Skip to main content
Log in

Template-free synthesis of uniform rose-like MoS2 hierarchitectures and their enhanced photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, uniform rose-like MoS2 hierarchitectures have been succefully synthesized on a large scale through a template-free hydrothermal method by the reaction of hexaammonium heptamolybdate tetrahydrate [(NH4)6Mo7O24·4H2O] and thioacetamide (CH3CSNH2). The rose-like MoS2 hierarchitectures have a diameter of 350–450 nm and are formed by the assembly of numerous nanosheets. A reasonable growth mechanism of the MoS2 hierarchitectures was proposed according to the time-dependent experiments. In addition, the as-prepared rose-like MoS2 hierarchitectures show a large specific surface area of 33.72 m2 g−1 with a dominant pore diameter of 46 nm. UV–Vis absorption spectrum indicated that the sample shows a large blue-shift compared to bulk MoS2. The photocatalytic properties were investigated and exhibit enhanced visible light photocatalytic performance with the assistence of H2O2, which can be attributed to the special structural feature with an open and porous nanostructured surface layer that significantly facilitates the diffusion and mass transportation of MB molecules and oxygen species in photochemical reaction of MB degradation. This resulting rose-like MoS2 hierarchitectures are very promising visible light photocatalysts for the degradation of dye pollutants and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. N. Goswami, A. Giri, S.K. Pal, Langmuir 29, 11471 (2013)

    Article  CAS  Google Scholar 

  2. S.Z. Butler, S.M. Hollen, L.Y. Cao et al., ACS Nano 7, 2898 (2013)

    Article  CAS  Google Scholar 

  3. Z. Li, J. Wang, J. Lu, J. Meng, Appl. Surf. Sci. 264, 516 (2013)

    Article  CAS  Google Scholar 

  4. B.J. Guo, K. Yu, H.L. Li et al., ACS Appl. Mater. Interfaces 8, 5517 (2016)

    Article  CAS  Google Scholar 

  5. T. Yang, Y.J. Chen, B.H. Qu et al., Electrochim. Acta 115, 165 (2014)

    Article  CAS  Google Scholar 

  6. Z.C. Wu, B. Li, Y.J. Xue, J.J. Li, Y.L. Zhang, F. Gao, J. Mater. Chem. A 3, 19445 (2015)

    Article  CAS  Google Scholar 

  7. X.P. Zhou, B. Xu, Z.F. Lin, D. Shu, L. Ma, J. Nanosci. Nanotech. 14, 7250 (2014)

    Article  CAS  Google Scholar 

  8. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111 (2011)

    Article  CAS  Google Scholar 

  9. D.J. Late, B. Liu, H.S.S.R. Matte, V.P. Dravid, C.N.R. Rao, ACS Nano 6, 5635 (2012)

    Article  CAS  Google Scholar 

  10. X.X. Wang, F.X. Nan, J.L. Zhao, T. Yang, T. Ge, K. Jiao, Biosens. Bioelectron. 64, 386 (2015)

    Article  CAS  Google Scholar 

  11. Z.H. Zhou, Y.L. Lin, P.G. Zhang, Mater. Lett. 131, 122 (2014)

    Article  CAS  Google Scholar 

  12. H. Zhu, M.L. Du, M. Zhang, M.L. Zou, T.T. Yang, Y.Q. Fu, J.M. Yao, J. Mater. Chem. A 2, 7680 (2014)

    Article  CAS  Google Scholar 

  13. Y.Y. Zhao, L. Kuai, Y.G. Liu et al., Sci. Rep. 5, 8722 (2015)

    Article  CAS  Google Scholar 

  14. R.W.J. Scott, M.J. MacLachlan, G.A. Ozin, Curr. Opin. Solid State Mater. Sci. 4, 113 (1999)

    Article  CAS  Google Scholar 

  15. P. Kar, S. Farsinezhad, X.J. Zhang, K. Shankar, Nanoscale 6, 14305 (2014)

    Article  CAS  Google Scholar 

  16. K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Electrochim. Acta 132, 397 (2014)

    Article  CAS  Google Scholar 

  17. N. Berntsen, T. Gutjahr, L. Loeffler, J.R. Gomm, R. Seshadri, W. Tremel, Chem. Mater. 15, 4498 (2003)

    Article  CAS  Google Scholar 

  18. J. Etzkorn, H.A. Therese, F. Rocker, N. Zink, U. Kolb, Adv. Mater. 17, 2372 (2005)

    Article  CAS  Google Scholar 

  19. S.S. Liu, X.B. Zhang, H. Shao, J. Xu, F.Y. Chen, Y. Feng, Mater. Lett. 73, 223 (2012)

    Article  CAS  Google Scholar 

  20. N. Liu, P. Kim, J.H. Kim, J.H. Ye, S. Kim, C.J. Lee, ACS Nano 8, 6902 (2014)

    Article  CAS  Google Scholar 

  21. W.K. Ho, J.C. Yu, J. Lin, J.G. Yu, P.S. Li, Langmuir 20, 5865 (2004)

    Article  CAS  Google Scholar 

  22. Q.S. Gao, L.C. Yang, X.C. Lu, J.J. Mao, Y.H. Zhang, Y.P. Wu, Y. Tang, J. Mater. Chem. 20, 2807 (2010)

    Article  CAS  Google Scholar 

  23. S.M. Cui, Z.H. Wen, X.K. Huang, J.B. Chang, J.H. Chen, Small 11, 2305 (2015)

    Article  CAS  Google Scholar 

  24. Y. Yan, B.Y. Xia, X.M. Ge, Z.L. Liu, J.Y. Wang, X. Wang, ACS Appl. Mater. Interfaces 5, 12794 (2013)

    Article  CAS  Google Scholar 

  25. H. Vrubel, D. Merki, X. Hu, Energy Environ. Sci. 5, 6136 (2012)

    Article  CAS  Google Scholar 

  26. C. Feng, J. Ma, H. Li, R. Zeng, Z.P. Guo, H.K. Liu, Mater. Res. Bull 44, 1811 (2009)

    Article  CAS  Google Scholar 

  27. R.H. Barnsley, A.H. Thompson, Solid State Sci. 8, 1133 (2006)

    Article  Google Scholar 

  28. H. Liu, X. Su, C.Y. Duan, X.N. Dong, Z.F. Zhu, Mater. Lett. 122, 182 (2014)

    Article  CAS  Google Scholar 

  29. Y. Cheng, Y.S. Wang, Y.H. Zheng, Q. Yong, J. Phys. Chem. B 109, 11548 (2005)

    Article  CAS  Google Scholar 

  30. X.J. Dai, Y.S. Luo, S.Y. Fu, W.Q. Chen, Y. Lu, Solid State Sci. 12, 637 (2010)

    Article  CAS  Google Scholar 

  31. Y. Gao, C.L. Chen, X.L. Tan, H. Xu, K.R. Zhu, J. Colloid Interface Sci. 476, 62 (2016) 62

    Article  CAS  Google Scholar 

  32. S.K. Bhar, N. Mukherjee, S.K. Maji, B. Adhikary, A. Mondal, Mater. Res. Bull. 45, 1948 (2010)

    Article  CAS  Google Scholar 

  33. C. Yang, H. Fan, Y. Xi, J. Chen, Z. Li, Appl. Surf. Sci. 254, 2685 (2008)

    Article  CAS  Google Scholar 

  34. K.K. Kam, B.A. Parkinson, J. Phys. Chem. 86, 463 (1982)

    Article  CAS  Google Scholar 

  35. J.P. Wilcoxon, P.P. Newcomer, G.A. Samara, J. Appl. Phys. 81, 7934 (1997)

    Article  CAS  Google Scholar 

  36. A. Ghosh, C. Kulsi, D. Banerjee, A. Mondal, Appl. Surf. Sci. 369, 525 (2016)

    Article  CAS  Google Scholar 

  37. H. Zhang, X.F. Fan, X. Quan, S. Chen, H.T. Zu, Environ. Sci. Technol. 45, 5731 (2011)

    Article  CAS  Google Scholar 

  38. T. Oku, N. Kakuta, K. Kobayashi, A. Suzuki, K. Kikuchi, Prog. Nat. Sci. 21, 122 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Project Nos. XDJK2016C003, XDJK2017C003; XDJK2016E001, for Innovation and Entrepreneurship Students), the Foundation of Chongqing Municipal Education Commission (Grant Nos. KJ1711292; KJ1711272), Chongqing Natural Science Foundation (Grant Nos. cstc2016shmszx20002; cstc2016jcyjA0140; cstc2017jcyjA1821), Chongqing university outstanding achievement transformation projects (Grant No. KJZH17130), and Funding scheme for youth backbone teachers of universities in Chongqing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, Y. Template-free synthesis of uniform rose-like MoS2 hierarchitectures and their enhanced photocatalytic properties. J Mater Sci: Mater Electron 29, 19393–19401 (2018). https://doi.org/10.1007/s10854-018-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0068-z

Navigation