Skip to main content
Log in

Vanadium-doping effects on magnetic and magnetocaloric efficiency of La0.7Sr0.2(CaLi)0.05Mn1−xVxO3 [x = 0.00 and x = 0.05] manganites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The La0.7Sr0.2Ca0.05Li0.05Mn1−xVxO3 [S1(x = 0) and S2(x = 0.05)] polycrystalline compounds are found to exhibit a ferromagnetic—paramagnetic transition (FM–PM) when temperature increases with a decrease of Curie temperature TC when substituting Mn with V from TC = 271 K to TC = 266 K. The Arrott plots near Curie temperature show positive slopes under an applied magnetic field varying from 0 to 5 T showing a second order magnetic transition for our samples. Basing on the magnetic-field dependences of magnetization measured around TC, maximum magnetic-entropy changes \(\left| {\Delta S_{M}^{{\hbox{max} }}} \right|,\) under the applied field of 5 T, are about 5.4 and 4.8 J kg−1 K−1 for S1 and S2 respectively. The efficiency of our samples for magnetic refrigeration application has been evaluated throw calculating the relative cooling power (RCP) values, which were equal to 211.5 J kg−1 for S1 and 195.5 J kg−1 for S2. The study of the universal curves show that the rescaled magnetic entropy change curves for different applied fields collapse onto a same curve confirming that both S1 and S2 reveal a second order transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)

    Article  Google Scholar 

  2. E. Bruck, Developments in magnetocaloric refrigeration. J. Phys. D 38, R381 (2005)

    Article  Google Scholar 

  3. V.K. Pecharsky, K.A. Gschneidner Jr., Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997)

    Article  Google Scholar 

  4. H. Omrani, M. Mansouri, W. Cheikhrouhou Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric investigations in Pr0.6–xErxCa0.1Sr0.3MnO3 (0 ≤ x ≤ 0.06) manganites. J. Alloy. Compd. 688, 752–761 (2016)

    Article  Google Scholar 

  5. H. Ben Khlifa, R. M’nassri, W. Cheikhrouhou-Koubaa, G. Schmerber, C. Leuvrey, C. Ulhaq-Bouillet, A. Dinia, A. Cheikhrouhou, Structural characterization and magnetic field dependence of the magnetocaloric properties in Pr0.8Na0.05K0.15MnO3 ceramic. J. Magn. Magn. Mater 439, 148–155 (2017)

    Article  Google Scholar 

  6. A. Szewczyk, H. Szymczak, A. Wiśniewski, K. Piotrowski, R. Kartaszyński, A. Szewczyk, H. Szymczak, A. Wiśniewski, K. Piotrowski, R. Kartaszyński, Magnetocaloric effect in La1−xSrxMnO3 for x = 0.13 and 0.16. Appl. Phys. Lett. 77, 7 (2000)

    Article  Google Scholar 

  7. P. Manh-Huong, Yu Seong-Cho, N.H. Hur, Y.-H. Jeong, Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. J. Appl. Phys. 96, 1154 (2004)

    Article  Google Scholar 

  8. R. M’nassri, N. Chniba-Boudjada, A. Cheikhrouhou, 3D-Ising ferromagnetic characteristics and magnetocaloric study in Pr0.4Eu0.2Sr0.4MnO3 manganite. J. Alloy. Compd. 640, 183–192 (2015)

    Article  Google Scholar 

  9. W.W. Wu, J.C. Cai, X.H. Wu, S. Liao, K.T. Wang, L. Tao, Nanocrystalline LaMnO3 preparation and kinetics of crystallization process. Adv. Powder Technol. 24, 154–159 (2013)

    Article  Google Scholar 

  10. X.H. Huang, W. Chen, W.W. Wu, Y. Zhou, J. Wu, Q. Wang, Y.Y. Chen, J. Mater. Sci. 27, 5395–5402 (2016)

    Google Scholar 

  11. H. Ben Khlifa, R. M’nassri, W. Cheikhrouhou-Koubaa, E.K. Hlil, A. Cheikhrouhou, Effect of synthesis route on the structural, magnetic and magnetocaloric properties of Pr0.8K0.2MnO3. Ceram. Int. 43, 1853–1861 (2017)

    Article  Google Scholar 

  12. F. Ayadi, W. Cheikhrouhou-Koubaa, M. Koubaa, S. Nowak, L. Sicard, S. Ammar, A. Cheikhrouhou, Effect of synthesis method on structural, magnetic and magnetocaloric properties of La0.7Sr0.2Ag0.1MnO3 manganite. Mater. Chem. Phys. 145, 56–59 (2014)

    Article  Google Scholar 

  13. H. Ben Khlifa, F. Ayadi, R. M’nassri, W. Cheikhrouhou-Koubaa, G. Schmerber, A. Cheikhrouhou, Screening of the synthesis route on the structural, magnetic and magnetocaloric properties of La0.6Ca0.2Ba0.2MnO3 manganite: a comparison between solid-solid state process and a combination polyol process and Spark Plasma Sintering. J. Alloy. Compd. 712, 451–459 (2017)

    Article  Google Scholar 

  14. K.P. Shinde, S.S. Pawar, N.G. Deshpande, J.M. Kim, Y.P. Lee, S.H. Pawar, Magnetocaloric effect in LSMO synthesized by combustion route,Materials. Chem. Phys. 129, 180–182 (2011)

    Google Scholar 

  15. X. Moya, L.E. Hueso, F. Maccherozzi, A.I. Tovstolytkin, D.I. Podyalovskii, C. Ducati, L.C. Phillips, M. Ghidini, O. Hovorka, A. Berger, M.E. Vickers, E. Defay, S.S. Dhesi, N.D. Mathur, Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nat. Mater. 12, 52 (2013)

    Article  Google Scholar 

  16. M.S. Anwar, A.A. Khan, K.Y. Park, S.R. Lee, F. Ahmed, B.H. Koo, Influence of Zn on magnetocaloric effect in (0.95)La0.7Sr0.3MnO3/Ni1–xZnxFe2O4 ceramic composites. Mater. Res. Bull. 69, 41 (2015)

    Article  Google Scholar 

  17. C.P. Reshmi, S. Savitha Pillai, M. Vasundhara, G.R. Raji, K.G. Suresh, M. Raama Varma, Co-existence of magnetocaloric effect and magnetoresistance in Co substituted La0.67Sr0.33MnO3 at room temperature. J. Appl. Phys. 114, 033904 (2013)

    Article  Google Scholar 

  18. I.P. Muthuselvam, R.N. Bhowmik, Grain size dependent magnetization, electrical resistivity and magnetoresistance in mechanically milled La0.67Sr0.33MnO3. J. Alloys Compd. 511, 22–30 (2012)

    Article  Google Scholar 

  19. J.B. Goodenough, A. Wold, R.J. Arnott, N. Menyuk, Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+. Phys. Rev. 124, 373 (1961)

    Article  Google Scholar 

  20. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  Google Scholar 

  21. E. Dagotto, Complexity in strongly correlated electronic systems. Science 309, 257 (2005)

    Article  Google Scholar 

  22. S. Tian Gao, Y. Cao, T. Liu, Z. Zhou, J. Feng, Zhang, Remarkable magnetic relaxation and metamagnetic transition in phase-separated La0.7Ca0.3Mn0.9Cu0.1O3 perovskite. J. Appl. Phys. 117, 163902 (2015)

    Article  Google Scholar 

  23. N. Kallel, S. Kallel, A. Hagaza, M. Oumezzine, Magnetocaloric properties in the Cr-doped La0.7Sr0.3MnO3 manganites. Physica B 404, 285 (2009)

    Article  Google Scholar 

  24. J.S. Amaral, M.S. Reis, J.P. Araújo, T.M. Mendonça, P.B. Tavares, V.S. Amaral, J.M. Vieira, Phase separation of La0.70–xErxSr0.30MnO3 and its effect on magnetic and magnetocaloric properties. Mater. Sci. Forum 587–588, 338 (2008)

    Article  Google Scholar 

  25. F. Ayadi, F. Saadaoui, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, L. Sicard, S. Ammar, Effect of monovalent doping on the physical properties of La 0.7 Sr 0.3 MnO 3 compound synthesized using sol-gel technique. In IOP Conference Series: Materials Science and Engineering, vol. 28 (IOP Publishing, 2012), p. 012054.

  26. M.S. Kim, J.B. Yang, P.E. Parris, The effect of Cu-doping on the magnetic and transport properties of La0.7Sr0.3MnO3. J. Appl. Phys. 97, 10H714 (2005)

    Article  Google Scholar 

  27. G.C. Lin, X.L. Yu, Q. Wei, J.X. Zhang, Large magnetic entropy change above 300 K in La0.70Ca0.20Sr0.10MnO3. Mater. Lett. 59, 2149 (2005)

    Article  Google Scholar 

  28. W.A. Sun, J.Q. Li, W.Q. Ao, J.N. Tang, X.Z. Gong, Hydrothermal synthesis and magnetocaloric effect of La0.7Ca0.2Sr0.1MnO3. Powder Technol. 166, 77 (2006)

    Article  Google Scholar 

  29. M.H. Phan, H.X. Peng, S.C. Yu, N.H. Hur, Large magnetic entropy change above 300K in a La0.7Ca0.2Sr0.1MnO3 single crystal. J. Magn. Magn. Mater. 290–291, 665 (2005)

    Article  Google Scholar 

  30. A. Ezaami, I. Sfifir, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Critical properties in La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol-gel and solid state process. J. Alloy. Compd. 693, 658 (2017)

    Article  Google Scholar 

  31. M.S. Anwar, F. Ahmed, G.W. Kim, S.N. Heo, B.H. Koo, The interplay of Ca and Sr in the bulk magnetocaloric La0.7Sr(0.3–x)CaxMnO3 (x = 0, 0.1 and 0.3) manganite, J. Korean Phys. Soc. 62, 1974–1978 (2013)

    Article  Google Scholar 

  32. I.G. De Oliveira, P.J. von Ranke, E.P. Nobreg, Understanding the table-like magnetocaloric effect. J. Magn. Magn. Mater. 261, 112 (2003)

    Article  Google Scholar 

  33. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1965)

    Article  Google Scholar 

  34. T. Roisnel, J. Rodriguez-Carvajal, Computer Program FULLPROF (LLB-LCSIM, Rennes, 2003)

    Google Scholar 

  35. R.D. Shannon, C.T. Prewitt, Revised values of effective ionic radii. Acta Crystallogr. Sect. B 26, 1046 (1970)

    Article  Google Scholar 

  36. S. Mahjoub, M. Baazaoui, R. M’nassri, H. Rahmouni, N. Chniba-Boudjada, M. Oumezzine, Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1–xFexO3(0 ≤ x ≤ 0.075) manganites. J. Alloys Compd. 608, 191–196 (2014)

    Article  Google Scholar 

  37. L. Xu, J. Fan, Y. Zhu, Y. Shi, L. Zhang, L. Pi, Y. Zhang, D. Shi, Magnetocaloric effect and spontaneous magnetization in perovskite manganite Nd0.55Sr0.45MnO3. Mater. Res. Bull. 73, 187–191 (2016)

    Article  Google Scholar 

  38. S.K. Banerjee, On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)

    Article  Google Scholar 

  39. R.D. Michael, J.J. Ritter, R.D. Shull, Enhanced magnetocaloric effect in Gd3Ga5–xFexO12. J. Appl. Phys. 73, 6946 (1993)

    Article  Google Scholar 

  40. H. Yang, Y.H. Zhu, T. Xian, J.L. Jiang, Synthesis and magnetocaloric properties of La0.7Ca0.3MnO3 nanoparticles with different sizes. J. Alloys Compds. 555, 150 (2013)

    Article  Google Scholar 

  41. R. M’nassri, A. Selmi, N.C. Boudjada, A. Cheikhrouhou, Field dependence of magnetocaloric properties of 20% Cr-doped Pr0.7Ca0.3MnO3 perovskite. J. Therm. Anal. Calorim. 129, 53–64 (2017)

    Article  Google Scholar 

  42. X.X. Zhang, G.H. Wen, F.W. Wang, W.H. Wang, C.H. Yu, G.H. Wu, Magnetic entropy change in Fe-based compound LaFe10.6Si2.4. Appl. Phys. Lett. 77, 3072 (2000)

    Article  Google Scholar 

  43. N.K. Swamy, N.P. Kumar, P.V. Reddy, M. Gupta, S.S. Samatham, D. Venkateshwarulu et al., Specific heat and magnetocaloric effect studies in multiferroic YMnO3. J. Therm. Anal. Calorim. 119, 1191 (2014)

    Article  Google Scholar 

  44. V. Franco, J.S. Blazquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89, 222512 (2006)

    Article  Google Scholar 

  45. S. Choura-Maatar, R. M’nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Role of lanthanum vacancy on the structural, magnetic and magnetocaloric properties in the lacunar perovskite manganites La0.8–x⋅ xNa0.2MnO3 (0 ≤ x ≤ 0.15), RSC Adv. 7, 50347–50357 (2017)

    Article  Google Scholar 

  46. R. M’nassri, M. Khelifi, H. Rahmouni, A. Selmi, K. Khirounic, N. Chniba-Boudjada, A. Cheikhrouhoud, Study of physical properties of cobalt substituted Pr0.7Ca0.3MnO3 ceramics. Ceram. Int. 42, 6145 (2016)

    Article  Google Scholar 

  47. F.Saadaoui, R.M’nassri, H..Omrani, M.Koubaa, N.Chniba-Boudjada, A. Cheikhrouhou, Critical behavior and magnetocaloric study in La0.6Sr0.4CoO3 cobaltite prepared by a sol–gel process. RSC Adv. 6, 50968 (2016)

    Article  Google Scholar 

  48. M.H. Phan, N.D. Tho, N. Chau, S.C. Yu, M. Kurisu, Large magnetic entropy change above 300 K in a colossal magnetoresistive material La0.7Sr0.3Mn0.98Ni0.02O3. J. Appl. Phys. 97, 103901 (2005)

    Article  Google Scholar 

  49. M.H. Phan, S.C. Yu, N.H. Hur, Excellent magnetocaloric properties of La0.7Ca0.3–xSrxMnO3 (0.05 ≤ x ≤ 0.25) single crystals. Appl. Phys. Lett. 86, 072504 (2005)

    Article  Google Scholar 

  50. Z.B. Guo, W. Yang, Y.T. Shen, Y.W. Du, Magnetic entropy change in La0.75Ca0.25–xSrxMnO3 perovskites. Solid State Commun. 105, 89 (1998)

    Article  Google Scholar 

  51. Y. Sun, W. Tong, Y.H. Zhang, Large magnetic entropy change above 300K in La0.67Sr0.33Mn0.9Cr0.1O3. J. Magn. Magn. Mater. 232, 205 (2001)

    Article  Google Scholar 

  52. Z.M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y.W. Du, Magnetocaloric effect in perovskite manganites La0.7–xNdxCa0.3MnO3 and La0.7Ca0.3MnO3. J. Appl. Phys. 90, 11 (2001)

    Google Scholar 

  53. D.T. Morelli, A.M. Mance, J.V. Mantese, A.L. Micheli, Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 79, 373 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Tunisian Ministry of Scientific Research and Technology and Group of Nanomagnetism CIC nanoGUNE – San Sebastain-Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M’nassri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M., Omrani, H., M’nassri, R. et al. Vanadium-doping effects on magnetic and magnetocaloric efficiency of La0.7Sr0.2(CaLi)0.05Mn1−xVxO3 [x = 0.00 and x = 0.05] manganites. J Mater Sci: Mater Electron 29, 14239–14247 (2018). https://doi.org/10.1007/s10854-018-9557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9557-3

Navigation