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Abstract Respiratory rate is recognized as a clinically

important parameter for monitoring respiratory status on the

general care floor (GCF). Currently, intermittent manual

assessment of respiratory rate is the standard of care on the

GCF. This technique has several clinically-relevant short-

comings, including the following: (1) it is not a continuous

measurement, (2) it is prone to observer error, and (3) it is

inefficient for the clinical staff. We report here on an algorithm

designed to meet clinical needs by providing respiratory rate

through a standard pulse oximeter. Finger photoplethysmo-

grams were collected from a cohort of 63 GCF patients

monitored during free breathing over a 25-min period. These

were processed using a novel in-house algorithm based on

continuous wavelet-transform technology within an infra-

structure incorporating confidence-based averaging and log-

ical decision-making processes. The computed oximeter

respiratory rates (RRoxi) were compared to an end-tidal CO2

reference rate (RRETCO2). RRETCO2 ranged from a lowest

recorded value of 4.7 breaths per minute (brpm) to a highest

value of 32.0 brpm. The mean respiratory rate was 16.3 brpm

with standard deviation of 4.7 brpm. Excellent agreement was

found between RRoxi and RRETCO2, with a mean difference of

-0.48 brpm and standard deviation of 1.77 brpm. These data

demonstrate that our novel respiratory rate algorithm is a

potentially viable method of monitoring respiratory rate in

GCF patients. This technology provides the means to facilitate

continuous monitoring of respiratory rate, coupled with arte-

rial oxygen saturation and pulse rate, using a single non-

invasive sensor in low acuity settings.

Keywords Respiratory rate � Pulse oximeter � Continuous

monitoring � Low acuity monitoring

1 Introduction

Respiratory rate (RR) is well known to be a clinically

important parameter owing to the fact that it provides

important information pertaining to many aspects of a

patient’s respiratory status. Frequently, a change in RR is

one of the earliest and more important indicators that

precedes major clinical manifestations of serious compli-

cations such as respiratory tract infections, respiratory

depression associated with opioid consumption, anaesthe-

sia and/or sedation, as well as respiratory failure [5].

Accordingly, the monitoring of RR is of paramount

importance in several clinical conditions, particularly in

settings where direct and close clinician supervision is

minimal, such as the general care floor (GCF).

In current clinical practice, the standard of care technique

for monitoring RR is intermittent, manual observation. This

technique consists of visual assessment of patient breathing

for a one-minute period of time to establish RR via a manual

count. While manual observation is currently in widespread
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use in many patient care settings, there are several clinically

important shortcomings associated with this approach. For

example, manual counting requires clinical staff interven-

tion, which often leads to low rates of compliance for RR

monitoring. Furthermore, it is prone to significant errors that

may stem from a number of sources, including failure to

observe distinct breaths; counting and rounding errors;

and, not least, erroneous respiration due to self-conscious

breathing caused by patient-clinician interaction [14].

Several technological approaches have been advanced in

the attempt to address the limitations associated with manual

observation of RR. Examples of these technologies include

several different continuous monitoring devices such as end-

tidal CO2 (ETCO2), ECG-based trans-thoracic impedance

systems, nasal thermistors, and abdominal and chest bands

(i.e. respiratory inductance plethysmography) [6]. However,

continuous measurements using these techniques all involve

costly, specialized, and intrusive equipment that ultimately

is limiting to their practical application in many care set-

tings, particularly in low acuity settings such as the GCF.

In addition to the technical challenges and expense of the

current continuous measurement options, such devices may

be cumbersome for the patient and thus patient compliance

may be low due to physical discomfort. Indeed, it has pre-

viously been demonstrated that when ETCO2 monitoring is

employed on the GCF, many patients remove the nasal

cannula due to physical annoyance [7]. Evaluation of the

current methodologies, both manual observation and tech-

nological approaches, reveals that there is an obvious need

for an alternative methodology for monitoring RR that

overcomes the deficiencies of these approaches. An ideal

clinical solution would be one that is continuous in nature,

non-invasive, simple to operate, unobtrusive, clinically

acceptable, and robust in the presence of signal interference.

One such non-invasive continuous monitoring technol-

ogy candidate that is affordable, user-friendly, and already

accepted in clinical practice is pulse oximetry. Recent

evidence indicates that the measurement of RR from the

pulse oximeter signal, or photoplethysmogram (PPG), may

be possible. Numerous groups have previously demon-

strated that evaluating the respiratory-related fluctuations

from the PPG signal is both a biologically plausible and

technically attainable approach to obtaining RR using a

variety of methods including: inspection of the respiratory

oscillations in the filtered PPG [15, 25, 27, 31–33]; fre-

quency spectra-based approaches [28, 35]; frequency-based

smart fusion approaches using multiple modulations [18];

independent component analysis [36]; short-time Fourier

transform analysis [34]; neural networks [26]; variable

frequency complex demodulation methods [13, 21]; auto-

regressive models [23, 24, 29]; pulse width variability [17];

and approaches based on the continuous wavelet transform

by our own group [2, 10–12, 22, 30].

This cumulative body of evidence strongly suggests the

possibility of deriving RR from a single combined sensing

system that leverages standard pulse oximetry. A techno-

logical approach providing these metrics from a single

sensor would yield tremendous clinical utility in a manner

that is cost effective and efficient from a workflow per-

spective. We have shown in a recent study [2] that the

respiratory rate determined from our in house algorithm

(RRoxi) represents a potentially viable technology for the

measurement of RR in healthy subjects. The algorithm has

the necessary filtering, logic and decision making processes

required to provide a fully-automated technology capable

of coping with the extremes of data characteristics in the

clinical environment and ultimately provide a clinically

useful number for display. The purpose of the follow-up

study we report here was to demonstrate the viability of

RRoxi in a GCF patient population.

2 Methods and materials

2.1 The respiratory rate algorithm (RRoxi)

Respiratory activity may cause the PPG to contain three

fundamental waveform modulations [2, 18, 47]. These can

be seen in the example signal segment in Fig. 1 and

described as follows:

1. Baseline (DC) Modulation: caused by changes in

venous return secondary to changes in intrathoracic

pressure throughout the respiratory cycle. During

inspiration, the decrease in intrathoracic pressure

results in a small decrease in central venous pressure

increasing venous return. The opposite occurs during

expiration. As more blood is shunted from the low

pressure venous system at the probe site and the

venous bed cyclically fills and drains, the baseline is

modulated accordingly (‘BM’ in Fig. 1).

Inhale

RSA
Change in pulse period 
indicative of RSA

ExhaleBM

AM

Fig. 1 A segment of PPG exhibiting the three modulations. BM

baseline modulation (cardiac pulses riding on top of baseline

modulation), AM amplitude modulation (cardiac pulse amplitudes

varying over respiratory cycle), RSA respiratory sinus arrhythmia

(pulse period varying over respiratory cycle). Regions of inhalation

and exhalation are shown schematically on one respiratory cycle
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2. Pulse Amplitude Modulation: Respiratory-related changes

in intrathoracic pressure alter cardiac function. Principally,

this stems from decreased left ventricular stroke volume

during inspiration, leading to decreased pulse amplitude

during this phase of respiration (‘AM’ in Fig. 1).

3. Respiratory Sinus Arrhythmia (RSA): This is a vari-

ation in heart rate that occurs throughout the respira-

tory cycle. Specifically, it has been well-documented

that heart rate increases during inspiration and

decreases during expiration. However, the presence

of RSA is influenced by several factors including age,

disease status, and physical fitness. While the precise

mechanisms of RSA remain controversial, in general,

it is a result of autonomic nervous system activity

fluctuation during respiration (‘RSA’ in Fig. 1).

We have developed a powerful signal processing meth-

odology that can extract respiratory information from the

PPG. This is embodied within our RR algorithm (RRoxi) that

optimizes the extraction of respiratory information from

within the PPG signal. This is achieved by deriving a series

of new characterizing signals which are optimally config-

ured to enhance respiratory information content. These are

fed into the main analysis engine which processes the

characterizing signals in order to determine a RR. The

analysis engine incorporates advanced signal processing

techniques based on continuous wavelet transform meth-

ods [1]. The wavelet transform of a signal x(t) is defined as:

Tða; bÞ ¼ 1
ffiffiffi

a
p

Z

þ1

�1

xðtÞw� t � b

a

� �

dt ð1Þ

where w*(t) is the complex conjugate of the wavelet func-

tion w(t), a is the dilation or scale parameter of the wavelet,

b is the location parameter of the wavelet, t is time and x(t)

is the signal under investigation: this may be the PPG or

secondary signals derived from the PPG. In our work we

employ tunable complete Morlet wavelets (1) of the form:

wðtÞ ¼ 1
ffiffiffi

p4
p eixot� e�

x2
o
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where xo is the central frequency of the mother wavelet.

The second term in the brackets is known as the correction

term, as it corrects for the non-zero mean of the complex

sinusoid of the first term. The RRoxi algorithm iterates

every 5 s, deriving an RR from the previous 45-s segment

of infrared PPG. These current rates are averaged further

with the previously displayed rate, and continue through

additional logic before displaying a final reported rate to

the user. We provide additional detailed information on the

algorithm in references [2, 48–53] including the state

machine-driven logic used to determine whether to report

the information to the end user or blank out the display [2].

2.2 Study details

2.2.1 Subjects

Subsequent to IRB approval, the study was conducted at

The Ohio State University Medical Center in Columbus,

OH, USA. A cohort of 63 adult patients was recruited for

the trial (33 male and 30 female). RR was determined from

the data acquired from all subjects.

The study exclusion criteria were:

• Contact allergies that may cause a reaction to standard

adhesive materials found in the sensors used.

• Abnormalities that may prevent proper application of

the pulse oximeter probe.

• Previous injury or co-morbidity to fingers or hands that

may change blood flow and vascular supply.

• Pregnant or lactating women.

The latter being a standard criterion for the site where

most of the studies exclude pregnant or lactating woman.

2.2.2 Protocol

The data were acquired using a standard Nell-1 oximeter

OEM module with a Nellcor Max-A disposable probe

attached firmly to the index finger of the right hand.

A Datex-Ohmeda CardioCap/S5 device was used to record

an end-tidal CO2 signal from the patient using a nasal

cannula. Once the subject was comfortable with the

equipment, the PPG signal was acquired for a duration of

approximately 25 min. A spontaneous breathing protocol

was conducted whereby the subjects were asked to relax

and breathe naturally. In addition, research clinical per-

sonnel recorded any external artifacts or subjects’ move-

ments during data collection to ensure data quality. The

patients were observed but no other instructions were

given.

3 Results

Participant characteristics are detailed in Table 1. The

participants exhibited a wide range of medical conditions.

These are detailed in Table 2.

Table 1 Selected subject characteristics

Variable Mean ± SD Min Max

Age (year) 55 ± 17 24 89

Weight (kg) 92 ± 26 45 170

Height (cm) 170 ± 10 150 198

BMI (kg/m2) 31 ± 9 15 61
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Figure 2 contains the spread of the RR during the study.

The histogram plot is comprised of 16,980 RRETCO2 data

points taken at 5-s increments over the whole population;

that is, at each 5 s increment, the previous 45 s of data is

used to determine RRoxi. RRETCO2 ranged from a lowest

recorded value of 4.7 brpm to a highest value of 32.0 brpm.

The mean rate was 16.3 brpm with a standard deviation of

4.7 brpm. To ensure that we had the highest possible

confidence in the ETCO2 reference, we took steps to

eliminate regions of poor quality ETCO2 waveforms that

might typically be included in normal device operation.

For example, ETCO2 devices will often report through a

degree of talking and motion induced artifact; however,

the actual RR is often ambiguous in these regions.

Therefore, in an effort to ensure a high confidence in the

ETCO2 RR, we ignored these regions in the performance

analysis. Of the regions tested, a rate was not

computed from the RRETCO2 for 17 % of the data due

to poor or ambiguous signal quality or the device

recalibrating.

Figure 3 contains a histogram of the differences

between RRoxi and RRETCO2. RRETCO2 reported a rate

83.0 % of the time. RRoxi reported a rate 92.4 % of the

time. The overlap of non-reporting times for the two RRs

was 1.2 %. The mean difference between the rates was

-0.48 brpm with a standard deviation of 1.77 brpm. The

root mean square deviation (RMSD) was 1.83 brpm (Pulse

oximetry-based parameters SpO2 and pulse rate use RMSD

as a measure that combines both bias (mean error) and

precision (SD error) to give a measure of total error as per

the ISO80601-2-61 standard [54]. We have adopted this in

lieu of a standard for pulse oximetry-derived RR.) Figure 4

expands the view of the data further. The figure contains a

Bland–Altman plot of the data. We have used a density

scale of the data points to indicate the density of points

contributing to the Bland–Altman plot. The mean and ±3

standard deviations of the data are plotted on the figure. We

advocate these ‘‘density Bland–Altman’’ plots over the

traditional method of simply plotting the data points for

large sets. An appreciation of the number of points in a

region is often difficult using the traditional method where

large numbers of points may be plotted over each other,

Table 2 Subject medical condition classification

Medical condition Number Percentage (%)

Respiratory

Asthma 4 6.3

Chronic obstructive pulmonary disease 8 12.7

Dyspnea 2 3.2

Obstructive sleep apnea 7 11.1

Pneumonia 2 3.2

Cardiovascular

Aortic stenosis 3 4.8

Coronary artery disease 8 12.7

Heart failure 5 7.9

Hypertension 24 38.1

Stroke 3 4.8

Metabolic/autonomic

Hyperlipidemia 9 14.3

Obesity 31 49.2

Neuropathy 12 19.0

Type II diabetes mellitus 15 23.8

Renal

End stage renal disease 2 3.2

Fig. 2 Distribution of breathing rates (RRETCO2) of GCF patients

during the trial

Fig. 3 Distribution of differences between RRETCO2 and RRoxi
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whereas the density plot provides a much clearer picture of

where the majority of the data lies.

4 Discussion

We have demonstrated an algorithm for the computation of

RR from a standard, commercially available pulse oxime-

try system during spontaneous breathing in GCF patients in

the GCF setting. RRoxi was derived for data collected from

a 63-subject cohort and compared to a reference rate,

RRETCO2. We found excellent agreement between the two

with an RMSD of 1.83 brpm. Significantly, the algorithm

was developed and tested using a wide range of in-hospital

patient data [2, 55–62] and healthy subject data and

therefore is not tuned specifically for GCF patients. This

was done to mitigate overtraining on GCF data and to

ensure that the algorithm has the ability to cope with as

wide a range of situations in the field as possible. These

results are in accordance with a previous study by our

group of healthy volunteers [2]. Compared to this earlier

study, there is a slight decrease in performance (mean 0.48

vs. 0.23 brpm; STD: 1.77 vs. 1.14 brpm and RMSD: 1.83

vs. 1.16 brpm). This may be a result of the more chal-

lenging nature of the GCF patients compared to the healthy

subjects studied in this earlier work. In order to assess the

effects of intra-patient dependency within the analysis, we

investigated the inter-patient variability of the results. The

individual statistics for each subject were computed and it

was found that the mean RMSD was 1.73 brpm and stan-

dard deviation of the RMSD’s was 1.28 brpm. This sup-

ports the likelihood of an acceptably small intra-patient

variability in the difference between RRoxi and the

reference.

Importantly, this performance was accomplished using a

single sensor that combines the ability to monitor RR,

arterial oxygen saturation (SpO2), and pulse rate; these

findings highlight a unique, clinically useful approach to

monitoring multiple respiratory variables in a continuous,

non-invasive, and easy-to-use manner. An advantage of the

use of a single senor for SpO2, HR and RR is that it

potentially reduces the number of alarm modes. For

example, a single ‘‘sensor off’’ or ‘‘motion artifact’’ alarm

could cover all three parameters, whereas in two separate

devices there is a likelihood of significant increased false

alarm rate, with a corresponding likelihood of increased

alarm fatigue and workflow disruption [46].

The significance of the magnitude of absolute error

associated with respiratory rate depends on the on the true

rate. The results published here mostly lie in a central range

of respiration between approximately 10 and 20 brpm. We

performed sub-analyses of the results for RR\10 brpm and

[20 brpm and found the mean, SD and RMSD to be 1.07,

2.42, 2.65 brpm respectively for rates \10 brpm and 1.33,

1.76, 2.20 brpm respectively for rates greater than 20 brpm.

These sub-analyses involved 6.1 and 17.1 % data points

respectively of the total collected. These values are slightly

greater than for the whole data set. It is important, how-

ever, not to over-interpret these results as there are rela-

tively few data at these extremes. Our group is very aware

of the importance of the algorithm performance at the

extremes and have ongoing work considering patient

groups that cover these regions [55, 56].

The physiological processes that both enable and con-

found the measurement of respiratory rate appear well

understood in this space and link to the wider literature on

the causes of erroneous PPG components including:

vasotone, vasomotion, posture, patient motion, tempera-

ture, metabolic state, pain, drug administration, lung

compliance, upper airway obstruction, edema, heart rate,

respiratory rate, catheterization, ablation, the venous blood

component and arrhythmia. These are documented more

fully in the work of others [2, 16, 37–45]. There are little

data on GCF monitoring of the PPG for RR as this is an

area of care where continuous oximeter monitoring is not

regularly carried out. However, we have observed in our

own work that operating room data exhibits considerable

PPG artifact from: motion, drug administration, vasomo-

tion, administration of fluids, heart rate changes, etc.,

whereas the GCF is a more benign environment. If con-

tinuous PPG-based RR were to gain traction in the GCF,

we expect that much of the signal would be of good quality

with intermittent instances of severe artifact due to patient

motion: voluntary or assisted.

Fig. 4 Bland-Altman density plot of the data (lowest density of

points to highest density = Dark Blue, Light Blue, Green, Yellow,

Red)
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It is worth noting that our wavelet-based algorithm does

not tend to exhibit the erroneous low rates posted across the

range of reference rates prevalent in the work Karlen et al.

[18]. We believe that this is due to increased flexibility in

identifying and partitioning respiratory components inher-

ent in our approach over their smart-fusion, frequency

spectrum based approach. Our results compare favourably

with those reported by other groups [13–18, 21–29, 31–36].

However, such comparisons should be considered carefully

as the results are highly dependent on the characteristics

of the raw signal and its manipulation, exclusion criteria,

manual selection of data (if applicable), the patient group

studied and, of course, the algorithmic implementation

(including pre-processing, processing and post-processing

steps). The determination of a clinically useful physiolog-

ical parameter is therefore a distinctly non-trivial task.

An important aspect of our work is that it targets the

development of a fully-automated algorithm capable of

coping with the extremes of data characteristics in the

clinical environment: i.e. the RRoxi values generated are

those that would be displayed on the device screen to the

clinician. A sophisticated algorithmic infrastructure is

therefore required to take the raw biosignal from the

hardware, process it, present it to the core algorithm, then

apply further post-processing to the output in order to

produce a value with the integrity necessary for display on

the screen of a medical monitoring device [2].

It is well-established that many patient deaths on the

hospital GCF may be prevented, at least in part, through more

vigilant monitoring aimed at detecting clinically meaningful

antecedents to patient deterioration [8]. For example,

Hodgetts et al. [9] reported in a root-cause analysis that

approximately 80 % of the cardiac arrests occurring on the

GCF were preventable. It has been reported that approxi-

mately 40 % of such alterations are considered respiratory in

nature, underscoring the importance of attentive respiratory

monitoring in this setting [20]. Despite this, it has been

suggested that upon the arrival of a hospital rapid response

team, up-to-date vital signs, such as RR, are not available for

three out of four patients [4]. Clearly, providing this infor-

mation in a continuous and timely manner to clinicians could

provide the foundation for improved patient outcomes on the

GCF. A critical factor contributing to respiratory distress on

the GCF is the administration of opioid analgesia and asso-

ciated respiratory depression [3]. Consequently, the Anes-

thesia Patient Safety Foundation has issued guidance

suggesting that for patients receiving post-operative opioid

analgesia administration, vital sign monitoring should occur

with increased frequency [19]. Thus, monitoring RR con-

tinuously may offer an avenue to specifically reduce the

deleterious impact of opioid-induced respiratory depression.

Despite the overwhelming importance of a patient’s

respiratory status while on the GCF, manual observation

remains the standard of care for assessment of RR. It is

clear to see that this intermittent approach is lacking

because it leaves substantial periods of time in which the

patient’s respiratory status is unmonitored. Given the

rapidity with which a patient’s respiratory status may

devolve, critical clinical information during these unmon-

itored periods of time leave the patient susceptible to the

untoward clinical complications mentioned above. In

addition to patient safety considerations, there is also a

clinical burden placed on the staff to monitor RR at peri-

odic intervals. By establishing a means through which RR

can be monitored continuously, in conjunction with pulse

oximetry from a single sensor site, our algorithm provides a

mechanism to potentially improve patient outcomes on the

GCF while improving compliance with vital sign moni-

toring requirements.

4.1 Concluding remarks

Our results demonstrate that the RRoxi algorithm is a

potentially viable technological approach for monitoring

RR in a diverse GCF patient population. Currently, pulse

oximeters use the differential absorption of red and infrared

light between oxygenated hemoglobin and deoxygenated

hemoglobin to provide a measure of oxygen saturation,

with heart rate also provided. These devices do not mea-

sure RR, and will only detect inadequate respiration after

hypoxia has occurred. Hence, pulse oximetry may be

considered a lagging indicator of evolving respiratory

complications, limiting its efficacy in this domain. How-

ever, the combination of pulse oximetry with RR, in a

single sensor, may provide earlier indication of evolving

respiratory compromise. We believe that the RRoxi algo-

rithm would provide this vital information by offering the

capability to monitor RR via a probe that is routinely

attached to patients in many clinical situations, thus

enhancing patient safety and facilitating reduced clinical

workflow with combined RR and oxygen saturation

monitoring.
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