsible for generating its session key SessKey,
encrypting the secret data under the SessKey, and uploading the encrypted
data records EncDataRec. Furthermore, to enable fine-grained access control
to data records, each encrypted data record is attached with a tag denoted as
EncDataRecid,t , where id indicates the identity of the data source and t is the
time interval (e.g., the day or the hour) during which the data record is generated.
Meanwhile, the data source peer also tags its session key as SessKeyid,t . Next,
the data source peer divides SessKeyid,t into two halves (namely SessKey_Aid,t

and SessKey_Bid,t ), escrows the two halves separately to the escrow agent peers
and the supervisor peer, and finally gives the two escrowed halves to the supervisor
peer.

– The investigator peer obtains the encrypted data record EncDataRecid,t with
specific id and t under investigation, and then requests the recovery of the corre-
sponding session key SessKeyid,t under the approval of the supervisor peer.

– The supervisor peer, on one hand, hides the real id attached with the escrowed
SessKey_Aid,t (from the escrow agent peers) by giving a pseudonym pName
to the data source and substituting the id with the pName. After anonymiza-
tion, the supervisor passes the anonymized escrowed SessKey_ApName,t to
the escrow agent peers. On the other hand, the supervisor peer may approve
the session key recovery request from the investigator peer according to spec-
ified regulations or standards, and then recovers the session key by calculating
SessKeyid,t = SessKey_Aid,t ⊕ SessKey_Bid,t , where SessKey_Bid,t is
recovered by the supervisor peer itself and SessKey_Aid,t is obtained based on
the anonymized SessKey_ApName,t recovered by the escrow agent peers.

– The escrow agent peers first receive and store the anonymized escrowed
SessKey_ApName,t , and then recover SessKey_ApName,t under the approval
of the supervisor peer.
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Fig. 2 The architecture, work and data flow of our PQ key escrow system

Although key escrow was first proposed for government surveillance of suspicious
online communication, it is not hard to see that our blockchain-based key escrow
system is designed to be applied to variety of supervised data disclosure cases (e.g.,
financial regulation and judicial forensics). For example, a police department (the
investigator) goes to a court (the supervisor) to get an order (the approval) for access
to business records held by a corporation, or by a third-party software service provider
(the data source), and relating to individuals within the corporation (the identifiers)
who are under investigation.

4.2 System architecture and execution flow

Figure2 shows the architecture of our post-quantum key escrow system, where we
design the key escrow system for consortium blockchain mainly based on smart
contracts without relying on the protection of any cryptographic chips. Instead, the
underlying consortium blockchain can provide guarantee for the integrity of the
escrow-related data, while on the other hand, developers should pre-record and check
the version numbers of all the expected chaincodes in the client codes to prevent
malicious peers from modifying or counterfeiting the installed chaincodes.

Based on the peer responsibilitiesmentioned in Sect. 4.1, the peers in our system are
divided into 4 groups namely data source group, investigator group, supervisor group
and escrow agent group. In case of untrusted escrow agent, our system is configured
as five escrow agents (peers) in five escrow agent organizations. Moreover, to prevent
one peer from reading the on-chain data prepared for other peers in the same group,
we separate peers from the same group in different organizations and further use the
on-chain private databases (i.e., Private Data Collection (Fabric 2020), PDC), which
can be considered as a kind of on-chain private communication channel between
peers/organizations, for two peers in different groups to privately communicate with
each other. We will comprehensively analyze the security design and implementations
of our system in Sect. 5.2.
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Fig. 3 The detailed execution flow of our blockchain-based PQ key escrow system

Since NIST only offers the KEM mode of all the related post-quantum public-key
encryption algorithms, our system is designed following the steps of the KEM mode.
As shown in Fig. 2, the execution flow of our key escrow system consists of seven
phases: (1) initialization, (2) secret data preparation, (3) generation and upload of
encrypted secret data and escrowed session key, (4) anonymization of the escrowed
session key (by the supervisor peer), (5) recovery of half of the session key (by the
escrow agent peers), (6) recovery of the final session key (by the supervisor peer) and
(7) recovery of the secret data (by investigator peer).To help the readers understand
better, a detailed system execution flow can be found in Fig. 3.

1. Initialization We deploy all the organizations and peers, and then instantiate
four chaincodes (i.e., Data Source chaincode, Investigator chaincode,
Supervisor chaincode and Escrow Agent chaincode) on the corresponding
peers/organizations. Moreover, it is needed to initially invoke the Supervisor
and Escrow Agent chaincodes to separately generate post-quantum pub-
lic/private key pairs for the supervisor (denoted as pubKey0/privKey0) and each
escrow agent (denoted as pubKeyi/privKeyi , i = 1, 2, 3, ... ), which are used to
escrow and recover the session key from the data source peer. Furthermore, since
the on-chain data tuples are accessed via keys, we pre-upload all the key names,
underwhich all the post-quantumpublic keys (of the supervisor and escrow agents)
are stored, to the public Global Setup (GS) key. And the GS key is like a mem-
ber variable bound to the Supervisor chaincode, for the convenience of data
source peer reading the public keys to escrow its session keys. Meanwhile, the
names of PDCs (e.g., IS_PDC and EAi_S PDC) relating to the supervisor peer are
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also pre-stored under the GS key for investigator and escrow agent peers privately
communicating with the supervisor peer.

2. Secret data preparation After the initialization step, the data source peer reads its
secret data M from its off-chain private database and prepare for the key escrow
process.

3. Generation and upload of encrypted secret data and escrowed session keyOnce the
secret dataM is ready, the data source peer invokes the Data Source chaincode
and performs the following actions.

a. Firstly, the data source peer randomly generates a big prime number p (2255 <

p < 2256) and one half of the session key (denoted as SessKey_A)which satis-
fies SessKey_A ∈ GF(p). Next, on one hand, the data source peer constructs
the polynomial f (x) = a0+a1x+· · ·+at−1xt−1 (mod p)where a1, . . . , at−1
are randomly chosen elements from GF(p) and a0 = SessKey_A. On the
other hand, the data source peer performs multiple encapsulation operations
(separately using the escrow agents’ public keys pubKeyi , i = 1, 2, 3, . . .
based on the GS key bound to the Supervisor chaincode), which gener-
ate multiple shared secrets (denoted as x1, x2, . . . , xi ) and the corresponding
ciphertexts (denoted as CT1,CT2, . . . , CTi ). Ground on the constructed poly-
nomial f (x) and the generated shared secrets x1, x2, . . . , xi , the data source
peer can obtain f (x1), f (x2), . . . , f (xi ) (denoted as y1, y2, . . . , yi ). If one
gets enough (i.e., the threshold denoted as t) shares of (xi , yi ) pairs, he/she can
further recover a0 (i.e., one half of the session key SessKey_A) based upon
Lagrange interpolation theorem.

b. And then, the data source peer performs one encapsulation operation (but using
the supervisor’s public key pubKey0 based on the GS key), which generates
one shared secret (i.e., the other half of the session key denoted as SessKey_B)
and the corresponding ciphertext (denoted as CT _B).

c. After that, the data source peer symmetrically encrypts the secret data M
using the exclusive-or result of SessKey_A and SessKey_B as the session
key (denoted as C = SEncSessKey(M) where SessKey = SessKey_A ⊕
SessKey_B).

d. Finally, the data source peer uploads the escrowed-session-key-related mate-
rials (i.e., CT1,CT2, . . . ,CTi , y1, y2, . . . , yi , CT _B together with the big
prime number p) and the encrypted secret data C separately to Source Data
for Supervisor (SD4S) key and Source Data for Investigator (SD4I) key. In
order to precisely control that the investigator only has the access to keys
needed for the investigation, the data source peer names the SD4S and SD4I
keys after the identity of the data source id and the time interval t during which
the data record is generated, and then stores the SD4S/SD4I keys name under
the Record Name (RN) key, which is overwritten each time and indicates the
name of source data record currently being investigated. Due to the character-
istics of Hyperledger Fabric, other peers can only retrieve the source data by
invoking the Data Source chaincode instead of receiving the source data
from the data source peer. And the data source peer also needs to retrieve the
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time interval t from the supervisor peer who maintains the global time of our
system.

4. Anonymization of the escrowed session key. Upon retrieving the escrowed session
key halves, the supervisor peer hides the real data source identity id in the SD
key name (from the escrow agent peers) by giving a pseudonym pName to the
data source. The pName is calculated by hashing the concatenation of id and
a random number. Furthermore, to prove that the pName corresponds to a valid
data source id, the supervisor peer generates aMerkle-tree-based accumulator and
the related proof based on pName, id and other personal information about the
data source (e.g., country, locality, etc.), which could be obtained from our on-
chain post-quantum Certificate Authority (Xu et al. 2021) for blockchain users.
The supervisor can also choose to expose specific personal information about
the data source in the related proof for the escrow agents to verify. At last after
the anonymization, the supervisor stores the pName under the Anonymity Setup
(AS) key for escrow agents, and transfers part of the source data under the SD key
relating to the escrow agents (i.e., CTi and yi where i = 1, 2, 3, . . .) together with
the validity accumulator and related proof separately to different Escrowed Key
(EKi ) keys bound to the Supervisor chaincode. Each EKi key is in different
Private Data Collection between the supervisor and escrow agenti , named after
the pseudonym pName and can be used by the corresponding escrow agent to
recover its share of SessKeyA.

5. Recovery of one half of the session key When the EK keys are ready, the escrow
agenti can check whether the pseudonym pName is generated from a valid data
source with specified personal information by verifying the accumulator and the
related proof under its EKi key. If the check is passed, then the escrow agenti can
use its private key privKeyi to decapsulate the CTi under its EKi key and get the
corresponding xi . After the decapsulation, the escrow agenti stores the xi and yi
under its Partial Key (PK) key bound to the Escrow Agent chaincode.

6. Recovery of the final session key So long as enough number of escrow agents finish
recovering their xi and yi (i.e., the threshold t is reached), the supervisor can start
to recover the final session key SessKey. On one hand, the supervisor collect
enough shares of (xi , yi ) from EK keys together with the big prime number p
from SD4S key and recover the half of the session key SessKey_A based upon
Lagrange interpolation theorem. On the other hand, the supervisor uses its private
key privKey0 to decapsulateCTB under the SD4S key in order to recover the other
half of the session key SessKey_B. Lastly, the supervisor can recover the final
session keybyperforming the calculation SessKey = SessKey_A⊕SessKey_B
and then stores the final session key SessKey under the Final Key (FK) key bound
to the Supervisor chaincode.

7. Recovery of the secret dataEventually, after the supervisor finishing recovering the
final session key SessKey, the investigator first gets the source data record name
currently being investigated from Record Name (RN) key bound to the Data
Source chaincode, and then retrieves the final session key SessKey and the
encrypted secret data C separately from the FK key and SD4I key, whose names
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are the same and stored under RN key. The secret dataM can be easily obtained by
symmetrically decrypting C by using the SessKey (i.e., M = SDecSessKey(C)).

5 System implementation and security analysis

5.1 System implementation and functions

Our post-quantum key escrow system consists of four chaincodes: Data Source,
Investigator, Supervisor and Escrow Agent. As shown in Table 3, the
Data Source chaincode provides APIs for generating and retrieving source data,
including encrypted secret data C and escrowed session key, as well as related public
key/record name. TheInvestigator chaincode allows decryption of the encrypted
secret dataC , while the Supervisor chaincode enables the generation of the super-
visor’s public/private key pair, initialization of the global setup, anonymization of
the escrowed session key with a pseudonym, recovery of the final session key, and
retrieval of the global time/pseudonym. The Escrow Agent chaincode is respon-
sible for generating the escrow agent’s public/private key pair, retrieving the escrow
agent’s public key, and decapsulating/getting one share (xi , yi ) of one half of the final
session key. The Github (2022b) provides access to all chaincodes and command lines
for invoking them.

5.2 Security analysis

We describe the threat model of our post-quantum key escrow system and explain
how we implement security mechanisms to protect the on-chain data and chaincodes
against possible attacks.

5.2.1 Threat model

Possible attacks from malicious peers in the post-quantum key escrow system include
attempts to bypass or corrupt the system, and the attacks are listed as follows.

– All malicious peers may want to violate the secrecy and integrity of on-chain
data. In respect of the on-chain data secrecy, one malicious peer may try to snoop
the on-chain data that is irrelevant to the malicious peer. While as to the on-
chain data integrity, one malicious peer may try to modify the on-chain data under
the public keys, for example, by generating/substituting the public keys of the
supervisor and escrow agents in order to mislead data source peers using the rogue
public key.

– All malicious peersmay also want to violate the chaincode integrity by modify-
ing/updating one chaincode to bypass the security check in the original chaincode.

– Malicious investigator peermay try to obtain the session key (from the supervisor
peer), which is not related with the data source being investigated or the time
interval under investigation.
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– Malicious supervisor peer may want to recover the data source’s session key
without the help of the escrow agent peers.

– Malicious escrow agent peers may collude to recover the session key or make
attempt to learn the identity of the data source being investigated.

5.2.2 Security design and implementation

Topreventmalicious peers fromattacking the system,we implement securitymeasures
to safeguard the integrity and confidentiality of on-chain data and chaincodes.

– Secrecy of the on-chain data We use the on-chain private databases (i.e., Pri-
vate Data Collection, PDC) to separate the communication between two different
peers/orgs, and all the keys (except public keys like Global Setup key and Record
Name key) are configured in one PDC between two specific peers/orgs so that any
other peers/orgs cannot see the key not even mention reading from the key.

– Integrity of the on-chain dataWe perform access control in the Supervisor and
Escrow Agent chaincodes, to which all public keys are bound, by using the
getCreator ()API (in the shim package) in order tomake sure that only the specific
peers can invoke the corresponding APIs in the chaincodes to initialize/update the
on-chain data under the public keys.

– Integrity of the chaincodesTo preventmalicious peers frommodifying or replacing
installed chaincodes, it’s necessary to record the version numbers of all chaincodes
beforehand. During the execution of the post-quantum key escrow system in client
codes, which developers use to invoke the chaincodes, the version numbers should
be verified. If a mismatch is detected, invoking the chaincodes and system execu-
tion should be halted.

– Preventation of investigator peer’s misbehavior As mentioned before, we deploy
the PDC and fine-grained key names to make sure that the investigator peer can
only see the escrowed session key and encrypted secret data under its investigation.

– Preventation of supervisor peer’s misbehavior We split the session key SessKey
into two halves (i.e., SessKeyA and SessKeyB), which are separately escrowed
to the escrow agents and supervisor, and without the help escrow agents, the
supervisor can only recover its half of the session key (i.e., SessKeyB) rather than
the final session key SessKey.

– Preventation of escrow agent peers’ misbehavior The split of the session key
SessKey also prevents the collusion of the escrow agents recovering SessKey
without the assistance of the supervisor. Furthermore, the supervisor peer
anonymizes the real ID of one data source by giving a pseudonyme in order to
prevent the escrow agents from learning the real identity of the data sources.

6 Performance evaluation

In this section, we evaluate the performance of our post-quantum key escrow system
in terms of execution time and on-chain storage space.

The system is implemented on Hyperledger Fabric (2.2.4) using Go (1.16.7) for
chaincode development. We utilize AES as the symmetric algorithm and employ the

123

RETRACTED A
RTIC

LE



116 Page 20 of 25 Journal of Combinatorial Optimization (2023) 45 :116

liboqs 0.6.0 library (liboqs 2022c) and itsGowrapper (Github2022a) for public/private
key pair generation, encapsulation and decapsulation of the shared secret. We use a
customdocker image, integratedwith liboqs and based onUbuntu 18.04, for chaincode
execution since the native Hyperledger Fabric docker image is incompatible with
the library. The docker and docker-compose versions used are 20.10.8 and 1.25.0,
respectively. All experiments are performed on Ubuntu 18.04 VMs with 2 CPU cores
of Intel i5-10500 throttled to 3.10GHz and 4GB memory. Eight VMs are started to
simulate the system peers, comprising one data source peer, one investigator peer,
one supervisor peer and five escrow agent peers. The docker file to generate the new
docker image and instructions on how to use it are available on Github (2022b).

6.1 Execution time

Firstly, we evaluate the execution time of each step in our key escrow system, except
the second step (because different developer may store their secret data M off-chain
and read the data in different ways), using all the post-quantum KEM algorithms in
the current/next round of NIST call. To ensure sufficient security, we use a 256-bit
AES session key to encrypt the 1024-byte secret data M . This serves as a benchmark
to demonstrate the on-chain AES encryption/decryption speed.

For quick understanding, we summarize all the execution time in Figs. 4 and 5,
where the session key recovery threshold t is separately set to 2 and 4. In these two
figures, the number following each KEM algorithm name denotes the claimed NIST
security level. As one may notice, we exclude Classic McEliece algorithm because
it causes very long execution time which makes the execution time based on other
algorithms in the figures too tiny to be read.

As shown in Figs. 4 and 5, the execution time ofmost steps in our key escrow system
is within 30 and 60ms, and therefore acceptable to be applied to other application
scenarios.

6.2 On-chain storage space

We calculate the on-chain storage space needed by our post-quantum key escrow
system based on all the different post-quantumKEMalgorithms. The on-chain storage
space consists of eight types of data tuples namely RN (Record Name), SD4S (Source
Data for Supervisor), SD4I (Source Data for Investigator), GS (Global Setup), AS
(Anonymity Setup), EK (Escrowed Key), PK (Partial Key) and FK (Final Key) under
the keys with the same names, which can be found in Fig. 2. And one time of our
system execution needs one RN tuple, one SD4S tuple, one SD4I tuple, one GS tuple,
one AS tuple, t (i.e., the threshold) EK tuple(s), t PK tuple(s) and one FK tuple, among
which the GS tuple can be used in different system execution sessions. Moreover, the
sizes of PK key and FK key remain at the value of 64 and 32, hence we omit them
in the tables and figures because of limited page space. For quick understanding, we
summarize the on-chain storage space of our post-quantum key escrow system based
on different post-quantum KEM algorithms in Figs. 6 and 7.
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Fig. 4 The execution time of every step (except the second step) in our post-quantum key escrow system
when the session key recovery threshold t is set to 2

Fig. 5 The execution time of every step (except the second step) in our post-quantum key escrow system
when the session key recovery threshold t is set to 4
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Fig. 6 The on-chain storage space of our post-quantum key escrow system when the session key recovery
threshold t is set to 2

Fig. 7 The on-chain storage space of our post-quantum key escrow system when the session key recovery
threshold t is set to 4

As one may notice, we again exclude Classic algorithm McEliece together with
the HQC algorithm from these two figures to make the figures more readable. As
mentioned in Sect. 3.3, compared to the constant small size of shared secret (often used
as session keys), most post-quantum KEM algorithms have relatively big ciphertext
sizes and public key sizes, which make the on-chain tuples (i.e., SD4S, GS and EK)
containing PQ ciphertexts and public keys storage-consuming.
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In closing, the winner KEM algorithm (i.e., CRYSTALS-KYBER) of the current
round has very good and balanced performance on execution time and on-chain stor-
age. While on the other hand, the candidate KEM algorithm (i.e., HQC) has better
performance on execution time but worse performance on on-chain storage size, while
the performance of the SIKE algorithm is just the reverse. Therefore, if the security
rationales hold, NIST could consider standardizing two PQ KEM algorithms (i.e.,
HQC and SIKE) for different application scenarios (e.g., time-sensitive and storage-
sensitive) in the next round of its call.

7 Conclusion

In this paper, we proposed the enhanced post-quantum key escrow system for consor-
tium blockchain guaranteeing both data confidentiality and supervised data disclosure
together with advanced security characteristics under the threat from quantum com-
puters. In our post-quantum key escrow system, we integrated the system with
all NIST post-quantum public-key encryption/KEM algorithms together with vari-
ous cryptographic tools (e.g., hash-based tag, secret sharing, Merkle-tree-based set
accumulator, etc.) in order to provide one fine-grained, single-point-of-dishonest-
resistant, collusion-proof and privacy-preserving solution. We built our system on
top of Hyperledger Fabric and provided chaincodes, configuration files, and invok-
ing command lines for further development. Finally, We also conducted security and
performance evaluations, highlighting the importance of evaluating post-quantum
public-key encryption/KEM algorithms in real scenarios, such as a blockchain-based
key escrow system.
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