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Abstract In this paper, we consider a new visual cryptography scheme that allows
for sharing of multiple secret images on graphs: we are given an arbitrary graph
(V ,E) where every node and every edge are assigned an arbitrary image. Images on
the vertices are “public” and images on the edges are “secret”. The problem that we
are considering is how to make a construction such that when the encoded images of
two adjacent vertices are printed on transparencies and overlapped, the secret image
corresponding to the edge is revealed. We define the most stringent security guaran-
tees for this problem (perfect secrecy) and show a general construction for all graphs
where the cost (in terms of pixel expansion and contrast of the images) is propor-
tional to the chromatic number of the cube of the underlying graph. For the case of
bounded degree graphs, this gives us constant-factor pixel expansion and contrast.
This compares favorably to previous works, where pixel expansion and contrast are
proportional to the number of images.
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1 Introduction

Secret sharing, introduced independently by Blakley (1979) and Shamir (1979), is
a scheme for an authority to encode a secret into shares to be distributed to a set
of n participants such that only qualified subsets of these participants may recon-
struct the secret. It is also required that unqualified subsets learn nothing about the
secret. In their works, both Blakley and Shamir describe a k-out-of-n threshold se-
cret sharing scheme, where any subset of at least k participants may reconstruct the
secret. In general, there is a set �, known as an access structure, which denotes the
collection of subsets of participants that can recover the secret. Note that � must
be monotone increasing, i.e. if A ∈ � and A ⊂ B ⊂ P then B ∈ �. The study of
secret sharing schemes has been generalized to arbitrary access structures (Benaloh
and Leichter 1990; Itoh et al. 1987). Multi-secret sharing involves multiple secrets,
with possibly different access structures, to be shared across participants. In this sce-
nario, the authority can distribute shares in a way that different qualified participant
sets may recover different secrets. These schemes (Blundo et al. 1993, 1994, 1997;
Di Crescenzo 2003) perform better than trivially instantiating multiple single-secret
sharing schemes.

Visual cryptography schemes (VCS), introduced by Naor and Shamir (1994), in-
volve a dealer encoding a secret (or target) image into shares to be distributed to
n participants. These shares, when printed on transparencies, may be recombined
simply by overlapping them. When a qualified subset of the participants overlap
their transparencies, a human-recognizable facsimile of the secret image appears. The
main benefit of such schemes is that the participants do not need to rely on machines
to perform the reconstruction. In a generalization of this scheme, it is sometimes ad-
ditionally required that each share is a human-recognizable image. In this type of
extension, each participant may have their own source image (that is known to the
authority) and the share generated for each user by the authority must “look” like
their source image (see Sect. 2 for definitions). If the shares are generated in this
fashion to match the source images, we call the scheme an Extended Visual Cryp-
tography Scheme (EVCS). Indeed, many researchers have worked on EVCSs, giving
constructions and proving bounds for them (Ateniese et al. 1996, 1996, 2001).

1.1 Organization of our results

The works (Ateniese et al. 1996, 1996, 2001) focused on the case where there was
only one secret image to be reconstructed. The natural generalization of this for mul-
tiple secret images was investigated first by Droste (1996). Our paper improves upon
previous constructions by dealing with a specific, yet natural model of the partici-
pants. In our model, we have a graph where each vertex represents a participant and
each edge represents a secret image. We refer to this model as a Graph-Based Ex-
tended Visual Cryptography Scheme (GEVCS). In Sect. 2, we propose a definition
of security and correctness for GEVCSs. We summarize our main results in Sect. 3
and spend the rest of the paper on the proofs and constructions. We will show first
that the definition is satisfiable by a naïve construction in Sect. 4, then describe a
better general construction for any graph in Sect. 5. In Sect. 6, we give a sample con-
struction. Finally, in Sect. 7, we employ our construction on bounded degree graphs
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to give a GEVCS with constant-factor pixel expansion and contrast. Additionally, in
Appendix A, we provide a visual example.

1.2 Comparison to previous results

The previous results most relevant to our work are the multi-secret visual cryptog-
raphy schemes proposed in Droste (1996), Kato and Imai (1998), Iwamoto and Ya-
mamoto (2003), Chen et al. (2006), Wang et al. (2006), Yi et al. (2006). The result
of Droste (1996) considered the idea of different resulting images when overlap-
ping different combinations of transparencies. In this work, Droste introduced the
notion of a S-extended visual cryptography scheme, where every subset of players
in S could recover a different secret image. This is accomplished by “piecing” to-
gether many basic visual cryptography schemes by making use of several simple
constructive lemmas. Although one does not immediately expect such a construction
to yield any optimal parameters, Klein and Wessler (2007) show that the construction
of Droste (1996) has minimal pixel expansion if S contains all non-empty subsets of
players (i.e. S = P ({1, . . . , n}) \ {∅}). Their result also proves tradeoffs between the
contrast of the shares.

The graph-based model which we work in can be viewed as a specific case of an
S-extended visual cryptography scheme, where S is the edge set of the graph. In this
case, we are able to obtain better pixel expansion: the construction of our scheme is
different than the construction given by Droste as we utilize the graph-based structure
and describe an algorithm to exploit properties of the graph. Our construction applies
constructive lemmas reminiscent of that used in Droste (1996), but we furthermore
augment it with a novel graph decomposition for a better arrangement of the shares.
We point out that this does not contradict the optimality results of Klein and Wessler
(2007) because S �= P ({1, . . . , n}) \ {∅} in our graph-based model.

Visual cryptography schemes with multiple secret images are also investigated in
Kato and Imai (1998), Iwamoto and Yamamoto (2003) and Chen et al. (2006). The
method proposed by Kato and Imai (1998) allows for the reconstruction of different
secret images as the number of participants grows. However, in Iwamoto and Ya-
mamoto (2003), it is shown that the reconstruction in Kato and Imai (1998) causes
information to be leaked about other secrets. Iwamoto and Yamamoto then present a
scheme which allows for the reconstruction of q multiple (color) images and prove
that their scheme does not leak additional information about the other secrets when
one is revealed. Indeed, by viewing the graph as the appropriate access structure, this
construction may also be applied to create graph-based visual cryptography schemes.
Again, we point out that our approach is different and is focused on graph decompo-
sitions to obtain better pixel expansion and contrast.

In recent results, both Wang et al. (2006) and Yi et al. (2006) proposed a scheme
for multiple visual secrets and general access structures. To illustrate the benefits
of our graph-based model, using binary tree graphs for comparison, the Wang et al.
(2006), Yi et al. (2006) schemes’ pixel expansions would grow on the order of the
number of nodes, while our main construction has a pixel expansion of no more than
25 for even arbitrarily many nodes. It is because of these practical considerations we
had in mind that we chose to use the graph-based model instead of a general access
structure for this paper.
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Fig. 1 Overlapping operation

Fig. 2 Pixel expansion

We also point out a difference between our work and other previous results in
visual cryptography which make use of graphs (such as Naor and Shamir 1994; Ate-
niese et al. 1996, 1996, 2001). While these results investigate graph-based access
structures as examples, our scheme handles the case of one secret image per edge as
opposed to only one secret image for the entire graph structure. On the other hand,
there are constructions of (non-visual) secret sharing or multi-secret sharing on a
graph-based access structure (Stinson 1994; Blundo et al. 1995, 1997; Di Crescenzo
2003; Csirmaz 2005). These are special types of access structures in which a graph
G = (V ,E) is used to represent the sets of qualified participants. Each vertex is
treated as a participant, and an edge between two participants indicates the two of
them together may recover a secret. The constructions given in this paper involve
graph decompositions, but our methods differ from these previous constructions as
we must take into account the visual aspects in addition to the multi-secret require-
ments. We will describe our novel decomposition in the following sections.

1.3 Background

We give a review of extended visual cryptography in the case of 2 participants and
produce a 2-out-of-2 scheme (denoted (2,2)-EVCS). We begin by introducing the
physical model of the problem.

Physical model The physical model of our scheme will use images printed on trans-
parencies (as in Naor and Shamir 1994). Black pixels will be printed onto the trans-
parency making these portions completely opaque, leaving the remaining portion
completely transparent (we will refer to these as white pixels). Thus the transparency
can be viewed as a Boolean matrix, where a 1 in the (i, j)th entry represents a black
pixel at that location and a 0 represents a white pixel. When overlapping two trans-
parencies, the result will have a black pixel where either of the two had a black pixel,
and a white pixel only where both have a white pixel (Fig. 1). This operation may be
viewed as the Boolean OR operation performed entrywise on the two matrices. Be-
cause our constructions are all pixel-wise operations, all images are henceforth just a
single black or white pixel.

The operation of overlapping two transparencies is inherently a destructive oper-
ation; one cannot “invert” the opaqueness caused by overlapping with a black pixel.
This is apparent by the fact that the OR operation lowers entropy. Thus, in order to
retain information, we will introduce some redundancy in the way a black or white
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pixel may be viewed. We sometimes refer to this process as encoding an image, and
one should keep in mind the distinction between the original and the encoded image
(which contains more information). In particular, we encode 1 pixel as m (usually
chosen to be a perfect square) subpixels (known as the pixel expansion), each which
may be black or white. If the original image was of size p×q , then the encoded image
will be of size p

√
m×q

√
m. Each of the 2m colorings of the subpixels of an encoded

pixel may be visually interpreted as a single black or white pixel. The natural visual
interpretation is to say if there are more than some threshold d black subpixels then
view it as black, otherwise view it as white (Fig. 2). To accommodate the human eye,
we may wish to preclude encodings that appear ambiguous in color. To do this, we
can impose a contrast requirement that says an encoding of a white pixel must have
less than d −α black subpixels (α is known as the absolute contrast, α/m the relative
contrast). If we let 1 indicate a black pixel and 0 indicate a white pixel, then this may
be viewed as an error correcting code where any string with Hamming weight greater
than d encodes a 1 and any string with Hamming weight less than d −α encodes a 0.

Extended visual cryptography We review the problem of extended visual cryptog-
raphy for two participants and a dealer. Loosely speaking, the goal of the dealer is to
take public images A1 and A2 and a secret image B and create secure encoded shares
S1 and S2 such that Si “looks like” Ai and the overlap of S1 and S2 “looks like” B .
Formally, the setup is as follows: each participant has a public image, say “A1” and
“A2”, which are known as the two source images. There is a secret image, say “B”,
known as the target image, to be shared between them by a dealer. The dealer must
then encode A1 and A2 into shares S1 and S2 (possibly under different encodings) by
selecting the colors of the subpixels in a way so that when S1 and S2 are overlapped,
the result is an encoding of B (possibly yet another encoding). In addition, like in a
secret sharing scheme, we will define a perfect secrecy requirement that should be
satisfied.

Contrast correctness While many encodings could in theory solve the above prob-
lem, we wish to restrict ourselves to only those encodings that satisfy some contrast
property. Although this creates a more difficult problem, the effort put into finding
a solution is rewarded by the practical property of the scheme that allows the un-
aided decoding of the images by the human eye. We say a particular encoding is
(α-)contrast correct if the absolute contrast of the encoding is at least α. Note that
in a single visual cryptography scheme, there may be many different encodings, e.g.
S1 encodes A1 under one encoding, S2 encodes A2 using another encoding, and the
overlap of S1 and S2 encodes B in yet another encoding.

Perfect secrecy The shares individually should not reveal any information about the
secret image. We view this as a game between a probabilistic poly-time dealer D
and an adversary A with infinite computational power. The adversary generates the
two source images (recall they are treated as single pixels) A1 and A2 and an index
i ∈ {1,2}. The dealer then randomly selects the target image B as either a black or
white pixel and creates shares S1 and S2 for B and sends Si back. The adversary must
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then attempt to guess what the color of B is. We say the dealer’s algorithm is perfectly
secret if the probability that the adversary wins is exactly 1/2. More formally,

Pr
[
(A1,A2, i) ← A,B ← {black,white}, {S1, S2} ← D(A1,A2,B),

B ′ ← A(Si);B = B ′] = 1

2

An EVCS construction We review an EVCS similar to the ones found in Naor and
Shamir (1994), Ateniese et al. (2001) that solves this problem. As stated before, the
scheme will operate on individual pixels, so the input will be source pixels A1 and A2
and a target pixel B . The two shares S1 and S2 each consist of m (the pixel expansion)
subpixels and together can be represented by a 2 × m Boolean matrix, called a share
matrix. We can then consider 8 collections C00

0 ,C00
1 ,C01

0 , . . . ,C11
1 of 2 ×m matrices

to be defined below.
Let (s1

0 , s1
1 , s2

0 , s2
1 , t0, t1) ∈ {1 . . .m}6 define how many black subpixels each source

or target pixel should be encoded into, e.g. s1
0 (resp. s1

1 ) is the number of black sub-
pixels a white (resp. black) pixel in the first source image will be encoded into. The
collection C

xy
z will contain all permutations of the columns of the matrix

S
xy
z =

[
1 1 1 . . . 1 . . . 1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 . . . 1 1 . . . 1 1 0 . . . 0

]

where row 1 contains s1
x 1’s, row 2 contains s2

y 1’s and the OR of the two rows contain

tz 1’s. The S
xy
z ’s are well-defined as long as s1

a + s2
b ≥ tc (this ensures we have enough

black subpixels) and max(s1
a , s2

b) ≤ tc (this ensures we do not have too many black
subpixels).

Then, to generate the shares for source and target images A1,A2,B , the dealer
will randomly choose a matrix M ∈ C

xy
z where x is the color of A1, y is the color

of A2, and z is the color of B , and set S1 as the first row of the matrix and S2 as the
second row.

2 Our definitions

In this section, we consider the problem of generating shares for n participants or-
ganized in a graph structure. We remind the reader that the graphs are interpreted
differently than in Ateniese et al. (1996). We interpret the graph to denote which
pairs of participants may overlap their shares to reconstruct the secret image dealt
between them. For example, a complete graph would mean any pair of participants
may overlap their shares to get a secret image for that pair, resulting in a total of

(
n
2

)

possible secret images. In this case, each vertex will have a source image Ai attached
to it, and each edge will have a secret target image Be attached to it. A (probabilistic)
polynomial-time computable algorithm that takes these as input and produces image
shares Si (each of length m, the pixel expansion) that satisfy the properties defined
below will be referred to as a Graph-based Extended Visual Cryptography Scheme
or GEVCS. This choice of graph structure is a practical one—indeed an interesting
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question would be to extend our constructions to general multi-secret access struc-
tures.

As a reference, we summarize all the properties of a GEVCS:

• A graph G = (V ,E) with n vertices and r edges.
• Source images Ai for each vertex i, each being a black (1) or white (0) pixel.
• Target images Be for each edge e, each being a black or white pixel.
• Source shares Si to be generated for each vertex i, each a vector of length m, the

pixel expansion. The share matrix M is an n × m matrix where row i is Si .
• Target shares Te, obtained by overlapping Si and Sj where e = (i, j). Alge-

braically, this may be written as Te = Si ∨ Sj .
• Si encodes Ai by having at least si

1 black pixels if Ai = 1 and at most si
0 black

pixels if Ai = 0. The contrast is αi = si
1 − si

0. Note that under this definition, each
source image may have its own contrast.

• Te encodes Be by having at least te1 black pixels if Be = 1 and at most te0 black
pixels if Be = 0. The contrast is αe = te1 − te0 . Note that under this definition, each
target image may have its own contrast.

• A security property loosely defined as: Fix an edge e� = (i�, j�). A computa-
tionally unbounded adversary cannot distinguish between whether Be� is black
or white even when given every Ai , every Be for e �= e�, and every Si for i �= i�.

2.1 Contrast correctness for GEVCS

When generating shares Si (and overlapped shares Te) given a graph G = (V ,E) with
n vertices and r edges, we define the following contrast properties. Each Si should
have at least si

1 1’s when encoding a 1 and at most si
0 1’s when encoding a 0. We can

similarly parameterize these thresholds for the Te and obtain te1 and te0 . Define the
(absolute) contrast to be αi = si

1 − si
0, αe = te1 − te0 . Define the relative contrast to

be α
m

, the ratio between the absolute contrast and the pixel expansion. In essence, it
is the relative contrast that affects how clear the final images will appear to be to the
human eye.

Definition 2.1 We say a GEVCS satisfies the contrast correctness property with pa-
rameters (si

0, s
i
1, t

e
0 , te1) if for every possible set of source images Ai and target images

Be , each share Si that is generated is a valid encoding (under these parameters) of Ai ,
and overlapping two of them along an edge e results in a valid encoding of Be .

2.2 Security for GEVCS

Visual cryptography schemes traditionally come with a guarantee of security by
means of defining perfect secrecy. Usually, a set of forbidden players is not allowed
to learn any information about the (one) secret image even under the possibility of
collusion. In our scheme, participants share different secrets with different people,
thus we need to take this into account when defining security.

Take the example of a GEVCS scheme on a military chain-of-command, repre-
sented by a graph. A general may have different secrets when overlapping with his
different lieutenants. These secrets may be highly sensitive, and one of the benefits
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of having a scheme with source images is that the shares may be rather inconspic-
uous, e.g. printed as a picture of a common object, or may be used to authenticate
the carrier of the image, e.g. printed as a photograph of the soldier. While these nat-
ural images may be used to mislead potential adversaries, we still demand a secrecy
guarantee for such schemes. We would like to guarantee that even if all of the lieu-
tenants were captured and their shares and source images were collected (along with
all possible overlaps of their shares), the general’s source image (but not his share),
and all but one lieutenant revealed (under interrogation) the secret target images they
shared with the general, then still no information should be revealed regarding the
one honest remaining lieutenant’s secret image with the general.

To further illuminate this point, consider a graph G = (V ,E) and the set of source
images Ai , the set of (secret) target images Be , the generated source images Si , and
the overlapped source images Te . Select an edge, e�, and a vertex on that edge, i�,
and suppose all of the source images on Ai were revealed, along with all of target
images Be , on the edges E \ e�. Furthermore, reveal all of the shares Si in V ′ \ i�.
Perfect secrecy guarantees that the adversary should learn nothing about the origi-
nal target image Be� . We may once again view this as a game between the dealer
and an adversary with infinite computational power. As we operate on the image
pixel by pixel, security will be defined on a single pixel. The adversary starts with
a graph G = (V ,E) and selects a vertex i� and an edge e� and generates source
images Ai for each i ∈ V and target images Be for each e ∈ E \ {e�} and sends
this to the dealer. Be� is randomly chosen to be black or white. After applying the
GEVCS to generate shares Si , the adversary obtains every share except Si� . The
adversary must then guess whether Be� is 0 or 1. Formally, we have the defini-
tion:

Definition 2.2 We say a GEVCS (a probabilistic polynomial-time algorithm named
D) is secure or perfectly secret for G if for any adversary A we have:

Pr
[
({Ai}, {Be}e �=e� , i�, e�) ← A(G),Be�

R← {0,1},

{Si} ← D(G, {Ai}, {Be}),B ← A({Si}i �=i� );B = Be�

] = 1

2

In some of the constructions, the GEVCS will deal the shares by sampling from a
collection of matrices. On a graph G = (V ,E) there will be collections C

{ai }
{be}, one for

each possible assignment of 0’s and 1’s to {ai}i∈V , {be}e∈E . We will also make use of
a so-called basis matrix—this n×m (n being the number of participants and m being
the pixel expansion) matrix contains the m subpixels to be assigned to player i in row
i. The collections will arise as all matrices obtained by permuting the columns of the
basis matrices, thus we will have one basis matrix for each possible assignment of the
vertex and edge source images. We will parameterize the basis matrices for a graph
G and source images {ai}i∈V and target images {be}e∈E by S

{ai }
{be}. Our constructions

will give an explicit algebraic formula to compute the basis matrix from given values
of {ai} and {be}.
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Fig. 3 Star forest
decomposition

2.3 Graph theoretic terminology

A star is a connected graph that has at most one vertex, known as the center, with
degree greater than 1. A star forest is a graph where each connected component is a
star. If we let G = (V ,E) be a graph, given a set of subgraphs H1, . . . ,Hk we say that
they are a graph (resp. star, star forest) cover of G if every edge in E is contained
in at least one Hi and each subgraph is a graph (resp. star, star forest). We let N(v)

denote the neighbors of a vertex v, or in other contexts, the neighborhood of v, i.e.
the star centered at v with all its neighbors as points.

A subset I ⊂ V of vertices is called an independent set if every edge has at most
one endpoint in I . A maximal independent set (MIS) I ⊂ V is one such that adding
any vertex v ∈ V \ I will result in a non-independent set. Note this is different from
the notion of a maximum independent set, which is an independent set such that no
other independent set has more elements than it. Finding a maximal independent set
is quite easy while finding a maximum independent set is NP-hard.

Let H1, . . . ,Hk be subgraphs of G = (V ,E) such that each Hi = (Vi,Ei) is a
subgraph, each v ∈ V belongs to at most one Hi , and there are no edges in G be-
tween any two vertices that are not in the same subgraph, i.e. �i �= j, vi ∈ Vi, vj ∈
Vj (vi, vj ) ∈ E. There can still be edges in G between vertices in the same Hi . In this
case, we say that H1, . . . ,Hk form an independent subgraph set and H = ⋃k

i=1 Hi

is an independent subgraph of G. In addition, if each Hk is a star, we say H is an
independent star forest subgraph of G. In Fig. 3 we decompose a graph (top) into a
union of star subgraphs. Notice that each edge is contained in at least one star.

The cube of G is a new graph G3 = (V ,E′) where (v,w) ∈ E′ if v and w are
connected by a path of at most length 3. A coloring of a graph is an assignment
of a color to each vertex so that no edge has its two endpoints the same color. The
chromatic number of a graph is the minimum number of colors required to color the
graph. The degree of a graph is the maximum of the degrees of all its vertices and
(d-)bounded degree graphs are those which have degree at most d .



56 J Comb Optim (2011) 21: 47–66

3 Main result

Our main result is stated as follows:

Theorem 3.1 Let G = (V ,E) be a graph where no vertex has degree greater than d

and let χ be the chromatic number of G3. Then there exists a GEVCS on G with pixel
expansion at most m = χ(5d + 1), and absolute contrast 2 for each source image on
a vertex and 4 for each target image on an edge. Furthermore, we give an explicit
construction for a GEVCS with pixel expansion at most m = (d3 + 1)(5d + 1).

We will build up to this result in the remainder of the paper.

4 Warming up: A naïve construction

For practical applications of GEVCSs, we wish to maximize the contrast and mini-
mize the pixel expansion for the encoded images. This involves selecting better con-
trast parameters so that the contrast is increased. The question is whether or not we
can construct a GEVCS to satisfy the chosen parameters. We will instead construct
a GEVCS for a given graph G, then evaluate the contrast and pixel expansion neces-
sitated by the construction. We begin by exploring a naïve construction of a GEVCS
for a complete graph that involves a pixel expansion of m = 2n2 − n with relative
source contrast 1

m
and relative target contrast 2

m
. Compare this to the optimal lower

bounds in the recent work of Blundo et al. (2006). They show a tight lower bound
of m ≈ n2/4 with relative contrast 1

m
for a (2, n)-VCS that has no source images

(the shares are not required to look like anything) and only a single secret image to
recover.

4.1 Satisfying both security and contrast for general graphs

We present a construction of a GEVCS on any graph satisfying certain contrast pa-
rameters. This construction will turn out to be perfectly secret as well. For any com-
plete graph G = (V ,E) of n vertices we give a construction with a pixel expansion
of m = 2n2 − n and will determine the parameters si

0, s
i
1, t

e
0 , te1 after the construction.

For each possible assignment of {ai}, {be} we will construct the basis matrix S
{ai }
{be} (we

will write S for ease of reading). Each basis matrix will contain a so-called “source-
contrast” block, U , meant to allow the source subpixels to pass the threshold for a
black pixel, followed by n “target-contrast” blocks T1, . . . , Tn meant to control the
number of black subpixels of the target image. First define the n × n matrix U as:

U =

⎡

⎢⎢
⎢
⎣

a1 1 1 . . . 1
1 a2 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . an

⎤

⎥⎥
⎥
⎦

If ai is black then row i will have one extra black subpixel. This will be used
to differentiate a black pixel from a white pixel of the source image. The remaining
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matrices, Ti , will be used to control the darkness of the target image. We define each
Ti to be the n × 2(n − 1) matrices:

Ti =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

b(i,1) 0 0 . . . 1 − b(i,1) 0 0 . . .

0 b(i,2) 0 . . . 0 1 − b(i,2) 0 . . .
...

...
...

...
...

...
...

...

0 0 0 . . . 1 1 1 . . .
...

...
...

...
...

...
...

...

0 0 . . . b(i,n) 0 0 . . . 1 − b(i,n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

The form of these matrices is to start with an (n − 1) × (n − 1) matrix with diag-
onal entries b(i,j) (there is no b(i,i)), then concatenate a matrix with diagonal entries
1 − b(i,j), then insert a new row i which consists of n − 1 zeroes followed by n − 1
ones. Notice when any row j is overlapped with row i, the result will contain all 1’s
in the right half, and all zeroes except b(i,j) in the left half. On the other hand, when
any row j is overlapped with row k �= i, the result will contain exactly two 1’s.

Finally we let S = U ||T1|| · · · ||Tn (where || denotes horizontal matrix augmenta-
tion), a matrix with 2n2 − n columns and n rows. We now count how many 1’s there
are in each row i corresponding to a white (resp. black) source pixel. There will be
n − 1 (resp. n) 1’s in the U block, there will be a single 1 in each Tj block with
j �= i, and there will be n − 1 1’s in the Ti block. Thus we can set si

0 = 3(n − 1) and
si

1 = 3(n − 1) + 1. We may similarly count how many 1’s there are in the overlap of
two rows i and j with a white (resp. black) corresponding target pixel: n in the U

block, n (resp. n + 2) in the Ti and Tj blocks, and 2 in each Tk block for k �= i, j .
Thus we can set te0 = 4n− 4 and te1 = 4n− 2. Then our construction satisfies contrast
for these parameters on a complete graph.

To ensure security, we randomly permute the columns of the matrix S before set-
ting share Si as the ith row. We now prove the construction satisfies the security
definition in the previous section.

Proof Let A be an adversary with infinite computational power which will play
against an honest dealer D as defined in Definition 2.2. Let {ai}, {be}e �=e� be the
images generated by A and without loss of generality take i� = 1, e� = (1,2). Using
the construction above, let S (resp. S′) be the basis matrix associated with b(1,2) = 0
(resp. 1). Let C (resp. C′) be the collection of matrices obtained by taking all per-
mutations of S (resp. S′). A j� is randomly chosen and the construction calls for the
dealer to randomly sample a matrix from C if j� = 0 and from C′ otherwise. Be-
cause the adversary does not receive S1 (the first row), it appears as if the dealer were
sampling from C or C′ restricted to the (n− 1)×m submatrix obtained by removing
the first row. To complete the proof, we exhibit an identification between the matrices
in C restricted to (n − 1) × m submatrices and the restricted matrices in C′ thereby
showing the adversary has no information as to what j� is. As only b(1,2) differs be-
tween the two, the only difference between S and S′ is between the first two rows of
T1, T2 and T ′

1, T
′
2. As an example, we write down the first two rows for comparison



58 J Comb Optim (2011) 21: 47–66

of each of the matrices when n = 4:

T1 =
[

0 0 0 1 1 1
0 0 0 1 0 0

]
T2 =

[
0 0 0 1 0 0
0 0 0 1 1 1

]

T ′
1 =

[
0 0 0 1 1 1
1 0 0 0 0 0

]
T ′

2 =
[

1 0 0 0 0 0
0 0 0 1 1 1

]

Then, by the permutation τ which swaps columns 1 and n of T1, we see that τ(S)

is indistinguishable from S′ when restricted. Any matrix in C′ can be written as σ(S′)
for some column permutation σ , and σ(S′) is identical to στ(S) ∈ C when restricted.
This shows the collections C and C′ are identical when restricted, and therefore this
scheme preserves perfect secrecy. �

This construction extends to any graph by deleting every column j and n − 1 + j

(the columns containing entries b(i,j)) from Ti if (i, j) is not an edge. This results in
a pixel expansion of n + ∑n

i=1 2di = n + 4e where di is the degree of vertex i and
e is the number of edges. The contrast parameters will be si

0 = (n − 1) + 2di (there
are n− 1 black pixels in U , one black pixel in each Tj where (i, j) is an edge, and di

black pixels in Ti ), si
1 = n + 2di , and if e = (i, j) we have te0 = n + (di − 1) + (dj −

1) + di + dj (there are n black pixels in U , one black pixel in Tk for each (i, k) ∈ E

and each (j, k) ∈ E, di in Ti , and dj in Tj ), and te1 = n + (di − 1) + (dj − 1) + (di +
1) + (dj + 1).

We mention an additional property, known as smoothness, that will be important
in a later section: overlapping two shares that do not have an edge between them will
result in the same number of 1’s regardless of the source and target images. To see
why the smoothness property holds, let i and j be vertices such that (i, j) is not an
edge in G. The overlap of Si and Sj will have n black pixels in U block. In a Tk block
where k �= i, j there will be black pixels depending on whether or not (i, k) and (j, k)

are edges. In Ti and Tj , since the columns for b(i,j) are deleted their overlap will be
some constant number of 1’s equal to the number of columns in Ti or Tj that are not
deleted: this is exactly the degree of vertices i and j , respectively. Thus, regardless
of the images, there will always be n + 2di + 2dj black pixels in their overlap.

5 GEVCS for a general graph

With examples of secure schemes shown to exist in the previous section, we now
move to give constructions with better bounds on the pixel expansion and contrast.
The idea is that we can view the act of overlapping a transparency with your neighbors
as a local process so that we may seek to decompose our graphs into sufficiently
independent local pieces, build a GEVCS for each piece, then patch them together in
a meaningful way.

5.1 Building blocks

Our construction idea is to construct GEVCSs for building blocks, then somehow
combine them to form any graph. We apply the naïve construction for a small sub-
graph, then describe how these subgraphs may be patched together. Indeed, the idea
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of “patching together” several schemes has also been investigated by Droste (1996).
We now present two different ways the GEVCSs described above may be patched
together to form a GEVCS on a graph G. We take a graph cover of G and first show
how to generate shares for an independent subgraph set in parallel. Then we will
show how to take these sets of subgraphs and combine their shares sequentially. An
example of how these are used is given in Sect. 6.

Construction 5.1 (Parallel sharing on independent subgraphs) Let H be an indepen-
dent subgraph of G. We can write H = ⋃k

i=1 Hi , where the Hi are the independent
pieces (recall this means that each Hi has no edges connecting to an Hj ). Obtain a
GEVCS for each subgraph using the naïve construction above. Let m be the maxi-
mum pixel expansion over all the subgraphs. Construct a new distribution of share
matrices for H = ⋃k

i=1 Hi by first sampling a share matrix from each GEVCS on Hj .
The new matrix will have one row for each vertex in H , and because each vertex is
uniquely contained in some Hj we may assign to it the corresponding row from the
GEVCS on Hj (also, pad them with 0’s at the end so that each row is of length m).

By observing that this is simply sampling multiple GEVCSs on independent sub-
graphs, we obtain the following lemma:

Lemma 5.2 By sampling the share matrix according to the distribution in Construc-
tion 5.1, we obtain a secure GEVCS on H . The pixel expansion is equal to the max-
imum pixel expansion of the GEVCSs on the individual subgraphs and maintains the
same contrast parameters for each vertex and edge. Also, this scheme satisfies the
smoothness property.

In addition to this construction, we have a second construction to patch together
all of the independent subgraphs of G.

Construction 5.3 (Sequential sharing on dependent subgraphs) Let K1, . . . ,K� be
a graph cover of G = (V ,E) where each Kk is an independent subgraph. Use Con-
struction 5.1 on the Ki to obtain GEVCS schemes on each of these. For each Ki ,
first pad the shares in its GEVCS with rows i ∈ V \ Vi by filling the all these rows
with 1’s. Each of these matrices will have n rows, and we can then concatenate them
horizontally. This completes the construction of a new distribution of shares on G.

Lemma 5.4 By sampling the share matrix according to the distribution in Construc-
tion 5.3, we obtain a secure GEVCS on G. The pixel expansion is equal to the sum of
the pixel expansions of the GEVCS on each of the subgraphs. The contrast parameters
are dependent on how many times a vertex or edge appears in the decomposition; in
terms of absolute contrast, a source image has absolute contrast equal to the number
of times its vertex appears in the covering, and a target image has absolute contrast
equal to twice the number of times its edge appears in the covering.

Proof (Contrast Correctness) We begin by investigating the source contrast of some
vertex vi . First, observe that parallel sharing does not affect the absolute source con-
trast. However, when we use sequential sharing on dependent subgraphs, for each
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subgraph Kk that contains vi , we accumulate one pixel of absolute contrast. Namely,
if there are x subgraphs Kk which contain vi , then when the source pixel is black, the
share for participant i will contain exactly x more black pixels than when the source
pixel is white. It follows that the source contrast property is preserved.

We now consider the contrast on an edge eij in G. The overlap of share i and
share j will contain a number of 1’s equal to the sum of the overlap of share i and
share j in each K1, . . . ,K� (recall that we are applying sequential sharing on the K

subgraphs). Thus, for each k = 1, . . . , �, we may consider three cases: if eij ∈ Kk , if
eij /∈ Kk but both nodes i and j are in Kk , and if at least one node is not in Kk . In the
first case, the contrast property of the GEVCS on Kk will contribute to the overlap
being darker if the secret pixel on eij is black. In the second case, by the smoothness
property of the GEVCS, we have that there will always be a constant number of 1’s,
thus not affecting the darkness either way. In the last case, the share of the node not
in Kk will be all 1’s, hence the overlap will always be completely black. Thus each
block satisfies the contrast property, and after summing over all the 1, . . . , � blocks,
we still satisfy the contrast property.

(Perfect Secrecy) To show this construction is secure, let e� be the edge the ad-
versary wishes to attack. Without loss of generality, assume that this edge is between
participants 1 (recall, we designate participant 1 as the player who is not controlled
by the adversary) and 2, and appears in the first p subgraphs: e� ∈ K1, . . . ,Kp . We
construct a series of hybrid schemes where the kth matrix is sampled from a distri-
bution where e� is white in K1, . . . ,Kk but black in Kk+1, . . . ,K�. Between each
consecutive step of the hybrid, we analyze the view of the adversary. We break this
analysis into two cases: when 1 ≤ k ≤ p and when k > p. In the latter case, no in-
formation about e� is contained in the shares, and we therefore focus on the former
case. When the edge e� is in the subgraph Kk , we observe that by the perfect secrecy
of the scheme on each individual Kk , the view of the adversary remains the same.

This shows that the view of the adversary remains unchanged between adjacent
steps in the hybrid. Thus, after the completion of the entire hybrid, we have changed
the color of e� in our construction from white to black and yet the view of the adver-
sary did not change. This shows perfect secrecy for Construction 5.3. �

5.2 Construction of a GEVCS for a general graph

Given a graph G with an independent subgraph cover K1, . . . ,K� we can construct
a GEVCS for G by applying the two previous Constructions 5.1 and 5.3. First con-
struct a GEVCS for each component of Ki using the naïve GEVCS construction
described above. Then combine the shares in parallel by Construction 5.1 to obtain
GEVCSs for each independent subgraph Ki . This will be followed by combining the
shares sequentially by Construction 5.3 to finally obtain a GEVCS on G.

The final pixel expansion and contrast can be counted as follows. If each Ki is
written as a union of its independent pieces Ki = ⋃ki

j=1 Hij then the pixel expan-
sion of the parallel sharing will be the maximum of the pixel expansions of the naïve
construction on all of the Hij . We write nij and eij for the number of vertices and
edges in Hij , respectively, and obtain the pixel expansion for the GEVCS on Ki to
be mi = maxj {nij + 4eij }. The sequential sharing will then give us the final pixel



J Comb Optim (2011) 21: 47–66 61

expansion m = ∑
i mi . Similarly, we know the absolute contrast of the naïve con-

struction is 1 for each source image on a vertex and 2 for each target image on an
edge. Thus overall, the absolute contrast of a vertex is the number of subgraphs Hij

which contain it, and for an edge it is twice the number of subgraphs which contain
it.

We make the observation that if one takes a coloring of the cube of a graph G, one
can make an independent star forest cover of G by taking Ki to be the union of all
stars around centers of color i. If it uses χ colors, then there will be χ of the Ki ’s.
This is explained in further detail in Sect. 7. By combining the constructions above
with the independent star forest cover in the following section, we obtain the main
theorem: Theorem 3.1.

6 Example construction of a GEVCS on a graph

We construct a GEVCS for the graph seen in Fig. 4. Label the vertices 1..6 top to
bottom, left to right. As an example, we will use the source and target images as
seen on the left of the figure. We will decompose the graph as K1 ∪ K2 where K1

(center of the figure) is the union of two independent pieces H11 (top bold portion)
and H12 (bottom bold portion) and K2 (right of the figure) is just H21 (bold). The
basic construction for a share matrix for each of the H ’s are as follows (the vertical
line separates the U and Ti blocks as in the naïve construction):

Share Matrix for H11 =
[

1 1 0 1 0 1
1 1 0 1 0 1

]

Share Matrix for H12 =
⎡

⎣
1 1 1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 1

⎤

⎦

Share Matrix for H21

=

⎡

⎢⎢
⎣

1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1
1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1

⎤

⎥⎥
⎦

When treated as subgraphs in G the rows correspond to the vertex number as follows:

Share Matrix for H11 =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1 1 0 1 0 1
− − − − − −
1 1 0 1 0 1
− − − − − −
− − − − − −
− − − − − −

⎤

⎥⎥⎥⎥⎥
⎥
⎦
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Share Matrix for H12 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

− − − − − − − − − − −
− − − − − − − − − − −
− − − − − − − − − − −
1 1 1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

Share Matrix forH21

=

⎡

⎢⎢⎢
⎣

1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1
− − − − − − − − − − − − − − − −
1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1
− − − − − − − − − − − − − − − −

⎤

⎥⎥⎥
⎦

In the actual construction, we would sample a random permutation of the columns
of these matrices. We then apply parallel sharing on the matrices for H11 and H12 to
obtain a share matrix for K1. We pad H11 with 1’s at the end to make it align with
H12. The share matrix for K2 is just that of H21.

Share Matrix for K1 =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1 1 0 1 0 1 1 1 1 1 1
− − − − − − − − − − −
1 1 0 1 0 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 1

⎤

⎥⎥⎥⎥⎥
⎥
⎦

Finally, we apply sequential sharing between K1 and K2 to obtain a share matrix
for G, completing the construction. We accomplish this by concatenating the two
matrices horizontally and fill the remaining blanks with 1’s (the vertical line separates
K1 and K2):

Share Matrix for G

=

⎡

⎢⎢⎢
⎣

1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1
1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤

⎥⎥⎥
⎦

7 Independent star forest covers

In this section we describe how to find independent star forest covers for graphs to
supply as input to our algorithm in the previous section. We describe the general con-
struction of independent star forests for any graph G, and mention this construction
leads to parameters depending only on the maximum degree of vertices of the graph.

First we give an example of an independent star forest decomposition on a tree.
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Fig. 4 GEVCS construction

Fig. 5 Coloring G3

Example using trees Given a graph G that is a tree, we can decompose G into
four independent star forests. Define Vj for j = 1,2,3,4 to be the set of ver-
tices whose distance from the root is j mod 4, then define Ki = ⋃

v∈Vi
N(v). Then

K1,K2,K3,K4 is an independent star forest cover of G. Indeed, the edge e = (v,w)

(where v is the parent of w) is covered by Hi where i is the distance of v from the
root mod 4.

7.1 Algorithm for finding independent star forest cover

We begin by making the observation that given a k-coloring of G3, we can decompose
G as follows: Let Ki = ⋃

v has color i N(v). Note this is an independent star forest
cover as an edge between N(v) and N(w) implies there is a path of at most length 3
between v and w which translates to an edge (v,w) in G3, hence they cannot be of
the same color. Each edge is covered exactly twice.

Our construction in the previous section can therefore theoretically be made with
pixel expansion and contrast parameters dependent only on the chromatic number
of G3 and the degree of G. However, it is NP-hard to find the chromatic number, so
instead we apply a less optimal solution to color the graph. We remodel the algorithm
found in Luby (1986) into the algorithm in presented in Fig. 5.

This algorithm will use at most d3 + 1 colors (cf. Luby 1986, Sect. 7) if G is of
degree d . This is because at each stage if the node itself is not colored then at least
one neighbor is colored (by the property of a maximal independent set). Thus at the
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Fig. 6 Player 1 holds a triangle, Player 2 holds a square, Player 3 holds a cross

next stage, its degree will drop by at least 1, and since each vertex in G3 has at most
degree d3, we arrive at the conclusion of at most d3 + 1 colors.

Combining this algorithm with the construction from the previous section gives
rise to a construction of a GEVCS on any graph, and for d-bounded degree graphs
a constant-factor (on the order of d4) pixel expansion and contrast as stated in our
main theorem. Unlike the naïve construction, this construction is independent of the
number of participants.

8 Conclusion and open problems

In this paper we presented a Graph-based Extended Visual Cryptography Scheme.
We provided a new security definition for such schemes and proved such schemes can
always be constructed with sufficient parameters. We then considered a construction
of a GEVCS on a star graph, then showed how to combine these into a GEVCS
for any arbitrary graph. Finally, we described a complete construction (via an explicit
independent star cover) of a GEVCS on any d-bounded degree graph with parameters
depending only on d , thus giving an upper bound on the parameters for the scheme.
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Fig. 7 Player 1 and 3 overlap to recover L, Player 1 and 3 overlap to recover M, Player 2 and 3 overlap to
recover O

Because GEVCS is an extension of EVCS, certain theoretical bounds on pixel ex-
pansion contrast are carried over from previous works. One question to ask is whether
or not these bounds can be tightened in this new setting. Further investigation into dif-
ferent types of graph decompositions and coverings may lead to better parameters.

Acknowledgements We thank the anonymous referees for their helpful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
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provided the original author(s) and source are credited.

Appendix A: Visual example

Figures 6 and 7 show an example in the case of 3 users with secrets between each of
the three possible pairs.
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